Early Prototyping of Wireless Sensor Network
Algorithms in PVS *

Cinzia Bernardeschi!, Paolo Masci', and Holger Pfeifer?

! Department of Information Engineering, University of Pisa, Italy
{cinzia.bernardeschi,paolo.masci}@iet.unipi.it
2 Institute of Artificial Intelligence, Ulm University, Germany
holger.pfeifer@uni-ulm.de

Abstract. We describe an approach of using the evaluation mechanism
of the specification and verification system PVS to support formal design
exploration of WSN algorithms at the early stages of their development.
The specification of the algorithm is expressed with an extensible set of
programming primitives, and properties of interest are evaluated with ad
hoc network simulators automatically generated from the formal speci-
fication. In particular, we build on the PVSio package as the core base
for the network simulator. According to requirements, properties of in-
terest can be simulated at different levels of abstraction. We illustrate
our approach by specifying and simulating a standard routing algorithm
for wireless sensor networks.

Key words: WSN algorithms, simulation, PVS

1 Introduction and Motivation

Wireless Sensor Networks (WSNs) are distributed systems consisting of a large
number of spatially distributed, autonomous and cooperating nodes. The nodes
of the network, referred to as sensor nodes, are battery-operated devices which
provide limited computation capabilities, low-rate and low-range wireless com-
munication, and are equipped with a number of sensors and actuators to monitor
physical or environmental conditions. The most characterising aspect of WSNs
is that they are deeply embedded in the real world, and provide unattended
operation for long periods of time without infrastructural support. Due to their
small size, sensor nodes can be placed in close proximity to the subject to be
monitored, thus enabling in situ monitoring of physical phenomena. A sensor
network normally constitutes a wireless ad hoc network, in which communication
is multi-hop: due to the limited operating distance of the wireless radio compared
to the physical extension of WSNs, sensor nodes must coordinate communica-
tion to forward data to a distant receiver. WSNs are highly dynamic networks:
even if nodes are placed in fixed positions, node failures (e.g., due to software

* This work was partially supported by the European Commission through the Net-
work of Excellence ReSIST (IST-026764).



2 C. Bernardeschi, P. Masci, H. Pfeifer

bugs or battery exhaustion), or environmental factors that are difficult to pre-
dict or avoid (e.g., physical obstacles, or humidity) may unexpectedly alter the
connectivity of the network. For some application scenarios, mobile nodes may
be involved in communication as well. Initially developed for military purposes
such as battlefield surveillance, applications of WSNs today cover a wide spec-
trum of scenarios, including many safety-critical domains. For instance, WSNs
have been deployed in critical infrastructures monitoring [1] to assess structural
health of buildings, such as a pedestrian footbridge [2], or roads. In the area of
traffic monitoring and control, a distributed application built on top of a WSN
has been developed [3] to monitor a railway network for accidental or malicious
system failures so as to prevent derailment of trains or even collisions. Wire-
less sensor networks are also deployed in health-care applications, for example
to monitor vital signs of patients through tiny wearable sensor nodes [4], or as
support and emergency systems for elderly people [5].

Large-scale networks are difficult to test, and the characteristics of wireless
sensor networks only compound the problem. Hence, simulation plays a cen-
tral role in current development processes of WSN applications. Software-based
simulators are used to provide controlled environments in which experiments
are to yield reproducible results. During the early stages of development, ap-
plications are commonly analysed with ad hoc simulators built as extensions
of existing network simulators, such as ns2, or distributed system simulators,
such as ptolemy. Once the application logic becomes consolidated, the software
is evaluated in dedicated network simulators that provide emulation of real WSN
hardware, such as TOSSim and Avrora. As of yet there is, however, no estab-
lished standard simulation framework for WSN applications, and extensions to
network simulators can usually only be accomplished by users who are familiar
with the tool [6].

Inherently, simulations can only approximate real-world computation, and
the challenge is to develop models that capture the behaviour of the environ-
ment in which WSNs are going to be deployed as accurately as possible. Recent
studies have evidenced that for wireless networks simulations there is high risk
of misleading or incorrect results because of assumptions hidden in the under-
lying network simulator [7]. Even in the presence of positive simulation results,
failures may still occur when the system is deployed. As with any other system,
remedying defects at this stage is costly at best, for WSNs it can be even im-
possible. Consequently, support for analysing WSN algorithms at early stages of
development is essential. With a view to the reliability and safety requirements
of applications of WSNs as the ones mentioned above, more rigorous analytical
techniques are also desirable.

In this paper we report on our work towards developing a simulation and
analysis framework for WSN algorithms within a theorem prover. Specifically,
we use the Prototype Verification System (PVS) [8,9] to specify and simulate
WSN communication protocols in the very early stages of their design. The dis-
tinguishing characteristics of PVS are its expressive specification language and
its powerful theorem prover. A less often used component is its ground evalua-



Early Prototyping of WSN Algorithms in PVS 3

tor [10] that can be used to animate functional specifications. Although PVS’s
specification language is based on higher-order logic and features a rich type
system, a surprisingly large subset of it is executable. The ground evaluator
translates the executable constructs of PVS into efficient Lisp code which can
then be executed. The evaluation environment consists of a read-eval-print-loop
that reads PVS expressions from the user and returns the result of their evalua-
tion. The additional package PVSio [11] enhances PVS’s specification language
with built-in constructs for string manipulation, floating-point arithmetic and
input/output operations. Thus, for certain types of applications, PVS can effec-
tively serve as a functional programming language.

We employ the combination of PVS’s rich specification language and the
ground evaluator for early prototyping of a class of WSN algorithms. To this end,
we introduce a series of general formal PVS models that can be refined to describe
various WSN communication protocols. Specifically, we provide an extensible set
of executable communication primitives to enable rapid and easy specification of
protocols at different levels of detail. From these formal algorithm specifications,
efficient Lisp code can automatically be generated using the ground evaluator
and the PVSio extension. This implementation is suitable for simulation and
allows to test and evaluate the algorithm from different perspectives. Finally,
once the simulation experiments give sufficient confidence in the correctness of
the algorithm, the PVS models can serve as the basis for the formal verification
of the desired properties using the PVS theorem prover.

To demonstrate the effectiveness of our approach, we describe its application
to the Surge routing protocol, which is used in various WSN systems, includ-
ing prototypes in a safety-critical domain [4]. We analysed the Surge protocol
under different aspects. During our tests of robustness of the protocol with re-
spect to topology changes, we were able to detect a potential problem of routing
loops that has gone unnoticed so far and can indeed be reproduced with one of
the implementations of Surge provided in the library of the widely-used WSN
operating system TinyOS.

2 PVS and PVSio

PVS is a specification and verification system which combines an expressive
specification language with an interactive proof checker. It has been used for
formal reasoning in several application domains (see [8] for an overview).

The PVS specification language builds on classical typed higher-order logic
with the usual base types, bool, nat, integer, real, among others, and the
function type constructor [A -> B]. Predicates are simply functions with range
type bool. The type system of PVS also includes record types, dependent types,
and abstract data types. The most powerful concept are predicate subtypes; e.g.,
the type below(n:nat) : TYPE = {s: nat | s < n} denotes the type of nat-
ural numbers less than a given bound n. Usage of predicate subtypes ranges from
checking for violations such as division by zero, to expressing complex consis-
tency requirements.



4 C. Bernardeschi, P. Masci, H. Pfeifer

PVS specifications are packaged as theories that can be parametric in types
and constants. A built-in prelude and loadable libraries provide standard spec-
ifications and proved facts for a large number of theories. A theory can use
the definitions and theorems of another theory by importing it. For instance,
consider the following theory execution:

execution [State : TYPE] : THEORY
BEGIN
trans : VAR [State -> State]
execute(trans) (n:nat) : RECURSIVE [State -> State] =
LAMBDA (s:State): IF n = O THEN s
ELSE LET s_new = trans(s) IN
execute(trans) (n-1) (s_new)

MEASURE n ENDIF

END execution

The theory takes one type parameter, State, and defines a (higher-order) func-
tion execute that recursively applies n steps of a state-transition function trans,
which is provided as a parameter. As all functions in PVS must be total, the ter-
mination of the recursion has to be demonstrated; the MEASURE part provides the
information to the typechecker and prover to ensure this. By instantiating the
theory parameter with a concrete value, the execute function can be imported
into the context of a given algorithm specification:

simulation : THEORY

BEGIN
% —-- concrete def’n of a state type omitted
% —- definition of a single step of the algorithm
algorithm_step(s:State): State = ... ) -— omitted

IMPORTING execution[State]

% -- execution of ’steps’ number of steps of the algorithm
algorithm(steps:nat) : [State -> State] =
execute(algorithm_step) (steps)

END simulation

Thus, the execution theory provides a generic mechanism to describe the exe-
cution of an algorithm, which can subsequently be used for simulation.

Using the PVS ground evaluator one can compile the executable constructs
of a specification, such as the execute function above, into efficient Lisp code.
In order to still be able to simulate theories that also involve declarative specifi-
cations, the ground evaluator is augmented by so-called semantic attachments,
through which the user can supply pieces of Lisp code and attach them to the
declarative parts. Using this mechanism the PVSio package [11] extends the
ground evaluator with a predefined library of imperative programming language
features such as side effects, unbounded loops, and input/output operations,
and also provides a high-level interface for writing user-defined semantic at-
tachments. Thus, PVS specifications can conveniently be animated within the
read-eval-print-loop of the ground evaluator.



Early Prototyping of WSN Algorithms in PVS 5

3 Prototyping WSN algorithms

In this section we present the basic aspects of the proposed approach. We show
that prototyping of WSN algorithms can be performed with a collection of PVS
models (theories), each of which represents a service installed on a sensor node
(e.g., packet logger, clock), or structural properties of the network (e.g., the
network graph), or communication functionalities (e.g., packet forwarding). For
each theory, a number of different versions can be provided in order to specify
and analyse WSN algorithms under several perspectives and at desired level of
detail. The most abstract theory provides ¢) the declaration of types for a mini-
mum set of mandatory attributes, i) the declaration of interface functions. More
detailed theories can be derived from the abstract definition by specifying the
behaviour of interface functions, and by extending types. Abstractions enable
users to create a model comprising only the parameters of interest at the desired
levels of detail. Hence, lightweight models can be generated, and efficient code
for simulations can be obtained.

Network Connectivity. Network connectivity is modelled with a directed
graph without self-edges. We build type definition on top of directed graphs
of the NASA library [12], in order to benefit from several useful lemmas and
properties already proved in PVS. Custom network graphs can be generated. To
simplify graph specification, we use an auxiliary topology function that identi-
fies, for each node, the set of neighbouring nodes. Ideal and lossy links can be
modelled, and topology changes can be used to model node mobility. Once the
topology is given, the network graph can be instantiated with a specific inter-
face function. Sensor nodes are identified by a unique natural number less that a
given N. We developed a theory named node_th that provides a type definition
for the node identifier. In the following, the theory which describes network con-
nectivity is shown (digraph[node_id] is the NASA theory on directed graphs).
An example of topology and the corresponding network graph are also included.

network_graph_th: THEORY
BEGIN
IMPORTING node_th, digraphs[node_id]

%-- network_graph: a directed graph without self-edges
network_graph?(g: digraph[node_id]): bool =

(FORALL (i: node_id): vert(g) (i)) AND

(FORALL (i,j: node_id): edges(g)((i,j)) IMPLIES (i /= j))

network_graph: TYPE = {g: digraph[node_id] | network_graph?(g)}
topology: TYPE = [node_id -> finite_set[node_id]]
new_network_graph(tp: topology): network_graph

%-- instance of network graph
fully_connected_network_graph: network_graph
= new_network_graph(LAMBDA (i: node_id): {n: node_id | TRUE})
END network_graph_th



6 C. Bernardeschi, P. Masci, H. Pfeifer

Services. A service is identified by a unique name. A services S is associated to
nodes by means of a function [finite_set[node_id] -> S]. Depending on the
algorithm specification and on the property of interest, services can be installed
on a single node, on a group of nodes, or on the entire network.

Currently, we have implemented the following services: packet logger, which
stores statistics about sent and received packets, receive buffer, which models the
buffer where packets sent by other nodes are stored, energy consumption, which
evaluates the energy spent by nodes, routing, which provides the basic definitions
for building routing tables, spanning trees and paths between nodes, and node
scheduler, which gives the sequence of nodes that execute the algorithm (e.g.,
round robin, or random). As example of service, in the following we show the
definition of energy consumption, where energy is the energy consumption of a
sensor node, network_consumption is the function which associates the energy
consumption to every node. Three interface functions are declared in the theory:
two of them are used to compute energy consumption of senders and receivers,
the other one to update consumption of the sender neighbours.

energy_th: THEORY
BEGIN
%-- type definition
energy: TYPE = real
network_consumption: TYPE = [node_id -> energyl]
%-- interface functions
sender_consumption: energy
receiver_consumption(g: network_graph, snd, rcv: node_id): energy
update_network_consumption(ne: network_consumption,
g: network_graph,
snd: node_id): network_consumption
END energy_th

Services are wrapped together into an extensible structure called network
state. The network state is described by the set of functions that specify the
allocation of services to nodes. For instance, in the following theory, a network
state is defined as the collection of two services (receive buffer and log):

network_th: THEORY
BEGIN
network_state: TYPE =
[# net_receive_buffer: [node_id -> receive_buffer],
net_log: [node_id -> log] #]
END network_th

The network state maintains the state of all nodes. The state of a node
consists of the state of the services installed on a node. The state of a node
can be obtained by indexing the network state: given a node x and a network
state ns, the state of x is ns(x), and the state of the logging service of x is
net_log(ns) (x).



Early Prototyping of WSN Algorithms in PVS 7

Communication Primitives. Nodes can exchange packets. A packet is a struc-
ture with two mandatory fields (the sender and the destination), and a number
of optional fields. The sender is a single node, while destination is specified with
a finite set of nodes. Broadcast address is represented with a special constant
bcast_addr, which is the full set of nodes. In the following example, a packet
consists of five fields (timestamp, source, sender, destination and payload):

packet_th: THEORY
BEGIN
IMPORTING node_th, time_th
bcast_addr: finite_set[node_id] = LAMBDA (i: node_id): node_id?(i)
packet: TYPE =
[# timestamp: time,
source_addr: node_id,
sender_addr: node_id,
destination_addr: finite_set[node_id],
payload: finite_sequence[int] #]
END packet_th

We modelled three low level single-hop primitives in order to easy the spec-
ification of communication algorithms: inject, forward and drop. Additionally,
nodes are also allowed to perform an idle transition.

Inject can be used to send out packets generated by nodes (e.g., packet gener-
ated by the application executed on nodes, or control packets generated by
the routing service): the function takes a packet as parameter, and sends out
such packet.

Forward is suitable to relay packets previously received by nodes (e.g., when
multi-hop communication is needed to reach the destination): the function
takes a packet as parameter, removes the packet from the receive buffer of the
node, and sends out a packet with a sender address automatically updated
with the identifier of the sending node.

Drop is used to discard received packets: the function takes a packet as param-
eter, and removes such packet from the receive buffer of the node.

Idle is useful to update state variables of nodes, such as energy consumption,
when no operation on incoming/outgoing packets is performed.

The implemented primitives are suitable for unicast, multicast and broadcast
communication. The side effect of sending out the packet is that neighbouring
nodes of the sender receive the packet. The graph connectivity affects reception of
packets: if node z sends out a broadcast packet, it is received only by neighbours
of z. A basic version of the forward primitive with the essential functionalities
is the following;:

network_th_A: THEORY
BEGIN
IMPORTING receive_buffer_th
network_state: TYPE = [# net_receive_buffer: network_receive_buffer #]



8 C. Bernardeschi, P. Masci, H. Pfeifer

% packet pk is sent out by the forwarder node
forward(pk: packet) (forwarder: node_id)
(net: network_state, g: network_graph): network_state =
LET fw_pk = pk WITH [sender_addr := forwarder],
nrb0 = update_receivers_buffer(net_receive_buffer(net), g, fw_pk),
nrbl = update_sender_buffer (nrb0, pk)
IN net WITH [net_receive_buffer := nrbi]
END network_th_A

The sender address of the packet is updated, and update_receivers_buffer
and update_sender_buffer functions are invoked to update the network state.
A more detailed version of the above primitive could be obtained by adding, for
example, energy consumption and packet logger services to nodes. In this case,
energy_th and log_th theories must be imported and the functions to update
energy and log must be invoked.

Algorithms. An algorithm is specified as a cyclic procedure executed on a
generic node. For instance, let us consider the flooding algorithm [13], which
is designed to deliver packets to all nodes in the network. Flooding is typically
used for dynamic route discovery, reconfiguration/reprogramming and to request
specific data from sensors. A simple variant of flooding behaves as follows: when-
ever a node receives a packet, the packet is forwarded to neighbouring nodes if
it is received for the first time, otherwise it is dropped. The algorithm can be
specified as follows:

flooding_th: THEORY
BEGIN
IMPORTING network_th, log_th
flooding(x: node_id) (net: network_state, g: network_graph):
network_state =
IF empty?(net_receive_buffer(net)(x)) THEN idle(x) (net, g)
ELSE LET pk = getpacket(net_receive_buffer(net) (x)) IN
IF empty?(net_log(net) (x) (fw)) THEN forward(pk) (x) (net, g)
ELSE drop(pk) (x) (net, g)
ENDIF
ENDIF
END flooding_th

Flooding can be analysed at different level of abstractions by importing spe-
cific theories and leaving the specification of the flooding function unmodified.
This way, different properties of the algorithm can be analysed and different
implementations can be evaluated. For instance, energy consumption can be
analysed in the above theory by importing a different theory for the network
state. In order to discover problems of the algorithm, the underlying services
can be assumed to behave correctly. Conversely, the algorithm can be also anal-
ysed by modelling malfunctions of the underlying layers in order to evaluate, for
instance, service degradation.



Early Prototyping of WSN Algorithms in PVS 9

4 A case study: Surge

In this section we analyse Surge, a popular routing protocol for WSNs. Surge is
currently part of the TinyOS distribution, and it has been used as routing service
during the evaluation of several WSN-based systems, including prototypes for
safety-critical systems [4]. We introduce Surge with an excerpt from [14]:

The Surge protocol forms a dynamic spanning tree, rooted at a single
node (the base station). Nodes route packets to the root. Nodes select a
new parent when the link quality falls below a certain threshold. Surge
suppresses cycles in the routing by dropping packets that revisit their
origin.

Modelling Surge. The Surge algorithm can be decomposed into a forward-
ing service built upon a dynamic spanning tree service which, in turn, relies on
lower level services for single-hop communication. In order to discover bugs in
the specification, such services can be analysed separately, assuming that the
underlying layers behave properly. Suppose that we are interested in analysing
the forwarding service. The spanning tree service can be assumed correct, i.e.,
it provides a correct routing table rt to the forwarding service. Hence, the for-
warding algorithm of Surge applied by a single node to a received packet can be
formally specified in PVS as follows:

surge_th: THEORY
BEGIN
IMPORTING network_th, routing_th

surge(x: node_id) (net: network_state, g: network_graph)
(base_station: node_id, rt: routing_table): network_state =
IF empty?(net_receive_buffer(net) (x)) THEN idle(x) (net, g)
ELSE LET received_pk = getpacket(net_receive_buffer(net) (x)),
source_addr = source_addr(received_pk),
sender_addr = sender_addr(received_pk),
next_hop = next_hop(x,base_station) (g,rt)
IN IF source_addr /= x
THEN forward(received_pk
WITH [destination_addr := next_hop]l) (x) (net, g)
ELSE drop(received_pk) (x) (net, g)
ENDIF

ENDIF
END surge_th

Analysing Surge. To analyse Surge, a WSN application must be specified in
PVS. In the following, we will explore examples of analyses.

Receive queue size. We report the results of a simulation to evaluate receive
queue size of sensor nodes in a monitoring scenario, in which sensor nodes pe-
riodically send packets to report data to the base station. The routing table is



10 C. Bernardeschi, P. Masci, H. Pfeifer

assumed to be correct, but it may change. A scheduler that selects the nodes
that execute the algorithm must be specified. Every time a node is selected by
the scheduler, such node sends out a new packet and relays all packets of other
nodes. The scheduler guarantees fairness of execution between nodes. The PVS
theory for the monitoring application is the following, where node 0 is the base
station. Two recursive functions are defined: surge_rec, which relays all received
packets, and surge_app, which invokes the scheduler (round_robin) to select a
node. The selected node, if different from the base station, sends out a packet
and relays packets of the other nodes.

surge_app_th: THEORY
BEGIN

IMPORTING surge_th
base_station: node_id = O

surge_rec(x: node_id) (net: network_state, g: network_graph)
(base_station: node_id, rt: routing_table): RECURSIVE
network_state =
IF empty?(net_receive_buffer(net)(x)) THEN idle(x) (net, g)
ELSE LET net_prime = surge(x) (net, g)(base_station, rt)
IN surge_service(x) (net_prime, g)(base_station, rt)
ENDIF
MEASURE size(net_receive_buffer (net) (x))

surge_app(ti, tf: nat)
(net: network_state, g: network_graph,
rt: routing_table): RECURSIVE network_state =
IF ti >= tf THEN net
ELSE LET sender = round_robin(ti),
dst = next_hop(sender, base_station) (g, rt)
IN IF sender = base_station
THEN surge_app(ti + 1, tf) (net, g, rt)
ELSE
LET net_inj = inject(new_packet(sender, dst)) (sender) (net, g),
net_prime = surge_rec(sender) (net_inj, g)(base_station, rt)
IN surge_app(ti + 1, tf)(net_prime, g, rt)
ENDIF
ENDIF
MEASURE tf - ti
END surge_app_th

A simulation has been performed with grid networks of different size. Net-
works of hundreds of nodes can be simulated. Results for a 25 node network are
shown in Figure 1. For each node (except for the base station) we have evaluated
the maximum number of packets in the receive buffer. The application has been
simulated several times and for different number of steps. For high number of
steps, the queue size almost stabilised. As expected, the maximum number of
packets in the receive queue is bigger for nodes closer to the base station, because



Early Prototyping of WSN Algorithms in PVS 11

queue size

10
TR

012 3 456 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24
node id

Fig. 1. Receive queue size for each node

they have to relay packets for a larger number of nodes.

Energy consumption. We report the results of a simulation to evaluate energy
consumption for the previous monitoring application. To evaluate energy con-
sumption, we used a theory providing an analytical model for idle consumption?.
The PVS specification of both Surge and the monitoring application are left un-
changed. The simulation can be executed by simply importing appropriate PVS
theories. We compared our analysis with that described in [15], for a network
of six nodes topology shown in Figure 2(a). In Figure 2(b), for each node, the
total amount of sent packets and the energy consumption is shown. The ap-
plication has been simulated for about one thousand simulation steps. Because
we modelled idle energy, the evaluated energy consumption reflects real energy
consumption. We obtained coherent results with respect to those of [15].

Robustness to topology changes. In order to test robustness of the protocol to
topology changes, we consider a monitoring application in which only one node
(node 5) periodically sends packets to the base station. The other nodes relay
packets according to the Surge algorithm. We were able to detect a potential
problem of infinite loops of routed packets in the algorithm specification. There
are situations in which a packet may travel indefinitely in the network, because
the routing table may change in response to topology changes. We evidenced
such issue in a simulated grid network of 6 nodes by using routing tables rtA
and rtB (see Figure 3). The critical situation is the following: assume that the
routing table is rtA and that node 3 forwards a packet to node 2. Suppose that
the routing table changes to rtB just before node 2 forwards the packet. Hence,
the packet returns to node 3, which does not drop the packet because it is not the
source. Just before node 3 forwards the packet, the routing table may change to

3 Idle consumption is the consumption of a sensor node during idle behaviour.



12 C. Bernardeschi, P. Masci, H. Pfeifer

Base 600
Station
500
/ \ 400 M Column D
300 M Column E
@ @ 200
100
0
0 1 2 3 4 5

@ @ node id

(a) Network topology (b) Sent packets (D) and normalised energy (E)

number of sent packets

Fig. 2. Topology and results of the simulation for energy consumption.

rtB again, and so on. Such a pathological case is a real problem, because routing
tables may actually change during Surge operations. The specification of Surge
gives no constraints on routing table changes: the only assumption is that there
is an underlying service which provides a correct spanning tree rooted at the
base station. The design consideration discussed in [16] allows to conclude that
such a bug is indeed possible. With such an assumption, loop detection based on
the source address of the packet is not sufficient to avoid the problem. Infinite
loops of packets may overload the network and in safety critical applications the
service provided by the network could be downgraded to an unacceptable level.

5 Related Work and Conclusions

In this paper we propose a simulation and analysis framework for WSN algo-
rithms within a theorem prover. The need for formal modelling and analysis of
WSN algorithms has been pointed out in many papers. In [17], basic properties
of the Reverse Path Forwarding algorithm have been analysed with FDR and
Alloy Analyser. Scalability is the main problem of such approach: only very sim-

Base Base @
® () +—

T

O © @) —=©

P

rtA B

Fig. 3. Routing tables used for the robustness analysis of Surge



Early Prototyping of WSN Algorithms in PVS 13

ple and small network configurations were analysed, and a proof by hand was
used to prove correctness of the algorithm under specific hypotheses. In [18§],
TinyOS is modelled as a hybrid automaton and a sensor network is specified as
a network of hybrid automata. The proposed analysis is only oriented to evaluate
energy consumption of sensor nodes. Moreover, in [19] model checking is applied
to a TinyOS application. In [20], Lamport’s Temporal Logic of Actions is used to
model and simulate diffusion protocols for discovering routing trees for gathering
and disseminating data. The analysis focuses on performance variation of push
and pull phases of the diffusion protocol for routing trees with different shapes,
however without the objective of algorithm design evaluation. In [21] a formal
model, called Space Time Petri Nets, has been presented to model WSNs. Time
Petri Nets are augmented by adding location information to every place, and
modelling broadcast transmission with a special transition. The formalism lacks
both flexibility, as nodes cannot be modelled at different levels of abstraction,
and scalability with respect to the generation of the reachability graph. In [22],
Real-Time Maude has been applied to the OGDC density control algorithm and
networks of several hundred nodes can be analysed. The specification models a
node as an object, and the communication primitives are broadcast and unicast.
The approach is capable of modelling the algorithm at high levels of detail, and
results can be more accurate compared to other network simulators, such as ns2.
The framework proposed in this paper allows developers to formalise the
WSN at different levels of abstraction, and it can be applied at the early stage
of the development process to consolidate the algorithm design. We have used
this approach to specify and simulate the Surge routing protocol for a number of
networks with different topologies and number of nodes. During our analyses of
Surge, we were able to detect a potential problem of routing loops due to topology
changes, which has gone unnoticed so far. Further work includes the use of the
theorem prover of PVS to verify correctness properties of WSN algorithms.

References

1. Xu, N., Rangwala, S., Chintalapudi, K., Ganesan, D., Broad, A., Govindan, R.,
Estrin, D.: A wireless sensor network for structural monitoring. In: Proc. Intl. Conf.
on Embedded Networked Sensor Systems, ACM (2004) 13-24

2. Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., Turon, M.:
Wireless sensor networks for structural health monitoring. In: Proc. Intl. Conf. on
Embedded Networked Sensor Systems, ACM (2006) 427-428

3. Aboelela, E., Edberg, W., Papakonstantinou, C., Vokkarane, V.: Wireless sensor
network based model for secure railway operations. In: Intl. Workshop on eSafety
and Convergence of Heterogeneous Wireless Networks. (2006) 623-628

4. Lorincz, K., Malan, D.J., Fulford-Jones, T.R.F., Nawoj, A., Clavel, A., Shnayder,
V., Mainland, G., Welsh, M., Moulton, S.: Sensor networks for emergency response:
Challenges and opportunities. IEEE Pervasive Computing 3(4) (2004) 16-23

5. Stanford, V.: Using pervasive computing to deliver elder care. IEEE Pervasive
Computing 1(1) (2002) 10-13

6. Chen, G., Branch, J., Pflug, J., Zhu, L., Szymanski, B.: Sense: A sensor network
simulator. Advances in Pervasive Computing and Networking (2004) 249-267



14 C. Bernardeschi, P. Masci, H. Pfeifer

7. Pawlikowski, K., Jeong, H., Lee, J.: On credibility of simulation studies of tele-
communication networks. IEEE Communications Magazine 40(1) (2002) 132-139
8. Owre, S., Rushby, J., Shankar, N., von Henke, F.: Formal Verification for Fault-
Tolerant Architectures: Prolegomena to the Design of PVS. IEEE Trans. on Software

Engineering 21(2) (1995) 107-125

9. Owre, S., Rushby, J., Shankar, N., Stringer-Calvert, D.: PVS: an experience report.
In: Applied Formal Methods. Volume 1641 of LNCS., Springer (1998) 338-345

10. Crow, J., Owre, S., Rushby, J., Shankar, N., Stringer-Calvert, D.: Evaluating,
testing, and animating PVS specifications. Technical report, Computer Science Lab-
oratory, SRI International, Menlo Park, CA (2001)

11. Munoz, C.: Rapid prototyping in PVS. Technical Report NIA Report No. 2003-03,
NASA/CR-2003-212418, National Institute of Aerospace, Hampton, VA (2003)

12. Butler, R., Sjogren, J.: A pvs graph theory library. Nasa technical memorandum
1998-206923, NASA Langley Research Center, Hampton, Virginia (1998)

13. Heinzelman, W., Kulik, J., Balakrishnan, H.: Adaptive protocols for information
dissemination in wireless sensor networks. In: Proc. Intl. Conf. on Mobile Computing
and Networking, ACM (1999) 174-185

14. Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSim: accurate and scalable simulation
of entire TinyOS applications. In: Proc. Intl. Conf. on Embedded Networked Sensor
Systems, ACM Press (2003) 126-137

15. Shnayder, V., Hempstead, M., Chen, B., Allen, G., Welsh, M.: Simulating the
power consumption of large-scale sensor network applications. In: Proc. Intl. Conf.
on Embedded Networked Sensor Systems, ACM (2004) 188-200

16. Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable mul-
tihop routing in sensor networks. In: SenSys03, New York, NY, USA, ACM Press
(2003) 1427

17. Bolton, C., Lowe, G.: Analyses of the reverse path forwarding routing algorithm.
In: Proc. Intl. Conf. on Dependable Systems and Networks, IEEE Computer Society
(2004) 485-494

18. Coleri, S., Ergen, M., Koo, T.J.: Lifetime analysis of a sensor network with hybrid
automata modelling. In: Proc. Intl. Workshop on Wireless Sensor Networks and
Applications, ACM (2002) 98-104

19. Xie, F., Browne, J.C.: Verified systems by composition from verified components.
SIGSOFT Softw. Eng. Notes 28(5) (2003) 277286

20. Nair, S., Cardell-Oliver, R.: Formal specification and analysis of performance vari-
ation in sensor network diffusion protocols. In: Proc. Symp. on Modeling, Analysis
and Simulation of Wireless and Mobile Systems, ACM (2004) 170-173

21. Luo, Y., Tsai, J.J.P.: A graphical simulation system for modeling and analysis
of sensor networks. In: ISM ’05: Proceedings of the Seventh IEEE International
Symposium on Multimedia, Washington, DC, USA, IEEE Computer Society (2005)
474-482

22. Olveczky, P., Thorvaldsen, S.: Formal modeling and analysis of the ogdc wireless
sensor network algorithm in real-time maude. In: Proc. Intl. Conf. on Formal Methods
for Open Object-Based Distributed Systems. Volume 4468 of LNCS., Springer (2007)
122-140



