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Abstract The development of ontologies involves continuous but relatively small
modifications. However, existing ontology reasoners do not take advantage of the
similarities between different versions of an ontology. In this paper, we propose a
collection of techniques for incremental reasoning — that is, reasoning that reuses
information obtained from previous versions of an ontology. We have applied our
results to incremental classification of OWL ontologies and found significant im-
provement over regular classification time on a set of real-world ontologies.

1 Introduction

Ontologies — formal conceptualizations of a domain of interest — have become
increasingly important in computer science. The most popular ontology modeling
languages are the Web Ontology Language (OWL) [33,21] and its revision OWL 2
[29,11], which are World Wide Web Consortium (W3C) standards. OWL ontologies
are already being used in domains as diverse as bio-medicine, geography, astronomy,
and defense. Prominent examples of bio-medical ontologies are SNOMED, the NCI
Thesaurus, and GALEN.

The ontology languages OWL DL — the most expressive decidable variant of
OWL — and OWL 2 are strongly related to description logics (DLs) [5] — a family
of logic-based knowledge representation formalims with well-understood computa-
tional properties. The developers of ontologies have recognized the benefits of using
DLs for ontology modeling; in particular, DLs provide unambiguous semantics to the
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modeling constructs available in OWL DL and OWL 2. These semantics make it pos-
sible to formalize and design algorithms for a number of reasoning services, which
are critical to the development of large ontologies. For example, ontology classifi-
cation involves organizing the concepts in an ontology into a subsumption hierarchy
and allows for the detection of potential modeling errors, which typically manifest
themselves as unintended subsumption relationships. There is currently a significant
number of reasoners that support classification of ontologies written in OWL DL,
OWL 2, or in some of their fragments. Prominent examples are CEL [3], FaCT++
[41], HermiT [30], KAON2 [22], Pellet [37], and RACER [17].

For developing and maintaining an ontology, it is important to detect possible er-
rors as soon as possible. To this end, the ontology should be classified quite often and
thus real time response from the reasoner becomes an important issue. If the response
of the reasoner is too slow, ontology engineers may end up not using the reasoner as
often as they would wish. As a consequence, a considerable amount of research effort
has been devoted to make ontology classification feasible in practice. The main out-
come of this line of research has been twofold. First, the development of a number of
reasoning algorithms and optimization techniques for classifying ontologies; second,
the identification of fragments of OWL DL and OWL 2 for which classification can
be performed in polynomial time, such as the EL family of description logics [1].
The logics of the EL family are especially interesting since they can express many
real-world ontologies, including SNOMED. Despite these achievements, classifica-
tion of large and complex ontologies may still require a considerable amount of time,
hence making the use of reasoners for ontology development sometimes impractical.

An important limitation of current reasoners is that they do not take advantage of
the similarities between an ontology and its previous version. That is, when reasoning
over the latest version of an ontology, current reasoners repeat the whole reasoning
process from scratch. This is often unnecessary given that the development of ontolo-
gies typically involves continuous but relatively small modifications and therefore an
ontology and its previous version usually share most of their axioms.

In this paper, we propose a collection of techniques for incremental ontology
reasoning; that is, reasoning that reuses the results obtained from previous compu-
tations. The first technique we propose is based on the notion of a module [10,8,
26] and can be applied to the incremental classification of OWL 2 ontologies. This
technique does not depend on a particular reasoner or reasoning method and can be
implemented using any existing reasoner. Our second proposed technique is specific
to the reasoning algorithm used in the CEL system for the DL EL+ [4], and its im-
plementation requires modifying the internals of the reasoner. Our empirical results
using both techniques show substantial performance improvements over regular clas-
sification time.

2 Preliminaries

In Section 2.1, we introduce the description logics SROIQ [25] and EL+ [2], which
provide the logical underpinning for OWL 2 [29,11] and the EL profile of OWL 2
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[28], respectively. In Section 2.2 we briefly present the classification algorithm for
EL+, which is at the core of the CEL reasoner.

2.1 Description Logics

We assume fixed disjoint countably infinite sets R of atomic roles (R,S, . . .), C of
atomic concepts (A,B, . . .) and I of individuals (a, b, c, . . .). The set of SROIQ-
roles is the set Rol = {R, R− | R ∈ R}. We define a function Inv(·) : Rol→ Rol
as follows: Inv(R) = R− and Inv(R−) = R.

A strict partial order ≺ on a set X is an irreflexive and transitive relation on X .
A strict partial order ≺ on the set Rol of SROIQ-roles is regular if ≺ additionally
satisfies the following condition: R1 ≺ R2 if and only if R−1 ≺ R2 for all roles in
Rol. Let ≺ be a regular order on roles. A role inclusion axiom (RIA for short) is an
expression of the form w v R where w is a finite string of roles called a role chain
and R is an atomic role. A role hierarchyRh is a finite set of RIAs. A RIA w v R is
≺-regular if R is an atomic role and any of the following conditions holds:

– w = RR, or
– w = R−, or
– w = S1 . . . Sn and Si ≺ R for all 1 ≤ i ≤ n, or
– w = RS1 . . . Sn and Si ≺ R for all 1 ≤ i ≤ n, or
– w = S1 . . . SnR and Si ≺ R for all 1 ≤ i ≤ n.

The hierarchy Rh is regular if there exists a regular order ≺ such that each RIA
in Rh is ≺-regular. Given a role hierarchy Rh, we define the relation v∗ to be the
transitive-reflexive closure of v over {R v S, Inv(R) v Inv(S) | R v S ∈ Rh}.
A role R is a sub-role (respectively super-role) of a role S if R v∗ S (respectively
S v∗ R). The set of roles that are simple inRh is inductively defined as follows:

– an atomic role is simple if it does not occur on the right hand side of a RIA inRh,
– an inverse role R− is simple if R is, and
– if R occurs on the right hand side of a RIA in Rh, then R is simple if, for each
w v R ∈ Rh, we have that w = S for a simple role S.

IfRh is clear from the context, we often use “simple” instead of “simple inRh”. An
RBox R is composed of a regular role hierarchy and a finite set of role disjointness
assertions of the form Dis(S1, S2), where S1 and S2 are simple roles.

The set Con of SROIQ-concepts is defined by the following grammar:

Con ::= > | {a} | A | ¬C | C1 u C2 | ∃R.C | ∃S.Self | >nS.C

where a ∈ I, A ∈ C, C(i) ∈ Con, R,S ∈ Rol, with S a simple role, and n a
positive integer.

A general concept inclusion axiom (GCI) is an expression of the form C1 v C2

with Ci ∈ Con. A TBox T is a finite set of GCIs. An individual assertion is an
expression of the form C(a) or R(a, b) with C ∈ Con, a, b ∈ I, and R ∈ Rol.
An ABox A is a finite set of individual assertions. A SROIQ ontology is a tuple
O = (T ,R,A), where T is a TBox,R is an RBox and A is an ABox.
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Ontology O1:

D1 Cystic Fibrosis ≡ Fibrosis u ∃located In.Pancreas

D2 Genetic Fibrosis ≡ Fibrosis u ∃has Origin.Genetic Origin

D3 Pancreatic Fibrosis ≡ Fibrosis u Pancreatic Disorder

C1 Genetic Fibrosis v Genetic Disorder

C2 Pancreatic Disorder v Disorder u ∃located In.Pancreas

Table 1 A Bio-medical DL OntologyO1

Interpretation of Roles and Concepts
(R−)I = {(y, x) | (x, y) ∈ RI}
>I = 4I
{a}I = {aI}

(¬C)I = 4I \ CI
(C uD)I = CI ∩DI
(∃R.C)I = {x | ∃y : (x, y) ∈ RI ∧ y ∈ CI}

(∃S.Self)I = {x | (x, x) ∈ SI}
(>nS.C)I = {x | ]{y | (x, y) ∈ SI ∧ y ∈ CI} ≥ n}

Interpretation of Axioms
I |= C v D iff CI ⊆ DI
I |= w v R iff wI ⊆ RI

I |= Dis(S1, S2) iff SI1 ∩ SI2 = ∅
I |= C(a) iff aI ∈ CI
I |= R(a, b) iff (aI , bI) ∈ RI

Note: ]N is the number of elements in N .

Table 2 Model-Theoretic Semantics of SROIQ and EL+

Note that other constructors and axioms of SROIQ as originally defined in [25],
such as the bottom concept (⊥), concept disjunction (C t D), universal restriction
(∀R.C), at-most cardinality restrictions (6nS.C), concept definitions (A ≡ C),
negative role assertions (¬R(a, b)), role (ir)reflexivity, role (a)symmetry, and role
transitivity can be expressed using the given ones.

The ontology O1 in Table 1 is an example of a SROIQ ontology with an empty
RBox and ABox and whose TBox contains the axioms D1-D3, C1, and C2 in the
table.

An interpretation I is a pair I = (∆I , ·I), where ∆I is a non-empty set, called
the domain of the interpretation, and ·I is the interpretation function that assigns to
each R ∈ R a binary relation RI ⊆ ∆I ×∆I , to each A ∈ C a set AI ⊆ ∆I , and
to each a ∈ I an element aI ∈ ∆I of the interpretation domain. Given a role chain
w = R1 . . . Rn, we set wI = RI1 ◦ . . . ◦RIn, where ◦ denotes composition of binary
relations. The interpretation function ·I is extended to complex roles and concepts as
shown in the upper part of Table 2.

The satisfaction relation I |= α between an interpretation I and a SROIQ-
axiom α (in words, I satisfies α) is defined in the lower part of Table 2. An inter-
pretation I is a model of O = (T ,R,A) if I satisfies all the axioms in T , R and
A. An ontology O is consistent if it has a model. An ontology O implies an axiom
α (written O |= α) if I |= α for every model I of O. In this case, we say that α
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Algorithm 1 Classification of EL+ Ontologies
Procedure classify(O1)
Input:O1: EL+ ontology;
Output: v1: binary relation

1: O1 := Norm(O1)
2: v1:= ∅
3: repeat
4: Apply rules from Table 4
5: until no more rules apply
6: return v1

is a logical consequence of O. A concept A is subsumed by B in O if and only if
O |= A v B. The identification of the subsumption relationships between all pairs
of atomic concepts occurring in O plus > and ⊥ is called ontology classification.

The description logic EL+ is defined as follows. An EL+ RBox R is a finite set
of RIAs of the form w v R where w is a role chain and R is an atomic role. The set
of EL+ concepts is given by the following grammar:

Con ::= > | A | C1 u C2 | ∃R.C

An EL+ TBox is a finite set of GCIs of the form C v D, where C,D are EL+-
concepts. An EL+ ABox is a finite set of assertions of the form C(a) or R(a, b). An
EL+ ontologyO is a tupleO = (T ,R,A). For example, the ontologyO1 in Table 1
is also an EL+ ontology. To represent an EL+ axiom α (either a GCI or a RIA), we
will sometimes use the notation αL v αR, where αL and αR denote the left hand side
and the right hand side of the implication respectively. Note that every EL+ ontology
O = (T ,R,A) is also a SROIQ ontology provided thatR is regular.

A signature is any subset S of R ] C ] I. The signature of an axiom α is the
set Sig(α) of atomic roles, atomic concepts, and individuals that occur in α. The
signature of an ontology O is the set Sig(O) of symbols that occur in O. For con-
venience, we will sometimes use CN(O) and RN(O) to denote the set of atomic
concepts and atomic roles respectively in Sig(O); we also use the notation CN>(O)
for CN(O)∪{>}, CN⊥(O) for CN(O)∪{⊥}, and CN>⊥(O) for CN(O)∪{>,⊥}.

For two interpretations I = (∆I , ·I), J = (∆J , ·J ), and a signature S we write
I|S = J |S if (i) ∆I = ∆J , and (ii) RI = RJ , AI = AJ , and aI = aJ for every
atomic role R ∈ S, atomic concept A ∈ S, and individual a ∈ S.

2.2 Reasoning in EL+

In this section, we briefly present a polynomial-time classification algorithm for EL+.
We refer the interested reader to [1] for a more detailed description.

Algorithm 1 accepts an EL+ ontologyO1 and produces subsumptions of the form
A v1 B and A v1 ∃R.B where A,B ∈ CN>(O1) and R ∈ RN(O1) such that:

O1 |= A v B ⇔ A v1 B (1)
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Axiom Ontology Norm(O1) Comes from
Ax1 Cystic Fibrosis v Fibrosis D1
Ax2 Cystic Fibrosis v ∃located In.Pancreas D1
Ax3 Fibrosis u Aux1 v Cystic Fibrosis D1
Ax4 ∃located In.Pancreas v Aux1 D1
Ax5 Genetic Fibrosis v Fibrosis D2
Ax6 Genetic Fibrosis v ∃has Origin.Genetic Origin D2
Ax7 Fibrosis u Aux2 v Genetic Fibrosis D2
Ax8 ∃has Origin.Genetic Origin v Aux2 D2
Ax9 Pancreatic Fibrosis v Fibrosis D3
Ax10 Pancreatic Fibrosis v Pancreatic Disorder D3
Ax11 Fibrosis u Pancreatic Disorder v Pancreatic Fibrosis D3
Ax12 Genetic Fibrosis v Genetic Disorder C1
Ax13 Pancreatic Disorder v Disorder C2
Ax14 Pancreatic Disorder v ∃located In.Pancreas C2

Table 3 Normalization of the EL+ ontologyO1 from Table 1

I1 A ∈ CN(O1) ` A v1 A

I2 A ∈ CN(O1) ` A v1 >
CR1 A v1 B,B v C ∈ O1 ` A v1 C

CR2 A v1 B1, A v1 B2, B1 uB2 v C ∈ O1 ` A v1 C

CR3 A v1 B,B v ∃R.C ∈ O1 ` A v1 ∃R.C
CR4 A v1 ∃R.B,B v1 C,∃R.C v D ∈ O1 ` A v1 D

CR5 A v1 ∃R.B,R v S ∈ O1 ` A v1 ∃S.B
CR6 A v1 ∃R.B,B v1 ∃S.C,RS v T ∈ O1 ` A v1 ∃T.C

Table 4 Completion rules for EL+

The classification algorithm works on EL+ ontologies expressed in a suitable
normal form. We say thatO1 is in normal form if all GCIs and RIAs inO1 are of one
of the following forms, where A,A1, A2, B ∈ CN>(O1) and R,S, T ∈ RN(O1):

A v B; A1 uA2 v B; A v ∃R.B; ∃R.A v B; R v S; RS v T

The normalization (see Line 1 in Algorithm 1) can be carried out in linear time and
yields an ontology whose size is linear in the size of the original ontology [1]. Further-
more, the normalized ontology Norm(O1) is a conservative extension of the original
ontologyO1: every model of Norm(O1) is a model ofO1 and every model ofO1 can
be extended to a model of Norm(O1) by appropriately choosing the interpretation of
the new atomic concepts and roles.

Table 3 shows the result of normalizing the EL+ ontology from Table 1. The last
column of Table 3 indicates the axiom in O1 from which the normalized axiom has
been obtained. Note that the normalization process may involve the introduction of
new atomic concepts and roles (e.g., the concepts Aux1 and Aux2 in Table 3).

After normalization, Algorithm 1 initializes the output relation v1 to the empty
set and exhaustively applies the rules from Table 4. The application of these rules
on the normalized ontology from Table 3 is given in Table 5, where we indicate the
obtained subsumption relations between atomic concepts with a checkmark (X).
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New subsumption in v1 Rule Applied
S0 A v1 A for each A ∈ CN(O) I1[A]
S1 A v1 > for each A ∈ CN(O) I2[A]

X S2 Cystic Fibrosis v1 Fibrosis CR1[S0,Ax1]
S3 Cystic Fibrosis v1 ∃located In.Pancreas CR3[S0,Ax2]

X S4 Genetic Fibrosis v1 Fibrosis CR1[S0,Ax5]
S5 Genetic Fibrosis v1 ∃has Origin.Genetic Origin CR3[S0,Ax6]

X S6 Pancreatic Fibrosis v1 Fibrosis CR1[S0,Ax9]
X S7 Pancreatic Fibrosis v1 Pancreatic Disorder CR1[S0,Ax10]
X S8 Genetic Fibrosis v1 Genetic Disorder CR1[S0,Ax12]
X S9 Pancreatic Disorder v1 Disorder CR1[S0,Ax13]

S10 Pancreatic Disorder v1 ∃located In.Pancreas CR3[S0,Ax14]
X S11 Pancreatic Fibrosis v1 Disorder CR1[S7,Ax13]

S12 Pancreatic Disorder v1 Aux1 CR4[S10,S0,Ax4]
S13 Cystic Fibrosis v1 Aux1 CR4[S3,S0,Ax4]
S14 Pancreatic Fibrosis v1 ∃located In.Pancreas CR5[S7,S0,Ax14]
S15 Pancreatic Fibrosis v1 Aux1 CR4[S14,S0,Ax4]

X S15 Pancreatic Fibrosis v1 Cystic Fibrosis CR2[S6,S15,Ax3]
S16 Genetic Fibrosis v1 Aux2 CR4[S5,S0,Ax8]

Table 5 The saturation of the EL+ ontology Norm(O1) from Table 3 under the rules from Table 4

Original Ontology O1: Modified Ontology O2:

D1 Cystic Fibrosis ≡ Fibrosis u Cystic Fibrosis ≡ Fibrosis u
∃located In.Pancreas ∃located In.Pancreasu

∃has Origin.Genetic Origin

D2 Genetic Fibrosis ≡ Fibrosis u Genetic Fibrosis ≡ Fibrosis u
∃has Origin.Genetic Origin ∃has Origin.Genetic Origin

D3 Pancreatic Fibrosis ≡ Fibrosis u Pancreatic Fibrosis ≡ Fibrosis u
Pancreatic Disorder Pancreatic Disorder

C1 Genetic Fibrosis v Genetic Disorder Genetic Fibrosis v Genetic Disorder

C2 Pancreatic Disorder v Disorder u Pancreatic Disorder v Disorder u
∃located In.Pancreas ∃located In.Pancreas

∆O = diff(O1,O2) = (∆−O,∆+O)

∆−O = Cystic Fibrosis ≡ Fibrosis u ∃located In.Pancreas

∆+O = Cystic Fibrosis ≡ Fibrosis u ∃located In.Pancreas u ∃has Origin.Genetic Origin

Table 6 Evolution of a Bio-Medical Ontology

We conclude this section by pointing out that the classification algorithm im-
plemented in CEL is an optimized version of the one described here. We refer the
interested reader to [2,4] for a detailed description of this optimized algorithm.

3 The Challenge for Incremental Reasoning in Ontologies

Consider the medical ontology O1 given in Table 1, which consists of three con-
cept definitions D1 – D3 and two concept inclusion axioms C1, C2. Suppose that
an ontology engineer developing this ontology notices that the definition D1 for the
concept Cystic Fibrosis is incomplete and reformulates it by adding the new conjunct
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α Axiom: O1 |=?α, follows from: O2 |=?α, follows from:

α1 Pancreatic Fibrosis v Cystic Fibrosis Yes D3, C2, D1 No —

α2 Cystic Fibrosis v Genetic Disorder No — Yes D1, D2, C1

α3 Pancreatic Fibrosis v Disorder Yes D3, C2 Yes D3, C2

α4 Genetic Fibrosis v Cystic Fibrosis No — No —

Table 7 Subsumption Relations Before and After the Change

∃has Origin.Genetic Origin. As a result, a new version O2 of the ontology is ob-
tained, as shown in Table 6. In order to ensure that no errors have been introduced by
this change, the ontology engineer uses a reasoner to classify the new ontology O2.

Table 7 shows some subsumption relationships between atomic concepts in O1

and O2, which should be computed for classification. We can see that some of these
subsumption relations have changed as a result of the modification to the ontology:
subsumption α1 follows from axioms D3, C2 and D1 inO1, but does not follow from
O2 anymore since D1 has been modified; in contrast, the subsumption α2, which did
not follow from O1, is now a consequence of the modified D1, D2 and C1 in O2.
Other subsumptions such as α3 and α4 did not change: α3 is a consequence of axioms
D3 and C2 which have not been modified; α4 follows neither from O1 nor from O2.

It is reasonable to expect that small changes in ontologies will not affect many
subsumption relations. That is, the number of subsumptions that change their entail-
ment status w.r.t. the ontology (e.g., α1 or α2 in Table 7) is often small compared to
the number of subsumptions that do not (e.g., α3 or α4). If so, many (possibly expen-
sive) re-computations can be avoided by reusing the subsumption relations computed
for the previous version of the ontology. In order to realize this idea, one has to iden-
tify which subsumptions could be affected by a change and which cannot.

Suppose we know that a subsumption α holds in O1. Then we can guarantee that
α still holds in O2 provided the axioms from which α follows in O1 have not been
modified. For example, in Table 7, the subsumption α3 is a consequence of axioms
D3 and C2, both of which have not been modified in O2. Hence, we can conclude
that α3 holds inO2 without performing reasoning overO2. In contrast, this test is not
applicable to α1, since α1 is a consequence of axioms D3, C2 and D1 in O1, and D1
has been modified in O2. In this case, the status of α1 in O2 has to be computed by
other means (e.g., using a reasoner). Thus, the status of every subsumption relation
α that holds in O1 requires re-computation for O2 only if in every justification for
α (i.e., every minimal subset of O1 which implies α) some axiom has been mod-
ified. This approach is reminiscent of the way Truth Maintenance Systems (TMS)
maintain logical dependencies between axioms [16,12]. The notion of a justification
for an axiom has also been used for pinpointing the axioms responsible for errors in
ontologies, such as unsatisfiable concepts and unintended subsumptions [35,32].

The situation is principally different in the case of subsumptions α that do not
hold in O1. In this case, if to follow the previous approach, one has to keep track of
“evidences” for non-entailments of subsumptions in ontologies and verify if at least
one such “evidences” for α inO1 can be reused inO2. Here, the “evidence” might be,
for example, a (part of a) counter-model for α in O1 that is constructed by tableau-
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based procedures. Such techniques based on model caching have been recently pro-
posed in the context of incremental reasoning [19]. These techniques apply, however,
only to additions and deletions of ABox assertions since changes in general axioms
often require considerable modifications of the models. Moreover, such techniques
require close interaction with the model construction routine of the tableau reasoner,
which precludes their use in arbitrary “off-the-shelf” reasoners without considerable
modifications. In particular, these techniques cannot be directly used in reasoners like
KAON2, or CEL, which are not tableaux-based.

We stress that the main challenge for incremental ontology reasoning is to main-
tain non-subsumptions since, in typical ontologies, more than 99% of subsumption
relations between atomic concepts do not hold. In other words, the case of axiom α4

in Table 7 is likely to be the most common one after a change in an ontology. This
will be confirmed by our experimental results in Section 6.

4 Incremental Ontology Classification Using Modules

In this section, we present a technique for incremental reasoning in ontologies using
a notion of a module for an axiom. Our technique can be used to keep track of “ev-
idences” for both subsumptions and non-subsumptions modulo arbitrary changes in
ontologies and works in combination with any DL reasoner that provides for standard
reasoning services. The DL reasoner is used as a “black-box” to answer subsumption
queries, in the sense that the subsumption algorithm implemented by the reasoner
does not need to be modified. As a consequence, our technique is very flexible and
easy to implement.

In the remainder of this paper, we adopt the following notational conventions for
naming ontologies: we use numbers in subscripts (O1,O2, . . .) to denote subsets of a
given ontology (typically modules) and superscripts (O1,O2, . . .) to denote different
ontologies (in particular, different ontology versions).

4.1 Modules for Axioms as Evidences for Entailments and Non-entailments

Definition 1 (Module for an Axiom) LetO be an ontology andO1 ⊆ O a (possibly
empty) subset of axioms in O. We say that O1 is a module for an axiom α in O (or
an α-module in O) if the following condition holds: O1 |= α iff O |= α.

Intuitively, a module for an axiom α in O is a subset O1 of O which contains the
axioms that are “relevant” to the entailment of α, in the sense thatO implies α if and
only if O1 implies α. The module, however, can also contain “non-relevant” axioms:
if O1 is a module for α in O, then each superset of O1 in O is also a module for α.
In particular, the whole ontology O is always a module in O for every α. Note that
the “only if” direction of Definition 1 always holds; that is, O1 |= α implies O |= α,
since the entailment relation |= is monotonic for any standard DL.

If O implies α, then every module O1 for α should contain at least one justifi-
cation — that is, a minimal set of axioms which imply α [36,23]. Conversely, every
justification for α is also a minimal module for α — that is, a module containing no
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other module as a proper subset. In caseO does not imply α (i.e., there are no justifi-
cations for α in O), O1 can be any subset of O. Hence, knowing all the justifications
for α in O is sufficient for identifying all modules for α in O.

The following proposition, which is a simple consequence of Definition 1, pro-
vides the main property underlying incremental ontology reasoning using modules:

Proposition 1 LetO1,O2 be ontologies, α an axiom, andO1
α,O2

α respectively mod-
ules for α in O1 and O2. Then, the following properties hold:

1. If O1 |= α and O1
α ⊆ O2, then O2 |= α.

2. If O1 6|= α and O2
α ⊆ O1, then O2 6|= α.

Proof 1. Assume that O1 |= α and O1
α ⊆ O2. Since O1 |= α and O1

α is a module
for α in O1, by Definition 1 we have O1

α |= α. Since O1
α ⊆ O2 and O1

α |= α, by
monotonicity we obtain O2 |= α, as required.

2. By Point 1 of this proposition (when swapping indexes 1 and 2), we have
O2 |= α and O2

α ⊆ O1 implies O1 |= α. Hence, it is not possible to have O1 6|= α,
O2
α ⊆ O1, and O2 |= α at the same time, which implies Point 2. ut

Proposition 1 provides two sufficient conditions for reusing in O2 the entailment
status of the axiom α in O1. Point 1 of the proposition ensures that, in the case when
the entailment O1 |= α holds, it is always correct to assume that O2 |= α provided
all the axioms in some module O1

α for α in O1 still occur in O2. In this case, O1
α

is an evidence module for the entailment α in O2. This solution is not principally
different from the one outlined in Section 3. Note that O1

α is also a module for α in
O2 according to Definition 1.

A more interesting situation is when the entailment O1 |= α does not hold. Ac-
cording to Point 2 of Proposition 1, it is always correct to assume that this entailment
does not hold inO2 as well, provided that all the axioms in some moduleO2

α for α in
O2 also occur in O1. In this case, O2

α is an evidence module for the non-entailment
of α in O2. Note that in this case O2

α, as well as any subset of O1, is a module for α
in O1 since O1 6|= α.

Using Proposition 1, one can outline a basic incremental algorithm for checking
the entailment of an axiom α with respect to a changing ontology. In order to check
if the entailment status of α in O1 can be reused for O2, it is sufficient to compute,
depending on whether O1 |= α or O1 6|= α, a module O1

α for α in O1, or a module
O2
α for α in O2 respectively. If the change does not involve any of the axioms in the

module, then the status of the entailment of α also does not change. The converse
of this is not necessarily true: the status of α could remain unchanged even if the
corresponding module has been modified. For example, it is easy to see that every
module for the axiom α = (Cystic Fibrosis v Fibrosis) in ontologies O1 and O2 in
Table 6 contains the respective axiom D1, since α follows from both O1 and O2, but
does not follow if the respective axiom is removed. Thus, the status of the entailment
of α remained the same during the change O1 ⇒ O2 despite the fact that the axiom
D1 has been modified. If an axiom in the evidence module has been modified during
the change O1 ⇒ O2, the sufficient condition does not apply, and thus the status of
α w.r.t. O2 should be verified using the reasoner. The use of modules, however, is
also valuable in this situation: instead of checking if α follows from O2, one could
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equivalently check if α follows from any module O2
α for α in O2 which could be an

easy task if the module is small.
To summarize, the use of modules provides two compelling advantages for in-

cremental reasoning in ontologies: first, the computation of a given query may be
avoided and the answer can simply be reused from the “cache” of a previous compu-
tation; second, even if the query needs to be recomputed, the use of modules allows
for filtering out irrelevant axioms and reducing the search space.

4.2 Locality-Based Modules—Small Modules which are Fast to Compute

In the previous section, we have outlined the use modules for incremental ontology
reasoning, but we did not discuss how these modules can be computed. In this section,
we discuss algorithmic aspects and trade-offs for the computations of modules.

As pointed out in the previous section, a module for an axiom in an ontology is
not necessarily unique. Clearly, the choice of evidence modules O1

α and O2
α has a

direct impact on the quality of the incremental entailment test for α. If one chooses
the whole ontology O1 or O2 as evidence module (recall that the whole ontology
is always a module in itself), then it is more likely that at least one axiom in the
module has been modified and therefore the sufficient condition from Proposition 1
is not applicable. Thus, choosing an evidence module that is as small as possible
is advantageous for incremental ontology reasoning. However, smaller modules are
generally harder to compute. In the extreme case, computing any minimal module for
α in O is at least as hard as to check whether O implies α — the original problem
we have started with. Indeed, it is easy to see from Definition 1 that the minimal
module is non-empty if and only if α is implied by O provided α is not a tautology.
Thus, there is a trade-off between the complexity of computing a module on the one
hand, and its usefulness for incremental reasoning on the other hand — the smaller
the module, the more useful it is, but the harder it is to compute. In the rest of this
section, we define several kinds of modules that are algorithmically easy to compute
and at the same time are reasonably small for typical ontologies.

We start by pointing out a connection between the notion of a module for an
axiom and a well known notion of model-conservative extension (see, e.g. [26]).

Definition 2 (Model Conservative Extension) Let O be an ontology and S a sig-
nature. We say that O is a model S-conservative extension of O1 ⊆ O, if for every
model I of O1, there exists a model J of O such that I|S = J |S.

Proposition 2 If O is a model S-conservative extension of O1 ⊆ O, then O1 is a
module in O for every axiom α such that Sig(α) ⊆ S.

Proof Assume that O is an S-conservative extension of O1 ⊆ O and Sig(α) ⊆ S.
We have to prove that O1 |= α iff O |= α.

As pointed out after Definition 1, the “only if” direction of the implication is
trivial. For proving the “if” direction, assume that O1 6|= α. We prove that O 6|= α.
Since O1 6|= α, there exists a model I of O1 such that I 6|= α. Since O is a model
S-conservative extension of O1 and I is a model of O1, by Definition 2, there exists
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a model J of O such that I|S = J |S. In particular, J 6|= α, since Sig(α) ⊆ S and
I 6|= α. Hence O 6|= α, as required. ut

Proposition 2 implies that, in order to extract a module for α in O, it is sufficient
to find a subsetO1 ofO such thatO is a model conservative extension ofO1 for S =
Sig(α). Unfortunately, this observation cannot be directly used for finding modules
since the problem of checking whether an ontology O is a model S-conservative
extension of O1 is undecidable already for EL [27]; for ALC it is even not semi-
decidable [26]. In [9,8,10] the following sufficient condition for model conservativity
was shown to work well in typical ontologies.

Definition 3 (Semantic Locality [9]) Let S be a signature. We say that an interpreta-
tion I is local for S if for every atomic concept A /∈ S and every atomic role R /∈ S,
we have AI = RI = ∅. A SROIQ axiom α is semantically local for a signature
S if I |= α for every I that is local for S. A SROIQ ontology O is local for S if
every axiom in O is local for S.

Intuitively, an axiom α (or ontology O) is semantically local for S if each inter-
pretation of the symbols in S can be extended to a model of α (respectively O) by
interpreting the remaining symbols as the empty set. Note that if α is semantically
local for S, then it is also semantically local for any subset of S. For example, the
axiom D2 from Table 6 is semantically local w.r.t. S = {Fibrosis, has Origin}: if we
interpret the remaining symbols in this axiom as the empty set, we obtain a model of
the axiom, regardless of the interpretation of the symbols in S.

∅︷ ︸︸ ︷
Genetic Fibrosis ≡ Fibrosis u ∃has Origin.

∅︷ ︸︸ ︷
Genetic Origin︸ ︷︷ ︸
∅

If an ontologyO can be partitioned asO = O1∪Os such thatOs is semantically local
w.r.t. S ∪ Sig(O1), then it is easy to see that O is a model S-conservative extension
of O1 since every model of O1 can be extended to a model of Os (and hence of
O) by interpreting the symbols that do not occur in O1 and S as the empty set. By
combining this observation with Proposition 2, we obtain the following notion.

Definition 4 (Semantic Locality-based Module [8]) LetO be a SROIQ-ontology
and S a signature. An ontologyO1 ⊆ O is a semantic locality-based S-module inO if
O\O1 is semantically local w.r.t. S∪Sig(O1). In addition, if for every locality based
S-moduleO2 inO we haveO1 ⊆ O2, thenO1 is the smallest semantic locality-based
S-module in O.

It follows from Definition 4 using Proposition 2 that any semantic locality-based
module for S = Sig(α) in O is a module for α in O according to Definition 1. Given
an ontology O and a signature S, the smallest locality-based S-module in O can be
extracted using Algorithm 2 (see [8,10] for more details and correctness proofs). The
algorithm works by first initializing O1 to the empty set and then repeatedly moving
all axioms α that are not semantically local for S ∪ Sig(O1) to O1. The ontology O2

is used to keep track of those axioms from O \ O1 that have not been checked for
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Algorithm 2 Module Extraction Algorithm for SROIQ
Procedure extract module(O,S)
Input:
O: ontology;
S: signature;

Output:
O1: a module for S inO

1: O1 := ∅ O2 := O
2: while not empty(O2) do
3: α := select axiom(O2)
4: if local(α, S∪ Sig(O1) ) then
5: O2 := O2 \ {α}
6: else
7: O1 := O1 ∪ {α}
8: O2 := O \ O1

9: end if
10: end while
11: returnO1

O1 O2 New A ∈ S∪ Sig(O1) α loc?

1 – D1, D2, D3,
C1, C2

Pancreatic Fibrosis D3 No

2 D3 D1, D2,
C1, C2

Fibrosis,
Pancreatic Disorder

D1 Yes

3 D3 D2,
C1, C2

– D2 Yes

4 D3 C1, C2 – C1 Yes

5 D3 C2 – C2 No

6 D3, C2 D1, D2,
C1,

Disorder, located In,
Pancreas

D1 Yes

7 D3, C2 D2, C1 – D2 Yes

8 D3, C2 C1 – C1 Yes

9 D3, C2 – – –

Table 8 A sample trace for the Algorithm 2 forO = O1 from Table 6 and S = {Pancreatic Fibrosis}

locality. In Table 8 we provide an example trace of Algorithm 2 for the input ontology
O1 in Table 6 and signature S = {Pancreatic Fibrosis}.

Algorithm 2 internally uses a subroutine local(α,S) for checking whether an ax-
iom α is semantically local for S. We argue that testing semantic locality should
be easier than checking the entailment w.r.t. the ontology. First, from the computa-
tional complexity point of view, checking locality for SROIQ-axioms is PSPACE-
complete (this can be reduced to checking if an ALCIQ-axiom is a tautology [8,
10]), whereas, as recently shown, checking entailment in SROIQ is N2EXPTIME-
complete [24]. Second, the size of a single axiom in typical ontologies is much
smaller than the size of the ontology. Therefore, performing several locality tests
should be easier than checking entailment w.r.t. the whole ontology. In the cases
when checking for semantic locality may seem too costly, one can instead use the
following sufficient syntactic condition for local(α,S).
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Definition 5 (Syntactic Locality for SROIQ) Let S be a signature. The following
grammar recursively defines two sets of concepts Con∅(S) and Con∆(S) for S:

Con∅(S) ::= A∅ | (¬C∆) | (C∅ u C) | (C u C∅)
| (∃R∅.C) | (∃R.C∅) | (>nS∅.C) | (>nS.C∅) | ∃S∅.Self .

Con∆(S) ::= > | (¬C∅) | (C∆1 u C∆2 ) .

In the grammar, we have that A∅ /∈ S is an atomic concept, R∅ (resp. S∅) is either an
atomic role (resp. a simple atomic role) not in S or the inverse of an atomic role (resp.
of a simple atomic role) not in S, C is any concept, R is any role, S is any simple
role, and C∅ ∈ Con∅(S), C∆1 , C

∆
2 ∈ Con∆(S). We also denote by w∅ a role chain

w = R1 . . . Rn such that for some i with 1 ≤ i ≤ n, we have that Ri is (possibly
inverse of) an atomic role not in S. An axiom α is syntactically local w.r.t. S if it
is of the form: (1) w∅ v R, or (2) Dis(S∅, S), or (3) Dis(S, S∅), or (4) C∅ v C, or
(5) C v C∆. An ontology O is syntactically local w.r.t. S if all the axioms in O are
syntactically local w.r.t. S.

Definition 5 is a straightforward extension to SROIQ of the definition intro-
duced in [9] for SHOIQ. Intuitively, the concepts in Con∅(S) (respectively in
Con∆(S)) are those for which it can be inductively shown that they are interpreted as
the empty set ∅ (respectively as ∆I) in each interpretation I = (∆, ·I) which inter-
prets the atomic concepts and roles that are not in S as the empty set. It is immediate
from the definition that testing for syntactic locality can be done in polynomial time.
In [8] it has been shown that the version of Algorithm 2 where local(α,S) checks
for syntactic locality, returns the (unique) smallest syntactic locality-based module
for S in O (the smallest subset O1 of O such that O \ O1 is syntactically local for
S ∪ Sig(O1)), regardless of the way in which the axioms in O2 are selected.

Note that even though both versions of Algorithm 2 return the smallest (semantic
or syntactic) locality-based modules for S = Sig(α), the result might still not be
a minimal module for α due to the complexity reasons given in the beginning of
this section. In Section 6, we demonstrate empirically that (an optimized version
of) Algorithm 2 works fast and computes small enough modules to be useful for
incremental reasoning.

4.3 The Incremental Ontology Classification Procedure

As shown in the previous section, in order to extract a module for an axiom α in O,
it is sufficient to compute the smallest (syntactic / semantic) locality-based module
for S = Sig(α) in O. However, when α is a subsumption between atomic concepts
A,B ∈ CN(O), it suffices to extract a module only for S = {A}, as shown in [8].

Proposition 3 Let O be a SROIQ ontology, A,B ∈ CN(O), and OA the output of
Algorithm 2 for inputO and S = {A}. ThenOA is a module inO for α = (A v B).

A practical implication of Proposition 3 is that in order to maintain incrementally
the status of all subsumption relations between atomic concepts, it is sufficient to
keep track of only the locality-based modules for singleton sets of atomic concepts.
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α AxiomA v B: O1
A O2

A

α1 Pancreatic Fibrosis v Cystic Fibrosis D3,C2,D1 D3,C2

α2 Cystic Fibrosis v Genetic Disorder D1 D1,D2,C1

α3 Pancreatic Fibrosis v Disorder D3,C2,D1 D3,C2

α4 Genetic Fibrosis v Cystic Fibrosis C1 C1

Table 9 Locality-based Modules for Subsumption in Ontologies from Table 6

A O1
A O2

A

Cystic Fibrosis D1 D1, D2, C1
Fibrosis ∅ ∅
Pancreas ∅ ∅
Genetic Fibrosis C1 C1
Genetic Origin ∅ ∅
Pancreatic Fibrosis D3, C2, D1 D3, C2
Pancreatic Disorder C2 C2
Genetic Disorder C1 C1
Disorder C2 C2
> ∅ ∅

Table 10 Modules For Atomic Concepts in Ontologies from Table 6

In the following, by a locality-based module for an axiom α = (A v B), we mean
the syntactic or semantic locality-based module for S = {A}.

Consider the ontologies O1 and O2 in Table 6 and the axioms α1–α4 in Table 7.
Each of these axioms is of the form α = (A v B), with A,B ∈ CN(O). Table 9
provides the locality-based modules for α1–α4 in O1 and O2 computed using Algo-
rithm 2 (the algorithms based on semantic and syntactic locality produce the same
results). Note that some modules are supersets of the actual minimal modules from
Table 7; we have underlined the additional axioms. The modules for axioms α1–α3

have been changed, whereas the module for the axiom α4 has remained unchanged.
Hence, the sufficient test for preservation of (non)subsumptions using modules re-
sulted in only one “false positive” for subsumption α3, where the subsumption rela-
tion did not change, but the modules have been modified.

Table 10 provides the full picture of the modules and their changes for our ex-
ample ontology from Table 6. The only modules that have been modified are those
for A = Cystic Fibrosis and A = Pancreatic Fibrosis; in the first case, axiom
D1 has been modified; in the second case, axiom D1 has been removed. Applying
Propositions 1 and 3, we can see that every subsumption that ceases to hold as a
result of the change should be either of the form α = (Cystic Fibrosis v B) or
α = (Pancreatic Fibrosis v B), whereas every new subsumption should be of the
form α = (Cystic Fibrosis v B).

Algorithm 3 outlines an incremental classification procedure using locality-based
modules. Given an ontology O1 and a change ∆O = (∆−O, ∆+O) consisting of the
sets of removed and added axioms, the algorithm computes the subsumption partial
order v2 for the resulting ontology O2 = (O1 \ ∆−O) ∪ ∆+O by reusing the sub-
sumption relation v1 already computed for O1. In order to perform this operation,



16

Algorithm 3 Incremental Classification Using Modules
Procedure inc classify mod(O1,∆+O,v1)

Input:
O1: an ontology
∆O = (∆−O,∆+O): removed / added axioms
v1: subsumption relations inO1

A→ O1
A: a module for every A ∈ CN>(O1)

Output:
O2: the result of applying the change ∆O toO1

v2: subsumption relations inO2

A→ O2
A: a module for every A ∈ CN>(O2)

1: O2 := (O1 \∆−O) ∪∆+O
2: for each D ∈ CN(O2) \ CN(O1) do
3: O1

D := O1
>

4: for each > v1 B do D v1 B := true
5: for each A v1⊥ do A v1 D := true
6: end for
7: M− := ∅ M+ := ∅
8: for each A ∈ CN>(O2) do
9: for each α ∈ ∆−O do

10: if not local(α, Sig(O1
A)) then

11: M−:= M−∪ {A}
12: end if
13: end for
14: for each α ∈ ∆+O do
15: if not local(α, Sig(O1

A)) then
16: M+:= M+∪ {A}
17: end if
18: end for
19: end for
20: for each A ∈ CN>(O2) do
21: if A ∈ M− ∪M+ then
22: O2

A := extract module({A},O2)
23: else
24: O2

A := O1
A

25: end if
26: for each B ∈ CN(O2) ∪ {⊥} do
27: if (A ∈ M− and A v1 B) or
28: (A ∈ M+ and A 6v1 B) then
29: A v2 B := subsumes(O2

A, 〈A,B〉)
30: else
31: A v2 B := A v1 B
32: end if
33: end for
34: end for
35: returnO2,v2, A→ O2

A

the algorithm internally maintains the modulesO1
A andO2

A for every atomic concept
A and the modulesO1

> andO2
> for the empty signature. We will show that maintain-

ing these additional modules does not involve a significant overhead in practice. The
algorithm consists of the following phases:

1. Processing of the new symbols (lines 2–6): The modulesO1
A and the subsumption

partial order v1 for O1 are extended for every newly introduced atomic concept
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D. The module for D, about which nothing has been said yet, is equivalent to
the module for the empty signature O1

>. Thus, we have: (i) O1
D = O1

>, (ii)
O1 |= D v B iff O1 |= > v B, and (iii) O1 |= A v D iff O1 |= A v ⊥.

2. Identifying the affected modules (lines 7–19): The sets M− and M+ contain those
A ∈ CN>(O1) for which the corresponding modules must be modified by re-
moving and/or adding axioms. If α is removed from O1 and is non-local w.r.t.
Sig(O1

A) then at least α should be removed from O1
A. If α is added to O1 and is

non-local w.r.t. Sig(O1
A), then O1

A needs to be extended at least with α.
3. Computing new modules and subsumptions (lines 20–34): The affected modules

found in the previous phase are re-extracted and the others are just copied (lines
21–25). Then, every subsumption A v B, using Proposition 1, is either recom-
puted against the module O2

A, or is reused from O1 (lines 26–33).
In Algorithm 3, the procedure extract module(S, O) refers to Algorithm 2. The

procedure subsumes(O, 〈A,B〉) uses a reasoner to check if O entails the subsump-
tion A v B. The correctness of the algorithm is easy to prove using Proposition 1
and Proposition 3.

It is worth emphasizing that, in our algorithm, the reasoner is only used as a
black box to answer subsumption queries. This provides two important advantages:
first, the internals of the reasoner need not be modified and, second, any sound and
complete reasoner for OWL 2 can be used, independently of the reasoning technique
it is based on (tableaux, resolution, or any other).

We finally illustrate the execution of Algorithm 3 on the ontologiesO1 andO2 in
Table 6 from Section 3, where the sets ∆−O and ∆+O of removed and added axioms
are given in the lower part of Table 6.

In our case,O2 doesn’t introduce new atomic concepts w.r.t.O1. Thus, Phase 1 in
Algorithm 3 can be skipped. The sets M−,M+ computed in Phase 2 are as follows:
M− = {Cystic Fibrosis,Pancreatic Fibrosis} and M+ = {Cystic Fibrosis} since
the axiom in ∆−O (see Table 6) is not syntactically local w.r.t. the signature of the
module in O1 for Cystic Fibrosis and Pancreatic Fibrosis; analogously, the axiom in
∆+O is non-local w.r.t. the signature of the module in O1 for Cystic Fibrosis (see
Table 10 for the modules in O1). In Phase 3, the modules for Cystic Fibrosis and
Pancreatic Fibrosis are re-computed. In the former module, only the subsumption
relations between Cystic Fibrosis and Pancreatic Fibrosis and their subsumers inO1

need to be recomputed; in the latter one, only the subsumption relations between the
non-subsumers of Cystic Fibrosis in O1 are computed.

4.4 An Optimized Module Extraction Algorithm for EL+

In this section, we discuss optimizations of the incremental classification procedure
presented in the previous section that are specific to EL+ ontologies.

It turns out that for a non-trivial EL+ axiom, testing syntactic locality for S can
be reduced to checking whether the left hand side of the axiom contains a symbol
that is not in S.

Proposition 4 Let α = αL v αR be an EL+ axiom and S a signature. Then α is
syntactically local for S iff either Sig(αL) * S or αR = > u · · · u >.
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Proof An EL+ axiom α can be either a RIA w v R, or a GCI C1 v C2.
If α = w v R then, by Definition 5, α is syntactically local iff w = R1 . . . Rn

and there exists i with 1 ≤ i ≤ n such that Ri /∈ S.
If α = C1 v C2 then by Definition 5, α is syntactically local iff either C1 ∈

Con∅(S) or C2 ∈ Con∆(S). Since EL+ does not allow for concept negation, it is
easy to see from the definition of Con∆(S) thatC2 ∈ Con∆(S) iffC2 = >u· · ·u>.
By induction on definition of Con∅(S) it is easy to show that C1 ∈ Con∅(S) iff C1

contains either a role R0 /∈ S or an atomic concept A0 /∈ S. ut

Using Proposition 4, one can significantly simplify Algorithm 2 for extracting
syntactic locality-based modules in EL+ ontologies. To formulate the optimized ver-
sion, we introduce an auxiliary notion of reachable symbols with respect to an ontol-
ogy and a signature.

Definition 6 (Reachability) Let O be an EL+ ontology and S a signature. The set
of symbols reachable from S in O is the smallest set Reach(S,O) such that (i) S ⊆
Reach(S,O), and (ii) for every axiom α ∈ O, Sig(αL) ⊆ Reach(S,O) implies
Sig(αR) ⊆ Reach(S,O).

For example, given the ontologyO1 on the left hand side of Table 6 and given S =
{Pancreatic Fibrosis}, we have that Reach(S,O1) consists of S plus the following
symbols: Fibrosis, Pancreatic Disorder, Disorder, Pancreas, and located in.

Lemma 1 Let O be an EL+ ontology, S a signature, and O1 a syntactic locality-
based S-module in O. Then Reach(S,O) ⊆ S ∪ Sig(O1).

Proof We demonstrate that the set S ∪ Sig(O1) is closed under the conditions (i)
and (ii) of Definition 6, namely that (i) S ⊆ S ∪ Sig(O1), and (ii) for every axiom
α ∈ O, Sig(αL) ⊆ S ∪ Sig(O1) implies Sig(αR) ⊆ S ∪ Sig(O1). This implies that
Reach(S,O) ⊆ S∪ Sig(O1) since by this definition, Reach(S,O) is the smallest set
that satisfies conditions (i) and (ii).

Since (i) is obvious, we focus on the condition (ii). Assume that Sig(αL) ⊆
S ∪ Sig(O1) for some α ∈ O. If α is syntactically local for S ∪ Sig(O1), then by
Proposition 4, this is only possible when αR = >u· · ·u>, and therefore Sig(αR) =
∅ ⊆ S ∪ Sig(O1). Otherwise, if α is not syntactically local for S ∪ Sig(O1), then
α ∈ O1, and therefore Sig(αR) ⊆ Sig(α) ⊆ Sig(O1) ⊆ S ∪ Sig(O1). ut

Lemma 2 Let O be an EL+ ontology and O1 the set of all axioms α ∈ O such that
Sig(α) ⊆ Reach(S,O) and αR 6= > u · · · u >. Then O1 is the smallest syntactic
locality-based S-module in O.

Proof In order to show that O1 is a syntactic locality-based S-module in O, we need
to prove that every axiom α ∈ O \ O1 is syntactically local for S ∪ Sig(O1). If
α ∈ O \ O1 then by definition of O1, we have either Sig(α) ⊆ Reach(S,O) or
αR = > u · · · u >. Then by Proposition 4, α is syntactically local for Reach(S,O).
Since S ⊆ Reach(S,O) by Definition 6, and Sig(O1) ⊆ Reach(S,O) by definition
of O1, we have that α is syntactically local for S ∪ Sig(O1).
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Let O2 be the smallest syntactic locality-based S-module in O (for example the
one computed by Algorithm 2). We demonstrate that O1 = O2. Clearly O2 ⊆ O1

since O1 is a syntactic locality-based S-module. In order to show that O1 ⊆ O2,
pick any α ∈ O1. We demonstrate that α ∈ O2. By definition of O1, we have
Sig(α) ⊆ Reach(S,O) and αR 6= > u · · · u >. Hence by Proposition 4, α is not
syntactically local for Reach(S,O). By Lemma 1, since O2 is a syntactic locality-
based S-module in O, we have Reach(S,O) ⊆ S ∪ Sig(O2). Therefore, α is not
syntactically local for S ∪ Sig(O2), and thus α ∈ O2. ut

The advantage of reachability as a characterization of locality, is that the set of
reachable symbols can be computed in linear time, and hence, the smallest syntactic
locality-based module can be extracted in linear time.

Proposition 5 Given an EL+ ontologyO and a signature S the set Reach(S,O) can
be computed in linear time in |O|+ |S|.

Proof The computation of reachable symbols can be linearly reduced to unit prop-
agation for propositional Horn clauses. Each α ∈ O with Sig(αL) = {l1, . . . , lm}
and Sig(αR) = {r1, . . . , rn} can be translated into the following set of Horn clauses,
where t is a freshly introduced symbol: {l1 ∧ · · · ∧ lm → t}∪

⋃
1≤i≤n{t→ ri}. It is

easy to see that Reach(S,O) corresponds to the set of propositional from S that are
implied by these Horn clauses. This set of propositional atoms can be computed in
linear time (e.g., using the Dowling-Gallier algorithm [15]). ut

Corollary 1 There exists a linear-time algorithm that given an EL+ ontologyO and
a signature S, computes the minimal syntactic locality-based S-module in O.

Proof Immediate from Proposition 5 and Lemma 2. ut

5 A Direct Incremental Classification of EL+ Ontologies Modulo Additions

In this section, we describe a modification of the classification algorithm for EL+

from Section 2.2 to allow for incremental reasoning over additions of axioms to on-
tologies.

The idea is quite simple. Assume that an ontology O1 has been classified using
Algorithm 1 by applying the completion rules in Table 4. In order to classify an
ontology O2 = O1 ∪ ∆+O obtained from O1 by adding new axioms ∆+O, it is
sufficient to add the normalization of axioms in ∆+O to the result of the completion
for O1 and apply the inference rules in Table 4 that involve the newly added axioms.

This idea is formalized in Algorithm 4. Given the original ontologyO1 in normal
form, the relationv1 forO1 computed by Algorithm 1, and the new axioms∆+O, the
algorithm computes the classification v2 for O2 = O1 ∪∆+O using the completion
rules in Table 11. These completion rules are restrictions of the completion rules
for Algorithm 1 in Table 4 (when applied for the union of v1 and v2 and O2) for
the cases when one of the premises is either a normalized axiom from ∆+O, or a new
subsumption C1 v2 C2 since the remaining inferences produce subsumptions forO1
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Algorithm 4 Incremental Classification of EL+ Ontologies Modulo Additions
Procedure inc classify elp(O1,∆+O,v1)

Input:
O1,∆+O: EL+ ontology in normal form;
v1: output of classify(O1);

Output:
v2: relation;

1: ∆+O := Norm(∆+O)
2: O2 := O1 ∪∆+O
3: v2:= ∅
4: repeat
5: Apply rules from Table 11
6: until no other rule applies
7: v2:=v1 ∪ v2

8: return v2

I1 A ∈ CN(O2) \ CN(O1) ` A v2 A

I2 A ∈ CN(O2) \ CN(O1) ` A v2 >
CR1 A v1 B,B v C ∈ ∆+O ` A v2 C

A v2 B,B v C ∈ O2 ` A v2 C

CR2 A v1 B1, A v1 B2, B1 uB2 v C ∈ ∆+O ` A v2 C

A v2 B1, A v1 B2, B1 uB2 v C ∈ O2 ` A v2 C

A v1 B1, A v2 B2, B1 uB2 v C ∈ O2 ` A v2 C

A v2 B1, A v2 B2, B1 uB2 v C ∈ O2 ` A v2 C

CR3 A v1 B,B v ∃R.C ∈ ∆+O ` A v2 ∃R.C
A v2 B,B v ∃R.C ∈ O2 ` A v2 ∃R.C

CR4 A v1 ∃R.B,B v1 C,∃R.C v D ∈ ∆+O ` A v2 D

A v2 ∃R.B,B v1 C,∃R.C v D ∈ O2 ` A v2 D

A v1 ∃R.B,B v2 C,∃R.C v D ∈ O2 ` A v2 D

A v2 ∃R.B,B v2 C,∃R.C v D ∈ O2 ` A v2 D

CR5 A v1 ∃R.B,R v S ∈ ∆+O ` A v2 ∃S.B
A v2 ∃R.B,R v S ∈ O2 ` A v2 ∃S.B

CR6 A v1 ∃R.B,B v1 ∃S.C,RS v T ∈ ∆+O ` A v2 ∃T.C
A v2 ∃R.B,B v1 ∃S.C,RS v T ∈ O2 ` A v2 ∃T.C
A v1 ∃R.B,B v2 ∃S.C,RS v T ∈ O2 ` A v2 ∃T.C
A v2 ∃R.B,B v2 ∃S.C,RS v T ∈ O2 ` A v2 ∃T.C

Table 11 Completion rules for incremental classification in EL+

which have already been computed. The correctness of Algorithm 4 follows directly
from the correctness of Algorithm 1.

Although Algorithm 4 is easier to implement than Algorithm 2, its usefulness for
incremental ontology reasoning is somewhat limited due to the fact that the deletion
or modification of axioms is not considered. There are, however, several use cases
when the incremental classification algorithm just for additions can be used.
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A practically relevant scenario is when the ontology under development can be
partitioned as O = Op ∪ Ot where Op is a permanent part of O that the user is
not supposed to modify, and Ot is temporary part of O which the user is currently
working on. This assumption is reasonable in many practical use cases, e.g., when
Op is an ontology that is being reused / imported, or whenOp consists of axioms that
cover a domain on which the current user is not an expert. Under this assumption,
it is possible to classify an ontology O = Op ∪ Ot by reusing the result of the
classification for Op, which does not change. If the size of Ot is small compared to
the size of Op, then the incremental classification is likely to be more efficient than
the classification of O from scratch.

Another situation where incremental classification modulo additions can be very
useful is the computation of subsumption queries involving complex concepts. The
classification algorithm for EL+ computes only subsumptions between atomic con-
cepts and (possibly existentially restricted) atomic concepts. However, a reasoner is
often required to check subsumptions between more complex concepts, such as (2).

Pancreatic Fibrosis u ∃has Origin.Genetic Origin v
Disorder u ∃located In.Pancreas (2)

Reasoners for expressive DLs reduce subsumption queries between complex concepts
to concept satisfiability using the following property: O |= C v D iff C u¬D is not
satisfiable w.r.t. O. Since EL+ does not allow for negations, checking the entailment
O |= C v D can be reduced to checking O ∪ {X v C, D v Y } |= X v Y , where
X and Y are fresh atomic concepts. This subsumption can be checked incrementally
by classifying O ∪ {X v C, D v Y } using Algorithm 4 given the classification for
O. For example, in order to check whether the complex subsumption (2) is entailed
by the ontology O1 in Table 1, we need to check whether the subsumption X v Y
holds with respect to O1 enriched with the following axioms:

X v Pancreatic Fibrosis u ∃has Origin.Genetic Origin (3)
Disorder u ∃located In.Pancreas v Y (4)

Axioms (3) and (4) are normalized to axioms Ax15–Ax18 below:

Ax15: X v Pancreatic Fibrosis
Ax16: X v ∃has Origin.Genetic Origin
Ax17: ∃located In.Pancreas v Aux3
Ax18: Disorder u Aux3 v Y

Now, the additional subsumption relations v2 for O1 extended with the new axioms
can be computed as in Table 12 by applying the rules in Table 11 to the subsumption
relations for v1 derived in Table 5 and the new axioms Ax15–Ax18. As we can see
the subsumption X v2 Y has been derived. Therefore, the complex subsumption (2)
is entailed by O1.
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New subsumption in v2 Rule Applied
N0 X v2 X; Y v2 Y I1[X]; I1[Y ]
N1 X v2 >; Y v2 > I2[X]; I2[Y ]
N2 X v2 Pancreatic Fibrosis CR1(N0,Ax15)
N3 X v2 ∃has Origin.Genetic Origin CR1(N0,Ax16)
N4 X v2 Pancreatic Disorder CR1(N2,Ax10)
N5 X v2 Fibrosis CR1(N2,Ax9)
N6 X v2 ∃located In.Pancreas CR3(N4,Ax14)
N7 X v2 Aux1 CR4(N6,S0,Ax4)
N8 X v2 Cystic Fibrosis CR2(N7,N5,Ax3)
N9 X v2 Disorder CR1(N4,Ax13)
N10 X v2 Pancreatic Fibrosis CR2(N5,N4,Ax11)
N11 X v2 Aux2 CR4(N3,S0,Ax8)
N12 X v2 Genetic Fibrosis CR2(N5,N11,Ax7)
N13 X v2 Genetic Disorder CR1(N12,Ax12)
N14 X v2 Aux3 CR4(N6,S0,Ax17)
N15 Cystic Fibrosis v2 Aux3 CR4(S3,S0,Ax17)
N16 Pancreatic Disorder v2 Aux3 CR4(S10,S0,Ax17)
N17 Pancreatic Fibrosis v2 Aux3 CR4(S13,S0,Ax17)
N18 Pancreatic Fibrosis v2 Y CR2(S11,N17,Ax18)
N19 Pancreatic Disorder v2 Y CR2(S9,N8,Ax18)

X N20 X v2 Y CR2(N14,N9,Ax18)

Table 12 Incremental Classification of an EL+ ontology. The axioms Ax1–Ax15 are from Table 3 and
the inferences S0–S16 from Table 5

6 Empirical Evaluation

In this section, we present an empirical evaluation of the incremental reasoning tech-
niques described in this paper over a collection of commonly used ontologies. In
Section 6.1 we describe our test ontologies and experimental setup. In Section 6.2
we evaluate our module-based reasoning algorithm from Section 4. Section 6.3 is
devoted to EL+ ontologies and reasoning modulo additions using the technique de-
scribed in Section 5. Finally, we compare the incremental reasoning techniques de-
scribed in Sections 4 and 5 and make some concluding remarks.

6.1 Test Ontologies and Experimental Environment

The experiments have been performed using the OWL DL reasoner Pellet (v.1.5.2),
which implements a tableau-based procedure, and the EL+ reasoner CEL (v.1.0),
which implements Algorithm 1 in Section 2.2. Both Pellet and CEL have been used
as a “black box” to evaluate the module-based technique from Section 4 — that is,
we did not modify the internals of the reasoners. In contrast, in order to evaluate the
incremental procedure modulo additions described in Section 5, we have extended
the internals of CEL with the new functionality.

As a test suite, we have selected a set of well-known and commonly used ontolo-
gies, which are given in Table 13. The table provides some basic information about
the test ontologies, including the language in which they are expressed, the number
of atomic concepts and axioms they contain, the time required for both reasoners to
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No.Atom. No. Classif. Time % Modul. Mod. Size
Ontology DL Conc. Axioms Pellet Cel Subs Time (Avg/Max)
SWEET SHOIF 1387 2206 3.0 - 0.37 P: 9.2 414 / 480
NotGalen SHF 2748 4529 19.2 - 0.37 P: 4.5 75 /530
NotGalen− EL+ 2748 3575 15.8 1.7 0.37 P: 3.9 10 /125
GO EL+ 20465 28897 79.0 1.1 0.04 P: 69.6 18 / 161
FullGalen− EL+ 23136 26084 - 120.0 0.08 - - / -
NCI EL+ 27652 46940 33.5 2.2 0.03 P: 70.6 29 / 436
SNOMED EL+ 379691 379704 - 685.1 0.00 C: 3110 31 / 261

Table 13 Information about test ontologies. Time in seconds. Fractional values are rounded. The precise
% of positive subsumptions in SNOMED is 0.0008%.

classify them, and an estimation of the total number of entailed subsumptions rela-
tive to the number of possible non-trivial subsumptions. Note that for each of the test
ontologies this latter value is smaller than 1%. Finally, the last two columns of Table
13 provide, for each of the ontologies evaluated in Section 6.2, the time required to
compute the locality-based module for each atomic concept in the ontology using
Algorithm 2, and the average and maximum size of the extracted modules.

NASA’s SWEET ontology1 is the smallest of the tested ontologies, but also the
one that uses the largest language. NotGalen2 is based on an early version of well-
known Galen ontology.3 NotGalen− is obtained from NotGalen by removing func-
tionality assertions on roles. The Gene Ontology (GO) 4 is one of the largest Open
Biomedical Ontologies.5 FullGalen− is obtained from a recent version of Galen6

by removing functionality and inverses. NCI7 is a widely used ontology developed
at the National Cancer Institute. Finally, SNOMED8 is probably the largest and the
most widely used of the medical ontologies currently available. All ontologies, ex-
cept for SWEET and NotGalen are expressible in EL+ and can be handled by CEL.
Classification results for FullGalen− and SNOMED using Pellet have been omitted
as the classification time exceeded our 20 minute threshold. The module extraction
times for all ontologies except for FullGalen− and SNOMED have been obtained
using our extension of Pellet and will be relevant to experiments in Section 6.2. We
have also computed modules for SNOMED using an extension of CEL, which will
be relevant to experiments in Section 6.4 where we compare the module-based and
direct approaches for EL+ ontologies.

For our experiments with Pellet, we have used a 3GHz PC with 4GB RAM oper-
ated by Red Hat Enterprise Linux AS (release 4) with Java v.1.5 using 2GB of mem-
ory. For the experiments with CEL, we have used a similar machine with a 3.16GHz

1http://sweet.jpl.nasa.gov/ontology/
2http://www.cs.man.ac.uk/˜horrocks/OWL/Ontologies/galen.owl
3http://www.opengalen.org/
4http://www.geneontology.org
5http://www.obofoundry.org/
6http://www.co-ode.org/galen/
7http://www.mindswap.org/2003/CancerOntology/nciOncology.owl
8http://www.snomed.org/
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1: ] Mod. 2: ] Axioms 3: Update 4: Re-class. 5. Total 6: ] New 7: ] Mod.
Affected in Aff. Mod. Aff. Mod. Aff. Mod. Time (Non)Sub. (Non)Sub

n (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx)
SWEET 1 116/1387 530/2139 1.6/8.7 0.16/2.3 1.8/10.5 180/8554 29.3/1334
SWEET 2 200/1387 669/2139 2.1/8.5 0.2/1.2 2.3/9.8 209/9454 46/1373
SWEET 4 241/1387 745/2139 2.2/7.8 0.2/1.1 2.4/9.1 198/7999 38/1274
SWEET 8 614/1387 1214/2136 4.4/9.6 0.5/1.2 4.9/10.9 107/1477 34.5/367
NotGalen 1 102/933 678/3020 0.6/3.5 2.1/17.9 2.6/21.5 193/4776 17/326
NotGalen 2 232/1267 1185/3175 1.2/4.1 4.8/19.3 6.05/22.5 128/1565 17.1/152
NotGalen 4 294/1755 1503/3659 1.5/4.1 6.6/27.1 8.1/28 340/5394 49.9/770
NotGalen 8 507/2721 2106/4244 2.2/4.3 8.4/17.5 10.8/21.6 564/7931 138.2/2721
GO 1 28/757 113/1921 0.24/5.6 0.05/1.4 0.3/7.1 209/8159 22.7/753
GO 2 59/1720 284/3562 0.6/9.8 0.1/4.4 0.9/14.4 489/14307 52.1/1649
GO 4 48/269 328/902 0.6/0.22 0.1/0.4 0.9/2.8 359/5107 32.6/267
GO 8 205/3463 925/9916 2/26.8 0.3/6.1 2.8/33.6 897/26414 127.3/3329
NCI 1 11 / 225 183 / 2767 0.18 / 4.45 0.1 / 1.0 0.3 / 5.6 39.8 / 268 5.3/50
NCI 2 52/ 886 434/2811 0.42/3.6 0.15/1.3 0.72/5.1 392/12924 30.1/859
NCI 4 190/2123 1324/9375 1.82/17.9 0.61/5.7 2.74/23.8 1653/21625 132.1/1813
NCI 8 320/6578 2092/18999 3.03/33.3 0.99/12.1 4.6/56.1 1268/12181 119.5/1264

Table 14 Module-based incremental classification using Pellet. Time in seconds.

processor, 2GB RAM, and operated by Ubuntu Linux. Due to some technical reasons,
CEL cannot allocate more than 800MB of memory.

6.2 Module-Based Incremental Classification

In order to evaluate the performance of our module-based incremental reasoning ap-
proach described in Section 4, we have implemented Algorithm 3 and used Pellet
for evaluating subsumption queries over modules. Our implementation is, however,
independent from Pellet, and our results intend to determine the usefulness of our
approach for optimizing any reasoner. Our system implements a slightly simplified
version of Algorithm 3. In particular, once the affected modules have been identified,
our implementation simply reclassifies the union of these modules using Pellet to de-
termine the new subsumption relations, instead of using the procedure described in
lines 20–34 of Algorithm 3.

We have performed the following experiment for the ontologies in Table 13 that
Pellet can classify: for various values of n, we have: 1) removed n random axioms;
2) classified the resulting ontology using Pellet; then, we have repeated the following
two steps 50 times: 3) extracted the minimal locality-based module for each atomic
concept, 4) randomly removed an additional n axioms, added back the previously
removed n axioms, and reclassified the ontology using our incremental algorithm.

Our goal is to simulate the ontology evolution process when n axioms have been
modified (each of these modifications can be viewed as a simultaneous deletion and
addition of an axiom). All the results have been gathered during step 4) of the exper-
iment. We have considered different types of axioms to be modified, namely concept
definitions, GCIs and role axioms.
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1: ] Mod. 2: ] Axioms 3: Update 4: Re-class. 5. Total 6: ] New 7: ] Mod.
Affected in Aff. Mod. Aff. Mod. Aff. Mod. Time (Non)Sub. (Non)Sub

n (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx)
SWEET 1 341/1387 586/2140 1.8/7.2 0.3/3.8 2.2/11.1 177/8851 27.7/1381
SWEET 2 570/1387 957/2140 3.1/7.7 0.4/1 3.5/8.8 0.7/37 0.3/14
NotGalen 1 159 / 1252 980/3292 0.9/4.1 3.4/20.8 4.3/21.8 236/5403 18.6/427
NotGalen 2 481/1906 1758/3781 1.9/4.6 7.5/21.5 9.5/25.2 442.1/9892 34.8/844
NCI 1 1027 / 10035 5752 / 28843 10.8 / 57.7 4.1 / 28 15 / 85.9 2783 / 13094 198 / 9301
NCI 2 2076 /10437 10934/29481 21.6/59.4 8.5/28.9 30.4/88.7 405/7130 32.5/407

Table 15 Module-based incremental classification using Pellet for varying role axioms. Time in seconds.

1: ] Mod. 2: ] Axioms 3: Update 4: Re-class. 5. Total 6: ] New 7: ] Mod.
Affected in Aff. Mod. Aff. Mod. Aff. Mod. Time (Non)Sub. (Non)Sub

n (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx)
SWEET 1 66/1387 478/2139 1.25/7.1 0.1/1.6 1.3/8.6 167/7245 39/1257
SWEET 2 125/1387 586/2139 1.6/7.4 0.1/1.1 1.6/8.5 206/8972 37/1357
NotGalen 1 153/1742 766/3653 0.6/4.1 2.8/19.9 3.5/24 176/5366 25/305
NotGalen 2 106/916 914/2688 0.7/3.1 2.9/15.4 3.7/17.8 213/2701 21/282
NCI 1 9/82 209/829 0.1/0.9 0.06/0.2 0.3/1.3 40/408 5.2/46
NCI 2 25/223 401/3183 0.4/4.8 0.1/1.1 0.7/6.1 237/4902 22.6/220

Table 16 Module-based incremental classification using Pellet for varying concept axioms. Time in sec-
onds.

Table 14 summarizes the results of our experiments for n = 1, 2, 4, and 8.
Columns 1 and 2 indicate the number of affected modules and their total size, re-
spectively. It can be observed that, for large ontologies such as GO and NCI, only a
very small number of the modules are affected for a given update. These values corre-
late with the percentage of positive subsumption relations in ontologies and probably
indicate that the concepts in these ontologies are “weakly inter-connected”. Column
3 provides the total time spent in locating and re-extracting the affected modules.
Column 4 shows the (re)-classification time for the union of the affected modules.
Unsurprisingly, for GO and NCI, classification of modules is significantly faster that
the full classification given in Table 13. For SWEET and NotGalen, the difference
is not that substantial. For NotGalen, the maximum module classification time is ac-
tually larger than the time needed to classify the entire ontology. The fact that for
NotGalen module classification is slower than ontology classification is unexpected.
However, it is possible that after removing certain types of axioms from an ontology
(e.g., role functionality axioms), tableau reasoners end up producing larger models,
and consequently become slower. Column 5 presents the total time spent in updat-
ing the modules, loading them into the reasoner, and reclassifying them. Column 6
shows the sum of new subsumption and non-subsumption relations for each ontology,
and Column 7 provides the number of modules which contain a new subsumption or
non-subsumption after a change. The number of new (non)subsumptions is, in aver-
age, very small, which supports our hypothesis that changes do not typically affect a
large portion of the original ontology. In the case of GO and NCI, more than 40% of
the computed modules result in new (non)subsumptions. In the case of SWEET and
NotGalen, this ratio varies from 5% to 25%.
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Tables 15 and 16 contain our results for the particular case where the changes in-
volve role axioms or concept axioms only, and n = 1, 2.9 Unsurprisingly, the changes
in role axioms have a much more substantial impact on both the number of affected
modules and the number of new (non)subsumptions. Surprisingly, however, this im-
pact is so strong in the case of NCI that the module-based approach does not outper-
form the full classification anymore.

To sum up, the results from our experiments suggest that the module-based incre-
mental reasoning approach is especially useful in the following situations:

1. The ontology is large but formulated in a simple language such as EL+.
2. The ontology does not induce many dependencies between classes, and, in par-

ticular, has a small percentage of entailed subsumption relationships.
3. The changes do not involve role axioms.

6.3 Direct Incremental Classification for EL+-ontologies

In this section, we focus specifically on EL+ ontologies and evaluate the direct in-
cremental reasoning procedure described in Section 5.

When trying to adapt the experimental setup described in Section 6.2 to the pro-
cedure described in Section 5, we are faced with two problems. First, the procedure
assumes that the changes to the ontology involve additions of new axioms only. Sec-
ond, as discussed in Section 5, the intended application scenario for our procedure
is when the ontology is partitioned into a permanent and a temporary part. Thus, the
temporary part as a whole should be considered as the ontology increment as opposed
to just the modified axioms. In particular, we can no longer assume that the ontology
increment involves just a few axioms.

Instead of varying the number of modified axioms in experiments, we vary the
percentage p of the axioms in the temporary part of the ontology. For every tested
value p and every EL+ ontology in Table 13, we have: 1) removed p% random ax-
ioms; 2) classified the resulting ontology using CEL; and 3) added back the previ-
ously removed p% axioms (thus obtaining the full ontology) and reclassified it in-
crementally using Algorithm 4. We have repeated steps 1)–3) five times for every
ontology and averaged the obtained timings.10 All results have been gathered during
steps 2) and 3) of the experiment.

Table 17 summarizes the results of the experiments for values of p ranging be-
tween 0.5 and 5.0 with step 0.5. For each ontology and each value of p, we have
measured the time required to classify the “permanent” part of the ontology (obtained
after removing p% of axioms), and the time spent on the incremental classification
of the additional p% of axioms. The important value in this table is the incremental
classification time, since the permanent part of the ontology is assumed to be classi-
fied only once. Clearly, the larger is the temporary part, the longer it takes to compute
the incremental classification. When compared with the classification times given in

9GO has not been included in Table 15 as it only contains one role axiom.
10Because each iteration involves full classification at step 2), these experiments are more time con-

suming
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% Temp. GO NCI NotGalen− FullGalen− SNOMED
Ax. (p) Perm. Inc. Perm. Inc. Perm. Inc. Perm. Inc. Perm. Inc.

0.5 1.01 0.10 1.86 0.29 1.72 0.06 114.7 7.19 649.7 141.3
1.0 0.98 0.15 1.85 0.44 1.68 0.16 112.5 13.11 638.9 225.9
1.5 0.98 0.24 1.85 0.59 1.60 0.33 107.5 23.13 631.0 348.3
2.0 0.95 0.28 1.81 0.80 1.53 0.52 106.9 23.50 580.4 470.4
2.5 0.94 0.32 1.78 0.99 1.56 0.52 94.5 47.13 580.1 566.7
3.0 0.94 0.38 1.77 1.14 1.58 0.42 101.9 34.47 532.5 683.2
3.5 0.92 0.45 1.73 1.58 1.37 0.91 87.2 64.11 539.1 728.4
4.0 0.86 0.51 1.69 1.75 1.40 0.83 89.5 58.12 468.1 849.9
4.5 0.86 0.51 1.69 1.75 1.24 1.19 80.8 77.20 461.4 916.5
5.0 0.84 0.73 1.64 1.95 1.29 1.19 87.1 63.21 478.8 941.1

Table 17 Direct incremental classification using CEL. Time in seconds.

Table 13, we can clearly see that for all ontologies except for SNOMED the incre-
mental classification time is smaller than the total classification time. For SNOMED
the incremental approach provides benefits only when the temporary part contains at
most 3% of the axioms in the ontology, which amounts to more than 11000 axioms.
It can also be observed that the classification times vary almost linearly with p.

So far, we have considered in our experiments random modifications to ontolo-
gies. In practice, however, the performance of the incremental reasoning procedures
presented here should be much better, since modifications are likely to involve axioms
containing related concepts and, therefore, affect less modules and subsumption re-
lations. The experiments performed in Section 6.2 suffer from this issue to a lesser
degree since the number of the modified axioms is relatively small. The experiments
in this section, however, can be considerably affected by random selections since they
involve hundreds and even thousands of axioms.

To estimate a practical performance of the direct procedure, we have performed
experiments with several historic releases of SNOMED. In the original sources of
SNOMED, each atomic concept is annotated with dates, which indicate when the
definition for this concept has been introduced or modified. The dates range between
the years 1994 and 2008. From this information, we have reconstructed 16 distinct
versions of SNOMED corresponding to the mentioned dates. The version for a date d
consists of the axioms containing atomic concepts annotated either with d, or with an
earlier date. Such reconstruction is by no means accurate since we cannot obtain the
previous versions of the axioms, but it should provide a reasonable approximation to
the actual releases of SNOMED.

The experimental results with the above-mentioned SNOMED releases are sum-
marized in Table 18. The number of atomic concepts in these versions varies from
about 92000 up to about 360000, and the classification times vary from around 8 sec-
onds up to around 10 minutes. In our experiments, we have measured the incremental
classification time between each pair of successive versions. Since the release dates
were not evenly distributed, the differences between the successive versions vary sig-
nificantly ranging from just a few axioms to almost 178000 axioms (an increment of
140%). Clearly, larger changes have resulted in a larger number of new subsumption
relations and larger incremental classification times. However, when compared with
the results in Table 17 for SNOMED, we can observe that the times for the same
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Release ] Atom. Class. Release ] New Atom. Increm. New
Number Concepts Time Transition Concepts Class. Time Subs.

v.1 92724 8.0 v.1-v.2 2611 (+2.82%) 22.7 34555
v.2 95335 8.9 v.2-v.3 597 (+0.63%) 5.7 6380
v.3 95932 9.0 v.3-v.4 668 (+0.70%) 10.6 9873
v.4 96600 9.1 v.4-v.5 4107 (+4.25%) 32.8 35032
v.5 100707 10.6 v.5-v.6 3910 (+3.88%) 138.9 111600
v.6 104617 12.7 v.6-v.7 18229 (+17.42%) 306.0 982725
v.7 122846 51.4 v.7-v.8 5 (+0.00%) 0.4 10
v.8 122851 52.2 v.8-v.9 4443 (+3.62%) 15.8 29428
v.9 127294 52.0 v.9-v.10 178875 (+140.%) 2330.4 4130819
v.10 306169 271.1 v.10-v.11 19687 (+6.43%) 406.1 1420405
v.11 325856 420.6 v.11-v.12 7469 (+2.29%) 302.3 376095
v.12 333325 461.7 v.12-v.13 11224 (+3.37%) 209.1 431405
v.13 344549 511.1 v.13-v.14 8112 (+2.35%) 390.8 742571
v.14 352661 602.7 v.14-v.15 4474 (+1.27%) 153.1 292081
v.15 357137 615.6 v.15-v.16 4689 (+1.31%) 149.3 276475
v.16 361824 637.4 v.16-full 17867 (+4.94%) 261.8 398477

Table 18 Direct incremental classification of SNOMED releases using CEL. Time in seconds.

% have actually improved. In particular, the incremental classification time between
v.16 of SNOMED and full SNOMED which involves the addition of 4.94% new ax-
ioms is only 261.8 seconds as opposed to 941.1 seconds for changes involving 5%
of random axioms. This confirms our hypothesis that the practical performance of
incremental reasoning algorithms should be better than the performance obtained for
tests involving random modifications.

6.4 Comparison of the Proposed Techniques

As previously discussed, it is difficult to directly compare the two incremental classi-
fication techniques presented in this paper because they make different assumptions
on the ontology languages and have different application scenarios. The goal of this
section is to discuss possible trade-offs for each method and obtain general guidelines
for their applicability in practical scenarios. To this end, we will use the SNOMED
ontology, for which incremental reasoning seems especially useful.

Since Pellet currently fails to classify SNOMED using our hardware setup, we
have re-implemented the module-based approach described in Section 4 to use CEL
instead. In Table 19 we present the results of the experiment with SNOMED as de-
scribed in Section 6.2. The results correlate with those presented in Table 14 for EL+

ontologies, namely, the incremental classification is considerably faster than the full
classification.

We have also performed the experiments with the historical versions of SNOMED
as described in Section 6.3, but using the module-based approach instead. The results
are given in Table 20. These results, however, cannot be directly compared with those
in Table 18 since it is unlikely that users will modify hundreds or thousands axioms
in one session. As we can see, the results are not very promising and incremental
classification is often slower than the full classification.
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1: ] Mod. 2: ] Axioms 3: Update 4: Re-class. 5. Total
Affected in Aff. Mod. Aff. Mod. Aff. Mod. Time

n (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx)
SNOMED 1 5/9 62/84 44.1/51.6 13.2/26.2 57.3/77.8
SNOMED 2 6.2/11 53.3/141 45.5/60.8 8.4/24.0 53.9/84.8
SNOMED 4 12.3/14 31.3/84 70.9/89.1 20.1/33.5 91.0/122.6

Table 19 Module-based incremental classification using CEL. Time in seconds.

Release ] New ] Aff. ] Axioms Module Module Total
Transition Atomic Mod. Aff. Mod. Extraction Class. Time

Concepts (Avg) (Av / Mx) Time Time
v.1-v.2 2611 10450 11.5/49 53.9 129.1 183.0
v.2-v.3 597 1520 10.1/51 14.3 10.3 24.6
v.3-v.4 668 1574 11.4/53 15.3 15.6 30.9
v.4-v.5 4107 6974 7.4/54 57.9 49.8 107.7
v.5-v.6 3910 30091 14.9/60 137.1 212.3 349.5
v.6-v.7 18229 91235 16.3/104 324.4 334.1 658.5
v.7-v.8 5 5 1/1 1.9 2.4 4.3
v.8-v.9 4443 6150 6.4/70 69.8 63.3 133.1

v.9-v.10 178875 261231 21.1/178 2956.6 1009.3 3965.9
v.10-v.11 19687 260612 28.0/206 1402.1 852.7 2254.9
v.11-v.12 7469 56643 33.4/206 541.1 155.6 696.6
v.12-v.13 11224 68381 38.3/214 735.1 234.1 969.2
v.13-v.14 8112 55708 53.1/237 742.5 1624.5 2637.3
v.14-v.15 4474 150318 42.9/241 1158.1 558.62 1716.8
v.15-v.16 4689 200800 39.4/249 mem out - -
v.16-full 17867 65070 37.3/253 868.4 214.7 1083.1

Table 20 Incremental classification of SNOMED releases using modules in CEL. Time in seconds.

To summarize, we have evaluated the two incremental reasoning techniques pre-
sented in this paper over a set of real-world ontologies. The following main conclu-
sions can be drawn from the experiments:

– Both techniques provide substantial benefits in the case of large ontologies that
are “loosely inter-connected”.

– The module-based approach is especially useful when only a few (up to 10) ax-
ioms have been modified before re-classification. This technique is thus better
suited for manual ontology editing, since users rarely modify a large number of
axioms in one session.

– The direct approach is especially useful with “batch” updates involving a large
number of axioms, e.g., when importing a new ontology into the current one, or
when updating the ontology from an external repository to a new release. This
technique, however, assumes that no axiom has been deleted from the ontology,
and it is most useful when the number of the new axioms does not exceed 2% of
the size of the ontology.

It might be possible to combine both techniques to deal with more complex situ-
ations; however, we leave this investigation for future work. It is also worth pointing
out that, in contrast to ontology reasoners, the implementations of our incremental
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reasoning procedures are rather prototypical and not heavily optimized. Further opti-
mizations could provide significant performance improvements.

7 Related Work

While there has been substantial work on optimizing reasoning services for DLs (see
[5] for an overview), the topic of reasoning through evolving DL knowledge bases re-
mains relatively unaddressed. Notable exceptions include [18–20,31]; these papers,
however, investigate the problem of incremental reasoning using model-caching tech-
niques in application scenarios that involve changes only in the ABox.

There has been substantial work on incremental query and view maintenance in
databases (e.g., [6,38,40]) and rule-based systems (e.g., Datalog [13,14]). While re-
lated, our work addresses a more expressive formalism. Furthermore the problem of
incremental maintenance in database systems has been mostly considered with re-
spect to changes in the data, (corresponding to a DL ABox) and not with respect to
the database schema (corresponding to a DL TBox). Our technique, however, focuses
on schema reasoning.

There is also extensive work on Truth Maintenance Systems (TMSs) for logical
theories (e.g., [12,16]). As pointed out in Section 3, a justification-based approach
would be advantageous for incremental classification only if the number of positive
subsumptions was larger than the number of non-subsumptions; that is, if most of the
formulas the justifications keep track of were provable. This is, however, not the case,
as typically there are far more non-subsumptions than subsumptions. Additionally, a
TMS system designed to support non-subsumptions (e.g., by caching models) would
most likely be impractical due to the potentially large size of these models and sub-
stantial modifications likely to be caused by changes in general axioms; however, in
our approach, maintaining locality-based modules introduces limited overhead. Fi-
nally, the representation language in practical TMSs is mostly propositional logic,
whereas we focus on much more expressive languages.

8 Conclusions and Future Works

In this paper, we have proposed two techniques for incremental classification of on-
tologies. The first technique is based on a notion of locality-based modules and can
be used in combination with any reasoner. This technique can be applied for arbitrary
modifications to any ontology. In contrast, the second technique requires the modifi-
cation of the reasoner and is only applicable to EL+ ontologies and the additions of
new axioms. We have implemented both techniques and evaluated them on a range
of commonly used ontologies. Our experiments demonstrate that both technique can
help to improve the classification time in a number of practically relevant scenarios,
and are especially useful for large and simple ontologies like NCI and SNOMED.

There are several possible directions for the future research. The module-based
procedure could possibly be extended for incremental ABox query answering. Local-
ity based modules as considered in this paper are not well-suited for ABox reasoning
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because ABox assertions are not local. Other types of modules considered in [10]
can be used instead. Also, the variants of locality-based modules proposed in [34]
could be used to reduce the size of the extracted modules and it would be interesting
to explore their suitability for incremental reasoning. Finally, the direct incremental
reasoning procedure for EL+ can possibly be extended for deletions using axiom
tracing techniques for keeping track of the inferences. Whenever an axiom is deleted,
the procedure could also delete all axioms that have been derived from it.
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