
Analysis of Wireless Sensor Network Protocols
in Dynamic Scenarios ?

Cinzia Bernardeschi1, Paolo Masci1,2, and Holger Pfeifer3

1 Department of Information Engineering, University of Pisa, Italy
cinzia.bernardeschi@ing.unipi.it

2 Institute of Information Science and Technologies, CNR, Pisa, Italy
masci@isti.cnr.it

3 Institute of Artificial Intelligence, Ulm University, Germany
holger.pfeifer@uni-ulm.de

Abstract. We describe an approach to the analysis of protocols for
wireless sensor networks in scenarios with mobile nodes and dynamic
link quality. The approach is based on the theorem proving system PVS
and can be used for formal specification, automated simulation and ver-
ification of the behaviour of the protocol. In order to demonstrate the
applicability of the approach, we analyse the reverse path forwarding
algorithm, which is the basic technique used for diffusion protocols for
wireless sensor networks.

1 Introduction and Motivation

Wireless devices have a limited transmission range and multi-hop communica-
tion protocols must be adopted when the network has a physical extension which
exceeds the transmission range of nodes. Wireless Sensor Networks (WSNs) rep-
resent an example of wireless networks that are gaining more and more atten-
tion from the research community. In particular, WSNs are distributed systems
consisting of a large number of spatially distributed, autonomous and cooperat-
ing nodes. The nodes of the network, referred to as sensor nodes, are battery-
operated devices which provide limited computation capabilities, low-rate and
low-range wireless communication, and are equipped with a number of sensors
and actuators to monitor physical or environmental conditions [1].

Protocols for wireless networks are difficult to test on real devices, and sim-
ulation is currently the main technique used to investigate protocol behaviour.
Software-based simulators are widely used to provide controlled environments
in which experiments are to yield reproducible results. Protocols are commonly
analysed with ad hoc simulators built on top of readily available network simula-
tors, such as Omnet++ [2], or distributed system simulators, such as ptolemy [3].
Currently, there is no established standard simulation framework.
? This work was partially supported by the European Commission through the Net-

work of Excellence ReSIST (IST-026764). This copy has been generated by the au-
thors; the original publication is available at www.springer.com



2 C. Bernardeschi, P. Masci, H. Pfeifer

Formal modelling is of outstanding importance for reasoning about the be-
haviour of systems, and formal analysis methods are widely accepted as a method
to provide additional confidence in the correctness of a system. For wireless sen-
sor networks, there is increasing interest in using formal methods to verify key
properties of popular routing algorithms [4], to evaluate protocol performance [5],
and to validate simulation results [6].

In order to analyse protocols for wireless sensor networks, in this work we
build on a framework [7] based on the Prototype Verification System (PVS).
PVS is a formal tool that combines an expressive specification language with
an interactive theorem prover and it has been successfully employed for formal
reasoning in several application domains (see [8] for an overview). The frame-
work [7] allows an easy specification of the characteristics of wireless networks,
such as limited communication range and lossy transmissions. In this work we
introduce in the framework mechanisms to automate the analysis of dynamic
scenarios with mobile nodes and quality changes of communication links. With
our approach, a high-level clear description of the protocol can be developed. The
formal specification can be animated and conveniently used to debug the specifi-
cation and to obtain quantitative evaluations. Moreover, the approach opens the
possibility of formally proving the correctness of the specification with respect
to properties of interest.

In order to demonstrate the applicability of the approach, we show its ap-
plication to the reverse path forwarding (RPF) algorithm, which is the basic
technique used for diffusion protocols for WSNs. We employ a mechanism pro-
vided by the framework to automatically translate the formal specification into
executable code, and simulate the algorithm in dynamic scenarios with mobile
nodes and degraded / faulty wireless links. Moreover, by using the theorem
prover of PVS, we prove that our specification satisfies desired properties of in-
terest when the routing table is static, i.e., when the routing table is guaranteed
to remain unchanged during protocol execution.

2 Basic Concepts of the Formal Framework

The framework presented in [7] combines formal verification and simulation to
build an integrated approach that can be employed to improve the confidence in
the behaviour of a system. The framework relies on the Prototype Verification
System (PVS) [8].

2.1 PVS

The Prototype Verification System (PVS) is a specification and verification sys-
tem which combines an expressive specification language with a powerful auto-
mated theorem prover. The PVS specification language builds on classical typed
higher-order logic with the usual base types, bool, nat, integer, real, among
others, and the function type constructor [A -> B]. Predicates are simply func-
tions with range type bool. The type system of PVS also includes record types,



Analysis of WSN Protocols in Dynamic Scenarios 3

dependent types, and abstract data types. The most powerful concept are predi-
cate subtypes, which can be used to check for violations, such as division by zero,
or to express complex consistency requirements.

PVS specifications are packaged as theories that can be parametric in types
and constants. Theorems and lemmas contained in PVS theories can be formally
proved using the theorem prover of PVS. A built-in prelude and loadable libraries
provide standard specifications and proved facts for a large number of theories.
A theory can use definitions and theorems of another theory by importing it.

PVS also provides a ground evaluator [9] that can be used to animate func-
tional specifications i.e., to translate the formal specifications into executable
code. Indeed, although the specification language of PVS is based on higher-
order logic and features a rich type system, a large subset of it is executable.
The ground evaluator translates the executable constructs of PVS into efficient
Lisp code. Furthermore, in order to still be able to simulate theories that also
involve declarative specifications, the ground evaluator can be augmented by
so-called semantic attachments, through which the user can supply pieces of
Lisp code and attach them to the declarative parts. Using this mechanism, the
PVSio package [10] extends the ground evaluator with a predefined library of
imperative programming language features such as side effects and input/output
operations, and also provides a high-level interface for writing user-defined se-
mantic attachments.

2.2 Modelling and Analysing Network Protocols

The formal specifications of a network protocol consists of a collection of PVS
theories. A PVS theory may represent a service installed on a node (e.g., packet
logger, clock), a structural property of the network (e.g., network graph), a
communication functionality (e.g., packet forwarding). For each PVS theory, a
number of different versions can be provided in order to specify and analyse
algorithms under several perspectives and at desired level of detail. The most
abstract theory provides the declaration of types for a minimum set of mandatory
attributes and the declaration of functions. More detailed theories can be derived
from the abstract definition by specifying the behaviour of functions and by
extending types.

In the following, we recall the basic aspects of the framework. For a more
complete description of the theories, we refer to [7].

Nodes and Network Structure. Nodes in the network are identified by a unique
identifier node id. The base station has a special identifier base station. The
network is represented with a directed graph, and the external library [11] is used
to benefit from various concepts and proved facts. To simplify graph specifica-
tion, an auxiliary topology function is defined, which identifies, for each node,
the set of neighbouring nodes.Once the topology is given, the network graph
can be instantiated with an utility function that transforms a topology into a
directed graph.



4 C. Bernardeschi, P. Masci, H. Pfeifer

Communication Primitives. Nodes can exchange packets. Communication prim-
itives take into account the structure of the network and enable packet reception
only for nodes in the communication range of the sender: if node x sends out a
broadcast packet, it is received only by the neighbours of x. Ideal and lossy com-
munication are modelled through special addresses. Basically, lossy addresses are
functions that return a subset of nodes with respect to their ideal counterpart. A
number of different single-hop primitives were modelled to ease the specification
of communication protocols: Inject, which can be used to send out packets gener-
ated by nodes; Forward, which is suitable to relay packets previously received by
nodes; Drop, which is used to discard received packets. Additionally, nodes are
also allowed to perform the Idle transition, i.e., a transition in which nodes do
not perform any operation on incoming or outgoing packets. The implemented
primitives are suitable for unicast, multicast and broadcast communication.

Protocols. A protocol is specified as a cyclic procedure executed on a generic
node. The specification of the protocol may use services installed on the node,
and the protocol itself can be used to define new services. Examples of ser-
vices are packet logger, which stores statistics about sent and received packets,
receive buffer, which models the buffer that holds received packets waiting to
be processed, and node scheduler, which abstracts the clock of nodes and the
medium-access control mechanism with the sequence of nodes that execute the
algorithm. The state of a node is defined by the services installed on the node.
The network state maintains the state of all nodes in the network.

3 Modelling Dynamic Scenarios

In this section we present extensions of the framework which support the specifi-
cation of dynamic scenarios. Specifically, we show mechanisms suitable to express
mobility patterns of nodes, possibility of link quality changes, and to automate
the generation of routing tables.

Node Mobility. Node mobility can be expressed with functions that change net-
work connectivity with the following three steps: i) select a target direction
among those allowed by topology, ii) determine the new set of neighbours of the
mobile node, iii) return a new topology according to the actual parameters. The
node mobility th theory shows the definition of such a function in PVS. Three
auxiliary functions are used to implement the corresponding steps.

node_mobility_th: THEORY
BEGIN
IMPORTING network_graph_th

%-- select a target direction
select_target(s: finite_set[node_id]): node_id

%-- generate the new set of neighbours for the mobile node
new_neighbours(tp: topology, mobile_node, target_node: node_id): finite_set[node_id] =

{n: node_id | (n /= mobile_node) AND (tp(target_node)(n) OR n = target_node)}



Analysis of WSN Protocols in Dynamic Scenarios 5

%-- change topology tp according to the new neighbourhood of the mobile node
change_topology(tp: topology)(mobile_node: node_id, nbs: finite_set[node_id]): topology =

LET tp = remove_node(mobile_node, tp)
IN add_node(mobile_node, nbs, tp)

%-- node mobility function
node_mobility(m: node_id, tp: topology): topology =

LET target = select_target(tp(m)), new_nbs = new_neighbours(tp, m, target)
IN change_topology(tp)(m, new_nbs)

%-- ... more definitions omitted
END node_mobility_th

The target direction of the mobile node can be selected through a set of
rules. Rules depend on the mobility model, and they can be either deterministic
or random. For instance, suppose that a node moves according to a random walk,
i.e., the mobile node takes a decision about the direction option for the next step
according to a random distribution. Random walk is a well-known searching
technique for resource discovery in decentralised networks. In the framework,
such a mobility pattern can be specified by means of a function random walk,
which moves the mobile node n times:

random_walk_th: THEORY
BEGIN
IMPORTING node_mobility_th

random_walk(n: nat)(ng: network_graph): RECURSIVE network_graph =
IF n = 0 THEN ng
ELSE LET tp = node_mobility(mobile_node, new_topology(ng)), ng = new_network_graph(tp)

IN random_walk(n-1)(ng) ENDIF
MEASURE n

END random_walk_th

Theory random walk th can be used to study protocols in dynamic scenarios.
In the following we show an example where a mobile base station moves according
to a random walk pattern and periodically injects a new packet; sensor nodes
execute the flooding protocol to diffuse packets.

mobile_scenario_th: THEORY
BEGIN %--... imports and some declarations omitted

mobile_scenario(n: nat)(net: network_state, ng: network_graph)
(sched_grp: finite_set[node_id]): RECURSIVE network_state =

IF n = 0 THEN net
ELSE LET ng = random_walk(S)(mobile_node, ng), %-- move the base station of S steps

scheduled_id = flooding_app_scheduler(sched_grp),
net = IF scheduled_id = base_station

THEN inject(scheduled_id)(net, ng) %-- the base injects a new packet
ELSE flooding(scheduled_id)(net, ng) %-- nodes execute flooding
ENDIF

IN mobile_scenario(n-1)(net, ng)(remove(scheduled_id, sched_grp))
ENDIF

MEASURE n

END mobile_scenario_th

Note that the specification above is executable and can be animated to per-
form simulation. Examples of random walks traced by the mobile node during
simulation on a grid with 64 places with 8 columns and rows are shown in Fig-
ure 1. In our simulations, the mobile node is initially placed on the top-left corner



6 C. Bernardeschi, P. Masci, H. Pfeifer

Fig. 1. Examples of random walks that can be generated during simulations. Circles
represent places where the mobile node stopped for at least one step.

of the grid. Different initial positions can, of course, be chosen. Grids with larger
number of places and different structure can be used as well. For the sake of
simplicity, the figure reports only the trace drawn by the mobile node without
any direction indication.

Automated Generation of Routing Tables. Routing tables are, by definition, ta-
bles that store, for each node, a path suitable to reach other nodes. Hence, we
specified the routing table with a function which returns, for any node, a vector
of paths: given a network graph G and a routing table rt, the vector of paths
starting from i is rt(i), and the path from i to j is rt(i)(j). In this definition,
we benefit from the definition of paths provided in [11]: a path from i to j is
a prewalk of nodes (i.e., a sequence of nodes) that must be traversed on the
network graph to reach j starting from i.

routing_table_th: THEORY
BEGIN
IMPORTING network_graph_th, digraphs[node_id]

routing_table: TYPE = [i: node_id -> [j: node_id -> prewalk[node_id]]]
routing_table?(rt: routing_table, g: network_graph): bool =

FORALL (i, j: node_id): route?(g, rt(i)(j), i, j)

valid_route?(g: network_graph, p: prewalk[node_id], i, j: node_id): bool =
((i /= j) AND (l(p) > 1) AND path_from?(g, p, i, j))

valid_routing_table?(rt: routing_table, g: network_graph): bool =
routing_table?(rt,g) AND FORALL (i, j: node_id): valid_route?(g, rt(i)(j), i, j)

%-- ... more definitions omitted
END routing_table_th

In order to automate the generation of routing tables, we extended the frame-
work with a new theory rtgen th which defines a service that, given a network
graph, generates a routing table. Basically, rtgen th models a technique that is
frequently used in WSNs to generate routing tables. The technique is based on a
protocol which performs the following actions. A node forwards a received packet
only if the packet is received for the first time, otherwise the packet is dropped;
packets carry a hop-count field in their payload that is incremented every time
the packet is forwarded. To build a routing table with the above algorithm, the
base station sends out a beacon packet with hop-count equal to 0; as the packet
gets forwarded in the network, nodes learn about their own distance from the



Analysis of WSN Protocols in Dynamic Scenarios 7

base station, and nodes are also able to estimate the distance of their neighbours
by inspecting the sender address and hop-count fields of the received packets.

In the framework, the service can be specified as follows:

rtgen_th: THEORY
BEGIN %-- ...imports omitted

rtgen(x:node_id)(net:network_state, g:network_graph): network_state =
IF empty?(net_receive_buffer(net)(x)) THEN idle(x)(net, g)
ELSE LET received_pk = getpacket(net_receive_buffer(net)(x)),

hopcount = getpayload(received_pk)(COUNTER_FIELD)
IN IF forwarded_packets(x, net_log(net)) = 0

THEN forward(received_pk WITH [destination_addr := lossy_bcast_addr,
payload := new_payload(hopcount+1)])

(x)(net,g)
ELSE drop(received_pk)(x)(net, g)
ENDIF

ENDIF

rtgen_rec(x: node_id)(net: network_state, g: network_graph): RECURSIVE network_state =
IF empty?(net_receive_buffer(net)(x)) THEN idle(x)(net, g)
ELSE LET net_prime = rtgen(x)(net, g) IN rtgen_rec(x)(net_prime, g)
ENDIF
MEASURE size(net_receive_buffer(net)(x))

rtgen_service(net: network_state, g: network_graph):
RECURSIVE network_state =

LET grp = next_group(net_receive_buffer(net), net_log(net))
IN IF zero?(grp) THEN net

ELSE LET scheduled_id = random(grp),
net_prime = rtgen_rec(scheduled_id)(net, g)

IN rtgen_service(net_prime, g)
ENDIF

MEASURE size(next_group(net_receive_buffer(net), net_log(net)))

%-- ... more definitions omitted
END rtgen_th

The routing table can be obtained from the information in the log of nodes
at the end of the execution of rtgen service. Routing tables can be generated
either with ideal or lossy transmissions. In the case of ideal transmissions, routing
tables always define a spanning tree with minimum hop distance from the base
station. With lossy transmissions, on the other hand, the generated routing
tables define a spanning tree with a random structure. For lossy transmissions,
we can instantiate the probability Prx for which node x ∈ lossy bcast addr.
When lossy transmissions are used, a check predicate controls if the generated
routing table is valid. In the case that the routing table is not valid – this may
happen with lossy transmissions when some nodes are not reached by the beacon
packet sent by the base station to build the routing table – the procedure was
instrumented to automatically try to generate a new routing table.

4 Case study: the Reverse Path Forwarding Algorithm

In this section we will apply the proposed approach to the reverse path forward-
ing (RPF) algorithm, which is the basic technique used for diffusion protocols
for WSNs. RPF is a broadcast routing method which exploits the information
contained in the routing table to deliver packets generated by a base station to



8 C. Bernardeschi, P. Masci, H. Pfeifer

all other nodes in a multi-hop network. With RPF, packets are propagated with
the following policy: a node n accepts a packet received from node p only if n
believes that p is the best next hop on the path to the base station, as specified
in the routing table. It is well known that, under the assumption of a static
routing table, the reverse path forwarding algorithm delivers exactly one copy
of the broadcast packet to all nodes. If, however, the routing table is dynamic,
as is usually the case in real-world deployments, then such guarantees cannot be
made for RPF [12].

In our framework, the algorithm is specified as follows: a broadcast packet
received by node x is accepted for forwarding if the sender address of the packet
is the best next hop of x towards the base station. The best next hop can be
derived from the routing table. The specification of the algorithm is:

rpf_th: THEORY
BEGIN IMPORTING routing_table_th %-- ... more imports omitted

rpf(x: node_id)(g:network_graph, base_station:node_id, rt:routing_table)
(net: network_state): network_state =

IF empty?(net_receive_buffer(net)(x)) THEN idle(x)(net, g)
ELSE LET received_pk = getpacket(net_receive_buffer(net)(x))

sender_addr = sender_addr(received_pk),
next_hop = next_hop(x, base_station)(g, rt)

IN IF sender_addr = next_hop
THEN forward(received_pk)(x)(net, g)
ELSE drop(received_pk)(x)(net, g)
ENDIF

ENDIF

%-- ... more definitions omitted
END rpf_th

The main property of the RPF algorithm is the following:

Property P: If the routing table is correct and static, then exactly one copy of
the broadcast packet sent by the base station will be delivered to all nodes in the
network.

5 Simulation

To simulate RPF, we need to specify an application scenario that takes into
account how the system evolves. As RPF itself does not generate routing tables,
we use the PVS function rtgen shown in Section 3 for that purpose.

In our simulations, we generated routing tables by using lossy bcast addr
with Prx = 0.94, which can be a reasonable value for low power wireless de-
vices [13]. A semantic attachment of the PVSio library is used to generate
pseudo-random numbers. Moreover, a theory for generating random sets of nodes
has been implemented. In our simulations, a uniform distribution is used, but
other distributions can be adopted as well, either providing an executable spec-
ification or changing the semantic attachment. On a desktop computer with a
2 GHz processor, a valid routing table can be generated in seconds for networks
of 100 nodes placed on a grid. For a network of 1000 node placed on a grid, the
average time is of few minutes.



Analysis of WSN Protocols in Dynamic Scenarios 9

In our setting, the base station periodically injects packets in the network,
and other nodes apply the RPF algorithm. Each packet injected by the base
station is uniquely identified: this way we can derive useful statistics by inspect-
ing the log of nodes. In our simulations, a random node is scheduled at each
simulator step. The scheduler is specified so that fairness of execution between
nodes is guaranteed, i.e., all nodes are able to execute the algorithm and make
progress at the same speed. Nodes operate in burst mode, i.e., when a node is
scheduled, all packets in the receive buffer are processed according to the RPF
algorithm.

We aim at evaluating the delivery ratio and the overhead due to duplicates
in some representative scenarios of dynamic environment. The delivery ratio of a
node x is the number of packets delivered to node x over the number of packets
sent to node x. If the delivery ratio is one, then all packets were delivered to
the intended destination. The overhead due to duplicates is the amount of traffic
due to packet replicas. Such overhead can be caused by the RPF algorithm when
the routing table is not static [12].

In the following paragraphs, we show simulation results obtained for networks
of 64 nodes placed on a grid with 8 columns. Networks with larger number of
nodes and different structures can be simulated as well.

Link Quality

Link quality is a measure of the probability of successful communication over a
link. In wireless networks, nodes can estimate the quality of the links with their
neighbours, e.g., through the received signal strength intensity (RSSI), which
is automatically computed by the wireless radio chip whenever a packet gets
received [14]. In wireless environments, link quality may dramatically change
because of many factors, ranging from hardware/software nodes failure to envi-
ronmental factors (e.g., humidity, obstacles). In multi-hop wireless networks, link
failures may lead to network partitioning because of the limited communication
range of the radio equipment. Hence, whenever a link between two neighbour-
ing nodes fails, such nodes must choose a new next hop in order to recover the
routing table.

We evaluate the RPF algorithm in a scenario where the routing table always
contains paths with the best local link quality. The base station periodically
injects a new packet in the network, and all nodes apply the RPF algorithm to
diffuse the packet. We assume that the quality of different links is not correlated,
and that link quality may change with a uniform probability Pc. The specification
of the application scenario used to simulate the network for n steps is shown in
the following.

rpf_sim_th: THEORY
BEGIN
%-- ...imports omitted

link_quality_app(Pc:real)(n:nat)(net:network_state, ng:network_graph, rt:routing_table)
(base_station:node_id, sched_grp:finite_set[node_id]):

RECURSIVE network_state =



10 C. Bernardeschi, P. Masci, H. Pfeifer

(a)

(b)

Fig. 2. Examples of simulation results with different link quality change probability Pc.
(a) Delivery ratio at the end of different simulation runs. (b) Distribution of duplicates.

IF n = 0 THEN net
ELSE LET (ng, rt) = change_routing_table(Pc)(n)(base_station, ng, rt),

sched_id = random_scheduler(sched_grp),
net_prime = IF sched_id = base_station

THEN inject_service(sched_id,n)(net,ng)(rt)
ELSE rpf_service(sched_id)(net,ng)(base_station,rt)
ENDIF

IN link_quality_app(Pc)(n - 1)(net_prime, ng, rt)
(base_station, update_sched(sched_id, sched_grp))

ENDIF MEASURE n
%-- ... more definitions omitted

END rpf_sim_th

Function change routing table reflects the possible changes in the routing ta-
ble due to changes in the quality of the links, and uses rt gen to generate new
routing tables.

The results of four simulations runs in which RPF has been evaluated with
different probabilities Pc are shown in Figure 2. For each simulation run, routing
tables were chosen randomly, and link quality changed if the value of a random
variable was higher than a given threshold. Figure 2(a) shows a snapshot of
the grid network at the end of simulation runs. The images relate the physical
position of nodes with colours that highlight the number of packets successfully
delivered (darker colours for higher delivery ratios). The base station is placed
in the top-left corner of the grid. As expected, the delivery ratio is 1, i.e., all
packets are delivered, when the link quality does not change (Pc=0). In the case
of dynamic scenarios (Pc6=0), on the other hand, some nodes are not able to
receive the packet sent out by the base station. Moreover, we can notice that



Analysis of WSN Protocols in Dynamic Scenarios 11

the delivery ratio is relatively high for nodes that are closer to the source node
(i.e., the base station), while it decreases rapidly for distant nodes. Figure 2(b)
reports the distribution of duplicates among nodes. The x-axis of the histogram
reports the number d of duplicates, the y-axis reports the number of nodes that
received d duplicates. It can be noticed how the number of duplicates rapidly
grows with the dynamics of the network.

These kinds of analyses can be applied to communication protocols to derive
useful information about possibly unexpected behaviours. For instance, if energy
consumption is a main concern for the application, results may point out that
developers should combine their algorithm with a mechanism that efficiently
suppresses duplicates.

Node mobility

We also evaluated the RPF algorithm with changing routing table due to a
mobile base station. In our scenario, the base station moves according to a
random walk pattern, i.e., the base station takes a decision about the direction
option for the next step according to a random distribution. Random walks are
well-known searching techniques for resource discovery in decentralised networks.
Every time the base station moves, a new routing table is generated and a new
packet is sent out. The application used to simulate n steps of the network is
similar to that of link quality changes. The main difference, with respect to the
specification used for link quality changes, is the function used to generate the
new routing table. In this case, first, the topology of the network is updated to
reflect the mobility of the base station; second, a new routing table is generated:

rpf_sim_th: THEORY
BEGIN %-- ...imports omitted

node_mobility_app(n:nat)(net:network_state, ng:network_graph, rt:routing_table)
(base_station: node_id, sched_grp: finite_set[node_id]):

RECURSIVE network_state =
IF n = 0 THEN net
ELSE LET (ng, rt) = move_base_station(n)(base_station, ng, rt),

sched_id = random_scheduler(sched_grp),
net_prime = IF sched_id = base_station

THEN inject_service(sched_id,n)(net,ng)(rt)
ELSE rpf_service(sched_id)(net,ng)(base_station,rt)
ENDIF

IN node_mobility_app(n - 1)(net_prime, ng, rt)
(base_station, update_sched(sched_id, sched_grp))

ENDIF
MEASURE n

%-- ... more definitions omitted
END rpf_sim_th

Figure 3 shows some results of simulations where the base station was initially
placed on the top-left corner of the grid. The random walks traced by the mobile
base station during three simulation runs are shown in Figure 3(a). For the sake
of simplicity, the figure reports only the trace drawn by the mobile node without
any direction indication. Figure 3(b) shows the delivery ratio obtained for a
simulation run (the walk performed by the mobile node is shown in overlay).



12 C. Bernardeschi, P. Masci, H. Pfeifer

(a) (b)

Fig. 3. Example of simulations results with a mobile base station. (a) Random walks;
circles represent places where the mobile node stopped. (b) Delivery Ratio; the random
walk is shown in overlay.

It can be noticed that the delivery ratio is higher for nodes closer to the path
traversed by the base station. The average delivery ratio is between 0.23 and
0.59, with an average value of 0.34; with more details, the average delivery ratio
of nodes that were immediate neighbours of the mobile node is 0.4, while for
other nodes it is only 0.29 in average. Such results are coherent with respect to
the results presented in [15], where RPF was evaluated for a mobile base station
following a random waypoint mobility pattern.

6 Formal Verification

In this section, we outline the proof that the specification of RPF satisfies prop-
erty P when the routing table is static. The execution of the RPF algorithm is
specified as a sequence of network states which starts from an initial state and
repeatedly applies a state transition function. For RPF, the initial state models
the injection of a packet in the network by the base station. The state transi-
tion function models the execution of the algorithm of a generic node x, which
is applied recursively to all received packets using an auxiliary rpf service
function:

rpf_proof_th: THEORY
BEGIN %-- ... imports omitted

rpf_service(t: nat)(x: node_id)
(ns:network_state, g:network_graph, rt:routing_table) : network_state =

LET scheduled_node = scheduler(t),
n = size(net_receive_buffer(ns)(scheduled_node))

IN execute(rpf(scheduled_node)(g,base_station, rt))(n)(ns)

rpf_transition(ns0, ns1: network_state, t: nat)
(g: network_graph, rt: routing_table): bool =

ns1 = rpf_service(scheduled_node)(ns0, g)(base_station, rt)

rpf_trace(seq: sequence[network_state])(g: network_graph, rt: routing_table): bool =
seq(0) = initial_rpf_state(base_station) AND
FORALL(t:nat): rpf_transition(seq(t),seq(t+1),t)(base_station,g,rt)

%-- ... more definitions omitted
END rpf_proof_th



Analysis of WSN Protocols in Dynamic Scenarios 13

The formal proof of property P is by an induction on the execution traces of
RPF, i.e., on sequences that start with the initial state and apply the RPF
transition function to generate subsequent states states. Furthermore, the proof
makes use of the following properties and constraints, which can be expressed
as additional lemmas, or sub-type conditions:

– the routing table is correct and does not change
– the network is not partitioned
– a correct routing table rt exists, which defines a spanning tree rooted at the

base station
– all nodes are guaranteed to be scheduled at least once every N steps of the

execution trace, where N is the number of nodes in the network
– all nodes operate in burst mode: when a node is allowed to transmit, it sends

out all packets waiting to be transmitted

To accomplish the overall proof, the following lemmas proved useful:

Lemma 1. For all execution traces and network states, for every node x, the
number of packets with sender address equal to the next hop of x in the receive
log of node x, is equal to the number of packets in the forward log of the next hop
of x (by definition, the next hop of the base station is the base station itself). �

Lemma 2. For all execution traces and network states, for every node x, the
number of packets with sender address equal to the next hop of x in the forward
log of node x is less than or equal to the number of packets in the receive log of
node x. �

Lemma 3. For all execution traces and all network states, for every node x,
if the number of packets with sender address equal to the next hop of x in the
receive log of x is ≥ 1 at time t, then the number of packets in the forward log of
node x is ≥ 1 at time (t+N), where N is the number of nodes in the network. �

The delivery of the broadcast packet is assessed through the receive log of nodes.
To this end, the proof of property P is split into two parts: first we prove that the
number of received packets is at most one; second, we prove that the number of
received packets is at least one. The proofs have been developed and mechanically
checked with the theorem prover of PVS.

Theorem 1. For every node x, the number of received packets with sender equal
to next hop of x is at most one.
Proof outline. The proof is given by induction on the number k of hops between
the node and the base station on the spanning tree defined by the routing table.
Base: k = 1. The proof follows from the assumption that the base station injects
only one packet.
Induction: k = n + 1. The path p between the base station and node x is split
into a path p′ between the base station and next hop of x and an edge between
next hop of x and x. The length of p′ is n. Hence, the inductive hypothesis holds
for the next hop of x, which receives at most one packet. By using Lemma 2, we
obtain that x receives at most one packet from the next hop �



14 C. Bernardeschi, P. Masci, H. Pfeifer

Theorem 2. For every node x, the number of packets with sender equal to next
hop of x is at least one.
Proof Outline. The proof is given by induction on the number k of hops between
the node and the base station on the spanning tree defined by the routing table
and by using the assumption on fairness for transmissions.
Base: k = 1. By construction of the initial state, the base station has injected
a packet at time t = 0. Hence the receive log of neighbours of the base station
contains the packet sent by the base station at time t = 0.
Induction: k = n + 1. The path p between the base station and node x is split
into a path p′ between the base station and next hop of x and an edge between
next hop of x and x. The length of p′ is n. Hence, the inductive hypothesis holds
for the next hop of x, which receives at least one packet at a time t. By using
Lemma 3, we obtain that next hop of x forwarded at least one packet at time
t + N . By Lemma 1, there is at least one packet with sender address equal to
next hop of x in the receive log of x �

7 Related Work and Conclusions

The need for formal modelling and analysis of algorithms for wireless networks
has been pointed out in many papers. In [4], basic properties of the Reverse
Path Forwarding algorithm have been analysed with FDR and Alloy Analyser.
Scalability is the main problem of such an approach: only very simple and small
network configurations were analysed, and specific hypotheses were assumed in a
hand-proof of the correctness the algorithm . In [5], Lamport’s Temporal Logic of
Actions is used to model and simulate diffusion protocols for discovering routing
trees for gathering and disseminating data. The analysis focuses on performance
variation of push and pull phases of the diffusion protocol for routing trees with
different shapes, however without the objective of algorithm design evaluation.
In [16], Real-Time Maude has been applied to the OGDC density control al-
gorithm and networks of several hundred nodes were analysed. The approach
allows modelling the algorithm at high levels of detail, using broadcast and uni-
cast communication primitives; results are claimed to be often more accurate
compared to other network simulators.

In this paper we show an approach based on the PVS system to analyse
protocols for WSNs in dynamic scenarios with mobile nodes and link quality
changes. As case study, we developed a formal specification for RPF. Through
simulation, we evaluated the algorithm and we have obtained results that are
coherent with those reported in other papers. Furthermore, we used the theorem
prover of PVS to verify core correctness properties of RPF when the routing table
is guaranteed to remain unchanged.

The approach allows an easy specification of the characteristics of wireless
networks, such as limited communication range, lossy transmissions, node mo-
bility. The advantages of our approach are that it allows to develop a formal
specification of the protocol at different levels of abstraction, opening the possi-
bility to make complex systems tractable, and that the same formal specification



Analysis of WSN Protocols in Dynamic Scenarios 15

can be automatically translated into executable code suitable for simulations and
as basis for formal reasoning in a theorem proving system.

References

1. Akyldiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Net-
works: a Survey. Computer Networks 38 (2002) 393–422

2. Varga, A.: The Omnet++ Discrete Event Simulation System. Proceedings of the
European Simulation Multiconference (ESM’2001) (June 2001)

3. Buck, J., Ha, S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: a Framework for Simu-
lating and Prototyping Heterogeneous Systems. In: Readings in hardware/software
co-design. Kluwer Academic Publishers (2002) 527–543

4. Bolton, C., Lowe, G.: Analyses of the Reverse Path Forwarding Routing Algorithm.
In: Proc. Intl. Conf. on Dependable Systems and Networks, IEEE Computer Soci-
ety (2004) 485–494

5. Nair, S., Cardell-Oliver, R.: Formal Specification and Analysis of Performance
Variation in Sensor Network Diffusion Protocols. In: Proc. Symp. on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, ACM (2004) 170–173

6. Bhargavan, K., Gunter, C., Lee, I., Sokolsky, O., Kim, M., Obradovic, D.,
Viswanathan, M.: Verisim: Formal Analysis of Network Simulations. IEEE Trans.
Software Engineering 28(2) (2002) 129–145

7. Bernardeschi, C., Masci, P., Pfeifer, H.: Early Prototyping of Wireless Sensor Net-
work Algorithms in PVS. In: SAFECOMP ’08: Proceedings of the 27th interna-
tional conference on Computer Safety, Reliability, and Security, Berlin, Heidelberg,
Springer-Verlag (2008) 346–359

8. Owre, S., Rushby, J., Shankar, N., v. Henke, F.: Formal Verification for Fault-
Tolerant Architectures: Prolegomena to the Design of PVS. IEEE Trans. on Soft-
ware Engineering 21(2) (1995) 107–125

9. Crow, J., Owre, S., Rushby, J., Shankar, N., Stringer-Calvert, D.: Evaluating,
testing, and animating PVS specifications. Technical Report, Computer Science
Laboratory, SRI International, Menlo Park, CA (2001)

10. Muñoz, C.: Rapid prototyping in PVS. Technical Report NIA Report No. 2003-03,
NASA/CR-2003-212418, National Institute of Aerospace, Hampton, VA (2003)

11. Butler, R., Sjogren, J.: A pvs graph theory library. Nasa Technical Memorandum
1998-206923, NASA Langley Research Center, Hampton, Virginia (1998)

12. Dalal, Y., Metcalfe, R.: Reverse Path Forwarding of Broadcast Packets. Commu-
nications of ACM 21(12) (December 1978) 1040–1048

13. Woo, A., Tong, T., Culler, D.: Taming the Underlying Challenges of Reliable
Multihop Routing in Sensor Networks. In: SenSys03, New York, NY, USA, ACM
Press (2003) 14–27

14. Texas Instruments: Chipcon CC2420 Datasheet (2007) Available at http://focus.
ti.com/lit/ds/symlink/cc2420.pdf.

15. Clausen, T., Larsen, N., Olesen, T., Viennot, L.: Investigating Data Broadcast
Performance in Mobile ad hoc Networks. In: The 5th International Symposium on
Wireless Personal Multimedia Communications (WPMC). (2002)

16. Ölveczky, P., Thorvaldsen, S.: Formal Modeling and Analysis of the OGDC Wire-
less Sensor Network Algorithm in Real-Time Maude. In: Proc. Intl. Conf. on For-
mal Methods for Open Object-Based Distributed Systems. Volume 4468 of LNCS.,
Springer (2007) 122–140


