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ABSTRACT
An emerging trend in Web computing aims at collecting
and integrating distributed data. For instance, community
driven efforts recently have build ontological repositories
made of large volumes of structured and interlinked data
from various Web sources. Those repositories are extreme in
the sense that they are extraordinary in size and dominated
by assertional data incorporating only a small and typically
lightweight schema. So far, users can find tools for building
and browsing through large schemas but there is virtually
no support in navigating, visualizing or even analyzing the
data part of such a structured repository appropriately. This
paper describes how to combine techniques from visual an-
alytics and logical reasoning for interactive exploration of
large volumes of interrelated data. Our approach utilizes
visual abstraction techniques, semantical filters, as well as
various level of detail information. The underlying visual-
ization rationale is driven by the principle of providing detail
information with respect to qualitative as well as quantita-
tive aspects on user demand while offering an overview at
any time. By means of our prototypical implementation and
two real-world data sets we show how to answer several data
specific tasks by interactive visual exploration.

1. MOTIVATION
The two building blocks of an ontology are its terminology
or schema and its assertional data. The terminology intro-
duces concepts and properties and gives structure to them
in terms of defining axioms using the language constructs
of the underlying ontology language. The data part origi-
nates concrete individuals and relationships between those
individuals utilizing the definitions of the terminology.

As an example, consider a social-network ontology describ-
ing members of research communities defined by concepts
such as Project, Person, Publication, Institution as well
as properties such as has-Author, has-Project-Member, has-
Research-Interest etc. A corresponding real-world ontol-
ogy will define a general vocabulary for refining these terms.

A researcher, for instance, can be a working person, an af-
filiated person, a student, a PhD student, an employee can
be characterized by his title, his affiliations, his degrees, his
project memberships in the past and present etc. Keep-
ing this in mind, a corresponding data part spans a net-
work of people associated with their current and past af-
filiations, project memberships, authorships, research inter-
ests etc. Besides rather simple questions such as about the
project membership of some people one can also use the in-
formation repository to answer more complex questions such
as “Does a specific author (or a group of authors) tend to
publish with certain co-authors or with people from certain
affiliations?”, “Are there isolated affiliations within a specific
research area?” or“Are there research topics which were only
studied by PhD students?”.

The ratio of terminological to assertional data of an ontol-
ogy depends on its intended purpose. So called reference
ontologies, such as the SNOMED CT or NCI medical termi-
nologies, try to serve as an unifying vocabulary for various
other schemas. Therefore, they typically are made up of
terminological axioms solely. On the other hand, real-world
domain ontologies mostly contain a much larger amount of
individuals as opposed to concept or property definitions.
For instance, the data volume of the Gene Ontology (GO)
[4] exceeds the number of concepts about seven times. More
often, assertional data of those ontologies outnumbers the
terminological part by more than thousand times (i. e. SEM-
INTEC). Artificial data suites such as the Lehigh University
Benchmark (LUBM) [5] try to reflect this in that they in-
crease the number of individuals rather than the number of
concepts or properties for benchmarking. Not surprisingly,
scalability of reasoning with assertional data is still an actual
research issue albeit recent optimizations have shown signif-
icant increase in speed for answering queries with respect
to large volumes of individual data under specific conditions
[8].

At the same time the trend of collecting and integrating dis-
tributed data into one large repository is gaining more and
more momentum. As an example, community efforts such
as DBpedia [2] or ReSIST [1] have recently extracted large
volumes of structured data from the Web (Wikipedia, US
Census Data, DBLP, Citeseer, ACM, etc.). Those reposito-
ries are extreme in the sense that they are extraordinary in
size and dominated by assertional data incorporating only
a small and typically lightweight schema. So far, users can
find tools for building and browsing through large terminolo-



gies (i. e. Protégé, SWOOP, TopBraidComposer) but there
is virtually no support in navigating, visualizing or even an-
alyzing the assertional part of an ontology appropriately.

In this paper we will present our approach of combining tech-
niques from visual analytics and reasoning for interactive ex-
ploration of large volumes of interrelated instance data. The
following will describe the various selection, exploration, and
filtering techniques which have been implemented and inte-
grated into our OntoTrack [11] ontology authoring envi-
ronment. This is done on the basis of two data sets intro-
duced in the next section.

2. DATA SETS
For the rest of the paper, we have chosen two real-world
data sets from different domains in order to show how to
make implicitly encoded knowledge explicitly visible with
help of our approach. The first one has been extracted from
the MONDIAL Database and the second from the ReSIST
Network of Excellence. Both assertional data sets consist
of more than hundred thousands of individuals and were
mapped to the Web Ontology Language OWL 1.1 [14].

The MONDIAL Database
The Mondial Database1 (MONDIAL) is a collection of geo-
graphic information compiled from different Web data sources
such as the CIA World Factbook, Global Statistics and the
Terra database [12]. The core of a MONDIAL record con-
sists of data about countries, cities, as well as deserts, rivers,
or ethnic groups mainly collected from the CIA Worl Fact-
book. In addition the collection includes statistical data
about populations, area, or length. There are several for-
mats and extracts of MONDIAL freely available. First, we
mapped this data set into OWL format via a XSL trans-
formation. We then enrichted the assertional data with a
manually created terminology describing concepts such as
Country, City, Water-Area, Continent and properties such
as has-City, encompassed, has-province-capital. For in-
stance, the latter property relates a city to a province and
is defined as a subproperty of has-City. Furthermore, for
most properties we have added an inverse counterpart (e. g.
access-to-river is the inverse of flows-through-country).
Such a basic vocabulary at hand we defined more complex
concepts. For example, a EuropeanCountry has been defined
as a Country which is encompassed by the continent Europe.
In addition, we have enhanced the resulting ontology with
additional information such as a reference to a country flag
gathered from the web.

ReSIST Network – Resilience Knowledge Base
The Resilience Knowledge Base (RKB) has been created
during the first year of the European Network of Excel-
lence in Resilience Computing. The RKB aims at sup-
porting researchers in accessing knowledge on resilience con-
cepts, methods, tools, and the community itself. For that
purpose, resilience data has been captured from each part-
ner’s information resources such as research interest details
and courseware. This data has been complemented by ex-
ternal sources captured from research information services
CORDIS and NSF. Moreover, meta-data about publications

1http://www.dbis.informatik.uni-goettingen.de/Mondial/

and the RISKS index of “Computer-related Risks to the
Public”has been gathered from the Citeseer and ACM repos-
itories forming a social-network of researchers and publica-
tions. The modeling also includes special ontologies for De-
pendability and Security and uses vocabulary of the portal
and support ontology of the AKT project2. Both vocabular-
ies are general purpose ontologies describing, among others,
people, projects, and publications and their relationships
in a very fine-grained way introducing detailed taxonomies.
For instance, an Affiliated Person is a person which has
an affiliation with some organization (multiple affiliations
are allowed), and a Student is defined as an affiliated person
which studies at an Educational Organization and is af-
filiated within that organization to an Organization Unit.
Moreover, such taxonomies can also be found for relation-
ships, e. g. works-for is a subproperty of has-affiliation

because if a person works for an organization the organiza-
tion is also its affiliation. Figure 1 shows part of the taxon-
omy of definitions in the upper part, e. g. the concept defini-
tions of person and student in a logical notation. The data
is held in a RDFS triple store and accessible via a SPARQL
interface.3 The system incorporates a consistent reference
service which maps different URIs from various sources into
one reference [9]. We extracted a significant amount of data
from the RKB containing more than hundred thousand indi-
viduals and their relationships to a local repository in order
to avoid web-based latency delays. Thereby redundant URIs
have been cleared as the whole data set was translated into
the OWL 1.1 format.

3. VISUAL ANALYSIS THROUGH INTER-

ACTIVE EXPLORATION
Analysing real-world domain ontologies such as those de-
scribed above is a complex task when it comes to reposito-
ries containing a large amount of heavily interlinked individ-
uals. We claim that a combination of semantic technologies
with methods from Visual Analytics, two currently very ag-
ile and vivid research areas, will generate new and strongly
needed data discovery and illustration options able to un-
cover hidden and entailed information. Visual Analytics is
the formation of abstract visual metaphors in combination
with a human information interaction. To a certain extend
it also allows for visually reasoning about data from a human
perspective. However, it is an outgrowth of many scientific
fields and includes technologies from a wide range of areas
and unfold its power in combination with them [17].

One lesson learnt from the visual analysis of large data sets
in general is that it is not advisable to arbitrarily visualize
both all dependencies and all particulars at any time [10].
Therefore, our approach follows the Visual Information-Seeking
Mantra of “Overview first, zoom and filter, then details-on-
demand” [16] by providing detail information on user de-
mand while offering an overview at the same time.

Figure 1 shows a part of the hierarchy of concepts defined in
the schema data of the RKB on the upper part and the data
analysis pane on the lower part. The interaction, clustering
and exploring techniques of the concept hierarchy pane is out
of scope of this paper and can be found in our description

2http://www.aktors.org/
3http://www.rkbexplorer.com/



of the ontology environment OntoTrack [11]. However, as
shown in the following, there will be a tight interaction with
the concept hierarchy pane while interactively exploring and
analysing the data.

3.1 Reasoning
Analysing ontological data without taking its semantics into
account is not of much use. Just considering the given triples
of a RDF(S) model or the told axioms of an OWL ontology
does not reflect the intended meaning of the knowledge base.
A serious data analysis need to uncover entailed information
by making implicit knowledge explicitly available. This has
to be done by a reliable reasoning system. For instance,
in OWL the subconcept relationship is transitive. With-
out reasoning, this information would be hidden such that
in the RKB domain, a student would not be classified as
a person. As mentioned before, a student is a subconcept
of person which is also reflected in the concept hierarchy
shown in the upper part of Figure 1d. Note that classifica-
tion of data also means that it is not necessary to explicitly
state that an individual “StudentA” is an instance of the
concept Student. Instead this information can also be au-
tomatically derived from property definitions and property
instantiations: For instance, if the domain of studies-at is
declared to be a student and it is known that “StudentA”
studies at “OrganizationA” (property instantiation), “Stu-
dentA” will be derived to be an instance of Student. An-
other example deals with the fact that in OWL individuals
may have different identifiers and are not disjoint by de-
fault. Consequently, with help of a reasoning system, two
fillers of a functional property (i. e. a property with at most
one filler per source) will be merged to one single individual.
In addition, sophisticated data exploration or filtering tasks
correspond to queries which can only be answered with help
of a reasoning engine. Our approach therefore inherently
requires to have access to a high-performance reasoning sys-
tem. Besides RacerPro [6] our tool particularly relies on the
relational reasoning engine U2R2 [18] when dealing with as-
sertional data at very large scale.

3.2 Abstraction and Clustering
Following the Information-Seeking Mantra and similar stud-
ies, all the connections and relationships between individu-
als within an ontology can not be visualized and understood
at once. From the modeling point of view, concept and
property filler extensions seem to build obvious or “natural”
clusters with concise semantics. In both cases individuals
with similar characteristics are pooled. For instance, in the
MONDIAL domain, all capitals of European countries, and
all headquators which are located at a specific country can
be pooled within a so-called property filler cluster as shown
in Figure 2. Here, individuals are visualized as small filled
circles and clusters are drawn as clubs originating from the
individual which is considered as the origin of the filler set
(e. g. capital Paris in Figure 2), i. e. the subject of the in-
verse property headquator-at.

From an abstract point of view, there is a direct mapping be-
tween visual representation and semantics: in other words,
each cluster can be exactly described with a logical expres-
sion. Following this idea, the origin of a cluster club need
not to be a single individual but a set of individuals which
are considered as a logical union. For instance, in Figure 3

Organization

Figure 2: Clustering with clubs and circles.

the cluster on the right hand side contains the union of all
fillers of the predecessor cluster, i. e. countries to which the
European capitals belong to. This general representation
principle allows to map the instances of any legal Descrip-
tion Logics expression to be clustered and abstracted with
help of a club. As one can see in the previous figures, each
club is labeled with the corresponding expression, resp. in
the case of named concepts with the label of those concepts
(e. g. EuropeanCountryCapital in Figure).

Magnified detail view of
the selected individual

Label of the 
selected 
individual

Origin of is-capital-of wrt.
the selected individual 

is also highlighted

Figure 3: Group expanding club.

Abstraction also means that only individuals in a cluster
are drawn if their number is below a user-definable limit.
Moreover, the diameter of clusters showing no individuals
explicitly approximates the number of individuals and allows
to easily compare the number of individuals by the clusters
rendering size. In addition, the number of fillers are drawn
within a cluster as can be seen in the upper cluster of Figure
1. To downsize the number of individuals, other methods are
available as shown later in the section 3.5.

Only relationships between concepts (i. e. object properties)
are visually represented via clubs, values of datatype prop-
erties such as the title of a publication or additional country
information such as the total size of its area and number of
the population are available in a detail view when hovering
over a cluster as shown on the left hand side of Figure 3.
When hovering over an individual with the mouse pointer
the list of detail view entries will be scrolled to the corre-
sponding entry and it will be magnified. It is possible to
determine which datatype properties are shown in the de-
tail entry and to specify which datatype properties provide
additional graphical information such as an image.
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Figure 1: Application screen shot showing schema pane on the upper part and data analysis pane on the
lower part.

To easily grasp the individual(s) a specific individual within
a cluster is related to with respect to the given properties
all individuals of the origin of the property and, if further
club expansion is available, of the fillers of the correspond-
ing property with respect to the highlighted individual are
recursively highlighted, too. In addition, the labels of these
individuals are rendered at the bottom of the cluster. For
instance, in Figure 3 the mouse pointer is hovering over the
individual “Germany”. As a result its label is rendered and
because “Berlin” is the only origin of the is-capital-of

property the corresponding graphical representation is also
highlighted and its label also rendered at the bottom of the
EuropeanCountryCapital cluster.

3.3 Interactive Exploration
As clustering helps to abstract from specific data in an overview
manner, a user-directed interactive exploration strategy al-
lows for concentrating on interesting parts of an ontology, or
fractions which promise to unveil deeper insights. Initially,
one can either start with a user selected individual or with
the instances of a concept via ’n drop operations. This will
result either in showing the graphical representation of that
individual or a circle containing all individuals which are in-
stances of the given concept. For instance, one can drag a
concept from the concept view as shown on the upper part
of Figure 1 on the data analysis pane on the lower part. As
mentioned in the previous subsection, only individuals in a
cluster are drawn if their number is below a user-definiable
limit. Otherwise only the number will be shown within the
graphical cluster representation.

After clicking on the graphical representation of an indi-
vidual or a cluster a graphical preview menu of all object
properties an individual or, in the case of a cluster, the
union of individuals is related to. To allow a more natu-
ral exploration of an ontology, the exploration direction is

not limited to the direction of the property but also allows
the inverse direction (even if no inverse property has been
explicitly defined). For instance, Figure 4 shows that the
individual labeled “Thorsten Liebig” is related via the prop-
erty has-author with exactly 48 publications. The proper-
ties are arranged in a radial tree layout reflecting the un-
derlying property hierarchy as shown in Figure 4. Here, one
can easily grasp that the property has-affiliation is a
superproperty of the works-for affiliations.. All properties
are encoded with the same color schema with a decreasing
brightness according to the hierarchy level. Due to the tree-
like layout, for a property with several superproperties its
preview slice will be duplicated and drawn below the pre-
views of each of its superproperties. However, we do not
follow the color encoding for properties with multiple super-
properties. Instead of choosing different colors because of
the different color schemas of the superproperteis, one color
schema is used for all these representations. Note also that
the color of a property and its inverse is always the same.

The arrow left to the property label indicates the direction
of the expansion. A left directed arrow denotes that the ac-
tual root of the cluster is the filler of the property. Moreover,
the size of each property slice can be weighted with respect
to the number of fillers while preserving the constraint that
slices of subproperties must not overhand the slices of the
corresponding superproperties. Though this representation
gives a good understanding of the distribution of property
fillers, property labels can not always be statically provided,
instead when hovering over a property slice with the mouse
pointer the corresponding name is shown. Preliminary ex-
periments have shown us that this is not a drawback as the
user is used to the color-property encoding rapidly while
using the system.

Each cluster as well as each (visible) individual can serve



Figure 4: Previews for expanding property fillers.

as a follow-up point for further expansions. This also al-
lows to branch the expansion by selecting other properties
or de-expand clusters. More information about the various
expansion options can be found in [13].

3.4 Analysing Quantities
Though it depends on the kind of questions to answer and
on the ontology domain there are lot of questions that in-
herently require to take quantities into account. Even if one
can easily grasp how many individuals are related to a given
one with respect to a given cluster club source by counting
the individuals within the club, it is more complex to visu-
ally answer how many individuals in a cluster are related
to one specific individual within the successor cluster. Note
that this is completely independent from the fact whether
it is an inverse property or not. For instance, to answer the
question within the MONDIAL domain which is the coun-
try in which the highest number of deserts can be found, one
would start with the cluster representing all deserts as one
can see on the left hand side of Figure 5. After expanding
this cluster with respect to the located-in-country prop-
ery one would get a cluster consisting of all corresponding
countries. Even if one could manually analyse and count
for each country how many deserts it has it is more appro-
priate to visually show quantities which a very important
issue to better understand information. Derived from well-
known visual analytics methods we propose a simple but
powerful solution: the diameters of each genre circle scales
proportionally with the number of related deserts in the pre-
decessor club. In case that there are more than one source
individual their number is also drawn within the individual
circle as shown in Figure 5. One can also see that the most
deserts can be found on the African continent (when hov-
ering with the mouse pointer over the circle labeled “14” in
the encompassed cluster the individual’s name is shown).

Even if the original question does not refer to quantities, an
additional visual receiving information about quantities is a
good benefit. Consider a follow-up expansion of Figure 4 (b)
to get all co-authors of all publication of “Thorsten Liebig”.
At a glance one gets the information which person is the
co-author of most of the publications as shown in Figure 6
(a). The circle labeled “48” is Thorsten himself. Note that
the same approach could answer from which affiliation tend
to come his most co-authors (Figure 6 (b)).

3.5 Dimensions of Filtering

Figure 5: Utilizing quantities to answer questions
such as “In which countries can be found the highest
number of deserts?”.

As shown before, abstraction based on clustering allows for
a bird-eye view of large volumes of interrelated individuals,
and close-by detail information about individuals is provided
on user demand. However, this technique which is widely
used in information visualization only considers two points
of a fictitious scale of granularity, namely the lower and up-
per point. Filtering is another important step towards a
goal-directed visual analysis. In our approach one can dis-
tinguish two kinds of filter dimensions: local filtering based
on object properties and global filtering on datatype prop-
erties. Remember that values of datatype properties are not
visible as first-class elements but only in the detail view such
as the length of rivers, the population of countries, the depth
of seas in the MONDIAL domain.

Local filtering allows to refine a cluster to those individuals
which are instances of an arbitrary concept definition in the
schema: To establish such filter, one can drag an arbitrary
concept from the concept hierarchy view of OntoTrack
onto an existing cluster. For instance, within the MONDIAL
domain, any set of countries can be restricted to European
countries simply by dragging the EuropeanCountry concept
onto a cluster with country instances as shown in Figure 7.

Three interactive paths are possible: first one can drop an
existing concept onto a non restricted cluster to restrict the
cluster accordingly. Second, one can drop it onto an already
restricted cluster. This will be interpreted as a logical con-
junction of the existing filters and the given one. Third,
a new (temporary or permanent) concept can be defined
within the concept hierarchy view by using all graphical fea-
tures and guidance of OntoTrack to allow any arbitrary
concept expression such as nominals, complements, unions.
This is a powerful selection mechanism since concepts can
be defined on demand during exploration. The underlying
reasoning engine supports the user by instant classification
of individuals as well as in providing feedback about non-
sensical or even unsatisfiable restriction. For instance, if
fresh water areas and salt water areas are modeled as dis-
jount concepts, their conjunction is unsatisfiable. Therefore,
the unsatisfiability of the combination of a fresh water area
and a salt water area (or even subconcepts of such as lake
resp. sea) filter is recognized and the user is warned to
avoid such unsatisfiable filter combinations. Moreover, a lo-
cal filter may also affect adjunctive or prospective clusters.
Consequently, a filter will propagate its restrictions. As a
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Figure 6: (a) Who is the most co-author of papers involving Thorsten. (b) From which affiliation the most
co-authors come from?

Figure 7: Local restriction of countries to European
countries.

result, each prospective cluster will adapt its set of individ-
uals accordingly. This might also mean that whole clusters
will disappear in an animated fashion if they do not longer
possess any expansion source.

Global filters are based on values of datatype properties and
are applied to all visible individuals. In contrast to local
filters, filtering out an individual does not imply its removal
from clusters by default. This is motivated by typical queries
and the typical usage of datatype properties: on the one
hand their values are only strings such as names, labels,
comments, addresses. On the other hand they are based
on enumeration types (even user-defined types) as well as
numerical data. Even if string matching is a powerful filter
mechanism, from a visual analytics perspective it is more or
less a utility method and we do not consider it, for string
matching please refer to a description of our preliminary
system [13]. Numerical datatypes such as integers possess a
minimum and maximum value. However, for a given knowl-
edge base, the real used minimum resp. maximum value
may be different from the declared ones. Similar to enu-
meration types (e. g. months) they span a finite range. For
instance, in the MONDIAL domain rivers are correlated to
specific length. As one can see in Figure 8 concrete domains
of datatype properties can be adjusted with sliders. Here,
all those rivers which are briefer than 5066 kilometers will be
instantly colored grey and one can easily grasp those which
fall into the interval. As one can see, the quantity measure-
ment of individuals in the cluster containing the seas are
also proportionally greyed out, e. g. there are 9 of original
17 rivers which flow into the Atlantic Ocean.

Applying several slider filters to the data set, the conjunc-
tion of the single filters is considered. However, in less struc-
tured data sets such as the RKB, it has shown that concepts



Figure 8: Global restriction via sliders (e. g. wrt. the
length of rivers).

are not strictly defined with respect to datatype properties.
For example, none, one or more publication years can be
assigned to a publication. This is because the data has been
automatically extracted from different sources such as pub-
lication lists of homepages which does not guarantee that
publication years are available and could be extracted. This
directly leads to the question how to deal with individu-
als which could have (a) specific data value(s) according to
the concept description but does not have any, individuals
which have different data values for a specific property. In
both cases, an individual which have at least one value for a
specific property which should be filtered out, will be drawn
in grey.

4. IMPLEMENTATION
In contrast to widely-used small or middle-sized ontologies,
real-world domain ontologies consist of thousands of thou-
sands of individuals and relationships between them. This
makes great demands on the scalability and performance of
knowledge-based systems. In our case, the challenge refers
to the visualization, analysing as well as the reasoning com-
ponent. Note that the instant reasoning process is a key
feature within our approach and therefore the visualization
and analysing methods are closely coupled to it. As our ap-
proach is highly interactive, exploration and analysis steps
should not be performed with long delays.

From a visualization perspective, we address this require-
ment with our decision for the Piccolo framework which can
manage huge numbers of graphical objects and allows for ar-
bitrary animations, zooming and scaling [3]. The presented
visualization and analysing component has been developed
as a plugin-in for our OntoTrack ontology environment
which itself utilizes Piccolo for its interactive visualization
of both the concept and property hierarchy. The visualiza-
tion of these hierarchies is an extension to the elaborated
SpaceTree paradigm offering features such as animation of
changes and thumbnails [15]. Moreover, our component ben-
efits from OntoTrack s elaborated authoring and interac-
tion features, as well as its ontology management capabilities
which are based on the wide-spread Java OWL 1.1 API [7].

As already mentioned our component closely relies on a rea-
soning engine. Because it is absolutely not feasible to com-
pute any analysis results in advance, analysis is performed

on user interaction. One of the biggest problem of standard
reasoning engine is their scalability and performance with
respect to large data sets. Therefore, to allow instant rea-
soning as well as real-time queries during exploration and
interaction we utilize besides RacerPro the very fast U2R2
reasoning engine which performs inference within its sec-
ondary storage and allows for advanced features such as re-
traction of concept and property definitions and incremental
reasoning [18].

5. CONCLUSION
In this paper we presented a gainful combination of estab-
lished methods from visual analytics and semantic technolo-
gies. The exploration examples throughout the paper should
give an idea how this will help to gain further insights into
large and heavily interlinked assertional data sets. Explo-
ration direction, level of detail as well as global filter con-
ditions are determined by the user. At the same time the
underlying reasoning engine ensures the semantically correct
data by representing told but also entailed facts. Further-
more, the interlocking of semantic and visual technologies
adds new exploration options such as filler set abstractions,
local filtering with help of schema axioms, and the clari-
fication of quantities not found in current tools. All these
features have been implemented and integrated into our On-
toTrack ontology authoring environment.
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