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Abstract. In this paper we introduce a novel landmark technique for
hierarchical planning. Landmarks are abstract tasks that are manda-
tory. They have to be performed by any solution plan. Our technique
relies on a landmark extraction procedure that pre-processes a given
planning problem by systematically analyzing the ways in which rel-
evant abstract tasks can be decomposed. We show how the landmark
information is used to guide hierarchical planning and present some
experimental results that give evidence for the considerable perfor-
mance increase gained through our technique.

1 Introduction
In recent years, the exploitation of knowledge gained by pre-
processing a planning domain and/or problem description has proven
to be an effective means to reduce planning effort. Various pre-
processing procedures, like effect relaxation [2], abstractions [8], and
landmarks [15], have been proposed for classical planning, where
they serve to compute strong search heuristics. As opposed to this,
pruning the search space of a hierarchical planner by pre-processing
the underlying HTN-based domain description has not been consid-
ered so far.
Hierarchical Task Network (HTN) planning is based on the concepts
of tasks and methods [4, 13]. Abstract tasks represent compound ac-
tivities like making a business trip or transporting certain goods to
a specific location. Primitive tasks correspond to classical planning
operators. Hierarchical domain models hold a number of methods for
each abstract task. Each method provides a task network, also called
partial plan, which specifies a pre-defined (abstract) solution of the
corresponding abstract task. Planning problems are (initial) task net-
works. They are solved by incrementally decomposing the abstract
tasks until the network contains only primitive tasks and is consis-
tent w.r.t. to their ordering and causal structure. The decomposition
of an abstract task by an appropriate method replaces the abstract
task by the partial plan specified by the respective method.
In this paper, we present a novel landmark technique to increase the
performance of a hierarchical planner. In hierarchical planning, land-
marks are mandatory abstract or primitive tasks, i.e. tasks that have
to be performed by any solution plan. For an initial task network
that states a current planning problem, a pre-processing procedure
computes the corresponding landmarks. It does so by systematically
inspecting the methods that are eligible to decompose the relevant
abstract tasks. Beginning with the (landmark) tasks of the initial net-
work, the procedure follows the way down the decomposition hi-
erarchy until no further abstract tasks qualify as landmarks. As for
primitive landmarks, a reachability test is accomplished; a failure in-
dicates that the method which introduced the primitive landmark is
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no longer eligible. This information is propagated back, up the de-
composition hierarchy and serves to identify all methods that will
never lead to a solution of the current planning problem. Being able
to prune useless regions of the search space this way, a hierarchical
planner performs significantly better than it does without exploiting
the landmark information.

While the use of landmark tasks is a novelty in hierarchical plan-
ning, landmarks are a familiar concept in classical state-based plan-
ning. There, landmarks are facts that have to hold in some interme-
diate state of every plan that solves the problem. The concept was
introduced in [15] and further developed in [22] and [10], where
landmarks and orderings between them are extracted from a plan-
ning graph of the relaxed planning problem. Other strands of re-
search arranged landmarks into groups of intermediate goals to be
achieved [20] and extended the landmark concept to so-called dis-
junctive landmarks [7, 14]. A disjunctive landmark is a set of literals
any of which has to be satisfied in the course of a valid plan. A gener-
alization of disjunctive landmarks resulted in the notion of so-called
(disjunctive) action landmarks [12, 16, 21]. They represent landmark
facts by actions that are appropriate to achieve them. Most recent ap-
proaches use landmark information to compute heuristic functions
for a forward searching planner [12, 16] and investigate their rela-
tions to critical-path-, relaxation-, and abstraction-heuristics [9]. In
summary, it turned out that the use of landmark information signifi-
cantly improves the performance of classical state-based planners.

Before introducing the landmark extraction procedure for hierar-
chical planning in Section 3, we will briefly review the underlying
framework in Section 2. Afterwards, Section 4 shows how landmark
information is exploited during planning. Section 5 presents experi-
mental results from a set of benchmark problems of the UM-Translog
and Satellite domains, which give evidence for the considerable per-
formance increase gained through our technique. The paper ends
with some concluding remarks in Section 6.

2 Formal Framework
Our approach relies on a domain-independent hybrid planning
framework [1]. Hybrid planning [11] combines hierarchical task net-
work planning along the lines of [4] with concepts of partial-order-
causal-link (POCL) planning. The resulting systems integrate task
decomposition with explicit causal reasoning. Therefore, they are
able to use predefined standard solutions like in pure HTN planning
and thus benefit from the landmark technique we will introduce be-
low; they can also develop (parts of) a plan from scratch or modify
a default solution in cases where the initial state deviates from the
presumed standard. It is this flexibility that makes hybrid planning
particularly well suited for real-world applications [3, 5].

In our framework, a task network or partial plan P = 〈S,≺, V, C〉
consists of a set of plan steps S, i.e. (partially) instantiated task



schemata, a set of ordering constraints ≺ that impose a partial or-
der on the plan steps, and a set of variable constraints V . C is a
set of causal links. A causal link si →ϕ sj indicates that the pre-
condition ϕ of plan step sj is an effect of plan step si and is sup-
ported this way. A domain model D = 〈T,M〉 includes a set of
task schemata and a set of decomposition methods. A task schema
t(τ ) = 〈prec(t(τ )), add(t(τ )), del(t(τ ))〉 specifies the precondi-
tions as well as the positive and negative effects of a task. Precon-
ditions and effects are sets of literals and τ̄ = τ1, . . . , τn are the
task parameters. Both primitive and abstract tasks show precondi-
tions and effects. This enables the use of POCL planning operations
even on abstract levels and allows for the generation of abstract so-
lutions [1]. This option is not considered in this paper, however. A
method m = 〈t, P 〉 relates an abstract task t to a partial plan P ,
which represents an (abstract) solution or “implementation” of the
task. In general, a number of different methods are provided for each
abstract task. Please note that no application conditions are associ-
ated with the methods, as opposed to typical HTN-style planning. A
planning problem Π = 〈D,S0, Sg, Pinit〉 includes a domain model
D, an initial state S0, and a goal state Sg . Pinit represents an initial
partial plan.
Based on these strictly declarative specifications of planning domains
and problems, hybrid planning is performed by refining an initial
partial plan Pinit stepwise until a partial plan P = 〈S,≺, V, C〉 is
obtained that satisfies the following solution criteria: (1) each pre-
condition of a plan step in P is supported by a causal link in C; (2)
the ordering and variable constraints are consistent; (3) none of the
causal links in C is threatened, i.e. for each causal link si →ϕ sj

the ordering constraints ensure that no plan step sk with effect ¬ϕ
can be ordered between plan steps si and sj ; (4) all plan steps in S
are primitive tasks. Refinement steps include the decomposition of
abstract tasks by appropriate methods, the insertion of causal links to
support open preconditions of plan steps as well as the insertion of
plan steps, ordering constraints, and variable constraints.

3 Landmark Extraction
For a given planning problem Π = 〈D,S0, Sg, Pinit〉, landmarks
are the abstract tasks that occur in any sequence of decompositions
leading from the initial task network Pinit to a solution plan. Land-
mark extraction is done using a so-called task decomposition tree
(TDT) of Π. Figure 1 depicts such a tree schematically. The TDT of
Π is an AND/OR tree that represents all possible ways to decompose
the abstract tasks of Pinit by methods in D until a primitive level is
reached or a task is encountered that is already included in an upper
level of the TDT. Each level of a TDT consists of two parts, a task
and a method level. The root node on Level 0 is an artificial method
node that represents the initial partial plan Pinit. Method nodes are
AND nodes. The children of a method node are the tasks that occur
in the partial plan of the respective method. The children of the root
are the tasks of Pinit. Method edges connect method nodes on Level
i to task nodes on Level i + 1. Task nodes are OR nodes. The chil-
dren of a task node are the methods that can be used to decompose
the respective task. Primitive tasks are leafs of the TDT. A TDT is
built by forward chaining from the abstract tasks in the initial task
network until all nodes of the fringe are leaf nodes.

In order to determine the landmarks of a planning problem Π we
need to identify those tasks which all decomposition methods of a
certain abstract task have in common. To this end, we define the
Common Task Set of two methods.

Definition 1 (Common Task Set ∩̂). For two methods
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Figure 1: A schematic task decomposition tree

mi = 〈t, 〈Si,≺i, Vi, Ci〉〉 and mj = 〈t, 〈Sj ,≺j , Vj , Cj〉〉 of
a task t, the Common Task Set ∩̂ of mi and mj is defined as

mi∩̂mj = Si ∩ Sj

In a similar way, the sets of tasks in which two methods differ are
given as follows.

Definition 2 (Remaining Task Sets ∪̂). Given two methods
mi = 〈t, 〈Si,≺i, Vi, Ci〉〉 and mj = 〈t, 〈Sj ,≺j , Vj , Cj〉〉 of a task
t, the Remaining Task Sets ∪̂ of mi and mj are

mi∪̂mj = {{Si \ (mi∩̂mj)}, {Sj \ (mi∩̂mj)}}

A landmark table records for each abstract landmark task t a set
of subtasks I(t) as well as a set of sets of subtasks O(t) as depicted
in Table 1. The intersection I(t) contains those subtasks which oc-
cur on every possible path of decompositions that transforms t into a
primitive plan. The optionsO(t) represent sets of those subtasks that
optionally occur when decomposing the respective landmark task to-
wards a solution plan. Every such set is indexed by the name of the
method which contains these subtasks.

Table 1: A schematic landmark table

Landmark Intersection(I) Options(O)

Task1 {t11, t12, · · · } {{th1, th2, · · · }m h,
{tl1, tl2, · · · }m l, · · · }· · · · · · · · ·

Taskn {tn1, tn2, · · · } {{tk1, tk2, · · · }m k,
{to1, to2, · · · }m o, · · · }

Now we are ready to present the landmark extraction algorithm
(Algorithm 1). It takes a task decomposition tree, a current tree level
and a landmark table as input and computes a final landmark table.
For a given planning problem the task decomposition tree is com-
puted and the algorithm is called with an empty landmark table and
tree level 1. It runs recursively through all levels of the task decom-
position tree in order to identify landmarks, insert them in the table,
and prune useless branches from the tree, until the maximum level
has been reached.

For each abstract task t of task level i that has not yet been entered
into the landmark table all methods M = {m1, m2, · · · , mn} of
method level i that decompose t (TDTi(t)) are collected (lines 6-8).
The Common Task Set I(t) of all methods in M is computed ac-
cording to Definition 1. Please note that if there is only one method
m that can decompose t, then I(t) is just the set of plan steps of
the partial plan provided by m. In the next step the Remaining Task
Sets O(t) are obtained by processing the methods in M according
to Definition 2. Afterwards, each task tst of a task set T in O(t) is
investigated (lines 9-14). If tst is primitive and unreachable, then all
sub-trees with roots ta ∈ T are pruned from the task decomposition



tree and the option T is removed from O(t). The reason is that those
decompositions will never lead to a solution of the abstract task t un-
der consideration. The reachability test estimates the achievability of
the preconditions of tst. Like in [6], it is based on the type structure
of the domain model of the planning problem and detects whether
some preconditions of a primitive task can never be satisfied.

Algorithm 1: Landmark Extraction(TDT, i, LT )
Initialize: LT ←− null, i←− 1
Input : TDT : Task Decomposition Tree,

i : Index of the current level in TDT, LT : LandmarkTable
Output: a LandmarkTable
begin1

if i ≥ maxlevel(TDT) then2
return LT3

else4
foreach abstract task t in task level i with t /∈ LT do5
{m1, m2, · · · , mn} ←− Methods(TDTi(t))6
I(t)←− ∩̂n

i=1mi7
O(t)←− ∪̂n

i=1mi8
foreach set T ∈ O(t) do9

foreach task tst ∈ T do10
if tst is a primitive task with tst is unreachable then11
TDT ←− Remove(TDT, ta): ∀ tasks ta ∈ T12
O(t)←− O(t) \ T13
continue with next set T from O(t).14

LT ←− Append(LT, (t, I(t), O(t)))15

return Landmark Extraction(TDT, i+ 1, LT )16
end17

Finally, the current landmark table LT is updated by inserting the
current abstract task t and the related sets I(t) andO(t), respectively.
Then the landmark extraction algorithm is called recursively with the
(modified) task decomposition tree and updated landmark table to in-
spect the next level of the tree.
In order to illustrate our algorithm, let us consider a simple example
from the UM-Translog domain. Assume a package P1 is at location
L1 in the initial state and we would like to transport it to a customer
location L3 in the same city by using truck T1, which initially is lo-
cated at L1. Figure 2 shows part of the task decomposition tree of
this example.
The Landmark Extraction algorithm detects that the first level
in the TDT has only one abstract task t = transport(P1, L1,
L3) and that there is only one method, Pi ca de, that can
decompose the task into a partial plan, which has subtasks
pickup(P1), carry(P1, L1, L3), and deliver(P1). I(t) becomes
{pickup(P1),carry(P1, L1, L3),deliver(P1)} and O(t) = ∅. The cur-
rent abstract task and sets I(t) and O(t) are entered as the first row
of the landmark table as shown in Table 2.
Then the Landmark Extraction algorithm takes the (unchanged)
TDT and the modified landmark table to investigate the next
tree level. The abstract tasks to be inspected on this level are
pickup(P1), carry(P1, L1, L3), and deliver(P1). Suppose, we choose
the task t = pickup(P1) first. As shown in Figure 2 the task
decomposition tree accounts for three methods to decompose
this task: Pickup hazardous, Pickup normal, and Pickup valuable.
By computing the Common Task Set and Remaining Task
Sets we get I(t)={collect fees(P1)}, and O(t)={{have permit(P1)},
{collect insurance(P1)}}. Please note that all empty sets are omit-
ted. At this point, reachability has to be tested for each primitive task
in each set of O(t). Assume that the primitive task have permit(P1)
is reachable, whereas collect insurance(P1) is unreachable. The task
set which contains collect insurance(P1) has therefore to be omitted
from O(t). After that, the current abstract task t = pickup(P1), the
set I(t), and the modified set O(t) are added to the landmark table.

Table 2: Landmark table of the transportation task

Task Intersection(I) Options(O)

transport(P1, L1, L3)
{pickup(P1), carry

-(P1, L1, L3), deliver
(P1)}

pickup(P1) {Collect fees(P1)} {{have permit
(P1)}p Hazardous}

carry(P1, L1, L3) - {{c direct(T1, P1,
L1, L3)}c normal}

In the second iteration the abstract task t=carry(P1, L1, L3) is
considered. The methods Carry normal and Carry via hub are avail-
able to decompose this task. We obtain I(t)=∅, O(t)={{c direct(T1,
P1, L1, L3)}, {carry via hub, go through tcenters}}. Suppose the
primitive task go through tcenters is unreachable. The sub-tree with
root carry via hub has then to be removed from the TDT and the set
which contains the unreachable task go through tcenters is removed
from O(t). The current abstract task t = carry(P1, L1, L3) together
with I(t) and the modified O(t) are added to the landmark table.

Table 3: Search space reduction in the UM-Translog Domain

Problems before
pre-processing

after
pre-processing

AbT Met AbT Met
Regular Truck Problems

(Hopper Truck, Auto Truck, Regu-
lar Truck-2, Regular Truck-2 Region,
RegularTruck-3 Locations)

12 30

Various Truck Type Problems
(Flatbed Truck, Armored-R-Truck) 21 51 12 32

Traincar Problems
(Auto Traincar, Mail Traincar, Auto
Traincar bis, Refrigerated-R-Traincar) 14 32

Airplane Problems 14 37

Table 3 shows the reduction of the domain model for typical ex-
amples from the UM-Translog domain in terms of the number of
abstract tasks (AbT) and methods (Met). It indicates that in this do-
main the landmark technique achieves a reduction of the number of
abstract tasks that ranges between 33% and 42%, while the reduction
of the number of methods varied between 27% and 41%.

4 Landmark Exploitation
Our planning approach makes use of an explicit representation of
plan-refinement operators, the so-called plan modifications. Given a
partial plan P = 〈S,≺, V, C〉 and a domain model D, a plan modi-
fication is defined as m = 〈E⊕, E	〉, where E⊕ and E	 are disjoint
sets of elementary additions and deletions of plan elements over P
andD. Consequently, all elements in E	 are elements of S,≺, V or
C, while E⊕ consists of new plan elements. This generic definition
makes all changes a modification imposes on a plan explicit. With
that, a planning strategy is able to compare the available refinement
options qualitatively and quantitatively and can hence choose oppor-
tunistically among them. Applying a modification m = 〈E⊕, E	〉 to
a plan P returns P ′ that is obtained from P by adding all elements in
E⊕ and removing those of E	. Hybrid planning distinguishes vari-
ous classes of plan modifications including task expansion and task
insertion. For each class My, our system provides a corresponding
modification generation module fmod

y .
For a partial plan P that is not yet a solution, so-called flaws make

every violation of the solution criteria mentioned in Sec. 2 explicit.
We distinguish various flaw classes including abstract tasks, unsup-
ported preconditions, and inconsistencies in the constraint sets. As
for the generation of plan modifications, we employ a flaw detection
module fdet

x for each flaw class Fx.



 and

 and

 Method level3

 and and

 Method level2

 Method level1

 Task level1

Artificial level   Root

  transport(P1 ,  L1 ,  L3)

  Pi_ca_de 

 pickup(P1)   carry(P1,  L1, L3)  deliver(P1)

  Pickup_valuable

Task level2

Task level3  collect_fees(P1)  collect_fees(P1)  collect_insurance(P1)

  Pickup_normal

collect_fees(P1)

  Pickup_hazardous

 have_permit(P1)

  Carry_via_hub Carry_normal

 carry_direct(T1, P1, L1, L3)  carry_via_hub(........)  go_through_tcenters(......)

Figure 2: Part of the TDT for the transportation task

Furthermore, we make use of a modification trigger function α
that relates each flaw class to those modification classes that are suit-
able for generating refinements that solve the respective flaws.

Algorithm 2: Plan(P1 . . . Pn,Π)

Require: Sets of flaw detection and modification generation modules
Det and Mod, strategies fmodSel and fplanSel

Input : P1 . . . Pn: Sequence of Plans,
Π = 〈D,S0, Sg, Pinit〉: Planning Problem

Output: Plan or failure
begin1

if n = 0 then2
return failure3

Pcurrent ← P1; Fringe← P2 . . . Pn; F ← ∅4

forall fdet
x ∈ Det do5

F ← F ∪ fdet
x (Pcurrent,Π)6

if F = ∅ then7
return Pcurrent8

M ← ∅9
forall Fx = F ∩ Fx with Fx 6= ∅ do10

forall f ∈ Fx do11
forall fmod

y ∈Mod with My ⊆ α(Fx) do12
M ←M ∪ fmod

y (Pcurrent, f, D)13
if f was un-addressed then14
Pnext ← fplanSel(Fringe)15
return Plan(Pnext ◦ (Fringe− Pnext),Π)16

forall m ∈ fmodSel(Pcurrent, F,M) do17
Fringe← apply(m, Pcurrent) ◦ Fringe18

Pnext ← fplanSel(Fringe)19
return Plan(Pnext ◦ (Fringe− Pnext),Π)20

end21

Based on these definitions, Algorithm 2 sketches a generic hybrid
planning algorithm. The procedure is initially called with the partial
plan Pinit of a planning problem Π as a unary list of plans and with
the problem itself. This list of plans represents the current plan de-
velopment options in the fringe of the search space. An empty fringe
(n = 0) means, that no more plan refinements are available. Lines 5-
8 call the detection functions to collect the flaws in the current plan
Pcurrent. If Pcurrent is found flawless, it constitutes a solution to
Π and is returned. If not, lines 9-16 organize the flaws class-wise
and pass them to the α-assigned modification generation functions,
which produce plan modifications that will eliminate the flaws. Any
flaw that is found unsolvable will persist and Pcurrent is hence dis-
carded [17]. The plan selection strategy fplanSel is responsible for
choosing a plan from the fringe with which to continue planning.

If appropriate refinements have been found for all flaws, the mod-
ification selection function fmodSel is called in line 17. Based on the

current plan and its flaws, it selects and prioritizes those plan mod-
ifications that are to be used for generating the refinements of the
current plan. The chosen modifications are applied to Pcurrent and
the produced successor plans are inserted in the search space fringe.
The algorithm is finally called recursively on an updated fringe in
which the strategy function fplanSel determines the next focal plan.

Please note that the algorithm allows for a broad variety of plan-
ning strategies [18, 19], because the planning procedure is com-
pletely independent from the flaw detection and modification gen-
erating function.

Since our approach is based on a declarative model of task ab-
straction, the exploitation of knowledge about hierarchical landmarks
can be done transparently during the generation of the task ex-
pansion modifications: First, the respective modification generation
function fmod

y is deployed with a reference to the landmark table of
the planning problem, which has been constructed off-line in a pre-
processing phase. During planning, each time an abstract task flaw
indicates an abstract plan step t the function fmod

y does not need to
consider all methods provided in the domain model for the abstract
task t. Instead, it operates on a reduced set of applicable methods
according to the respective options O(t) in the landmark table.

It is important to see that the overall plan generation procedure
is not affected by this domain model reduction, neither in terms of
functionality (flaw and modification modules do not interfere) nor
in terms of search control (strategies are defined independently and
completeness of search is preserved). In principle, non-declarative
hierarchical planners, like the SHOP family [13] can also profit from
our landmark technique. The benefit will however be reduced due
to the typically extensive usage of method application conditions,
which cannot be analyzed during task reachability analysis, in partic-
ular if the modeller relies on side effects of the method processing.

5 Experimental Results
In theory, it is quite intuitive that a reduced domain model leads to
an improved performance of the planning system. However, in or-
der to quantify the practical performance gained by the hierachi-
cal landmark technique, we conducted a series of experiments in
the PANDA planning environment [17]. The planning strategies we
used are representatives from the rich portfolio provided by PANDA,
which has been documented elsewhere [18]. We briefly review the
ones on which we based our experiments.

Modification selection functions determine the shape of the fringe,
because they decide about the (priority of the) newly added plan re-
finements. We thereby distinguish selection principles that are based



on a priorization of certain flaw or modification classes and strategies
that opportunistically choose from the presented set. The latter ones
are called flexible strategies.

Table 4: Results for the UM-Translog domain.

Problem Mod. Sel. Plan Sel. PANDA PANDA+LM
Space Time Space Time

lcf+hz fmh+fmf 72 147 41 95
Hopper lcf+ems fmh+fmf 101 211 72 174
Truck lcf+du fhz+fmf 75 155 46 99

hz+lcf fhz+lcp+fmf 71 143 54 115
SHOP Strategy 160 323 89 212

lcf+hz fmh+fmf 81 182 58 140
Flatebed lcf+ems fmh+fmf 120 269 90 216
Truck lcf+du fhz+fmf 96 216 54 129

hz+lcf fhz+lcp+fmf 130 299 69 162
SHOP Strategy 243 595 98 257

lcf+hz fmh+fmf 119 301 85 236
Auto lcf+ems fmh+fmf 191 443 114 298
Truck lcf+du fhz+fmf 129 314 92 251

hz+lcf fhz+lcp+fmf 183 469 157 413
SHOP Strategy 226 558 164 433

lcf+hz fmh+fmf 149 377 73 203
Regular lcf+ems fmh+fmf 234 613 105 206
Truck lcf+du fhz+fmf 241 483 131 370
3 Location hz+lcf fhz+lcp+fmf 190 458 115 307

SHOP Strategy 163 479 146 406
lcf+hz fmh+fmf 70 142 42 98

Regular lcf+ems fmh+fmf 106 216 81 182
Truck lcf+du fhz+fmf 83 160 46 105
2 Region hz+lcf fhz+lcp+fmf 75 152 54 122

SHOP Strategy 146 283 106 241
lcf+hz fmh+fmf – – 275 1237

Regular lcf+ems fmh+fmf – – 293 1144
Truck 2 lcf+du fhz+fmf 753 2755 295 1262

hz+lcf fhz+lcp+fmf – – 787 3544
SHOP Strategy – – 926 4005

lcf+hz fmh+fmf 72 149 41 92
Regular lcf+ems fmh+fmf 109 225 78 179
Truck 1 hz+lcf fhz+lcp+fmf 74 153 54 120

lcf+du fhz+fmf 84 173 46 104
SHOP Strategy 409 911 80 177

lcf+hz fmh+fmf 380 1241 89 221
Mail lcf+ems fmh+fmf 590 1805 138 313
Traincar lcf+du fhz+fmf 559 1450 64 160

hz+lcf fhz+lcp+fmf 93 213 70 171
SHOP Strategy 832 1911 121 274

lcf+hz fmh+fmf 384 1240 89 215
Refrig. lcf+ems fmh+fmf 634 1861 138 315
Regular lcf+du fhz+fmf 446 1074 64 159
Traincar hz+lcf fhz+lcp+fmf 92 198 70 172

SHOP Strategy 777 1735 173 353
lcf+hz fmh+fmf 342 1137 144 421

Auto lcf+ems fmh+fmf 460 1425 177 477
Traincar lcf+du fhz+fmf 365 1044 107 328
bis hz+lcf fhz+lcp+fmf 357 958 278 770

SHOP Strategy 541 1282 247 963

AirPlane
lcf+hz fmh+fmf 164 507 141 435
lcf-ems fmh-fmf 142 413 167 471
lcf+du fhz+fmf 257 749 200 621
hz+lcf fhz+lcp+fmf 280 777 240 700

SHOP Strategy 335 821 150 450

Representatives for inflexible strategies are the classical HTN
strategy patterns that try to balance task expansion with respect to
other plan refinements. The SHOP modification selection, like the
system it is named after [13], prefers task expansion for the abstract
tasks in the order in which they are to be executed. The expand-then-
make-sound (ems) schema alternates task expansion modifications
with other classes, resulting in a “level-wise” concretization of all
plan steps. The third type of classical HTN strategies, the preference
of expansion as it has been realized in the UMCP system [4] has been
ommitted in this survey because it trivially benefits from the reduced
method set.

As for the flexible modification selections, we included the well-
established Least Committing First (lcf) paradigm, a generalization
of POCL strategies that selects those modifications that address flaws
for which the smallest number of alternative solutions has been pro-
posed. From previous work on planning strategy development we de-
ployed two HotSpot-based strategies: HotSpots denote those compo-

nents in a plan that are refered to by multiple flaws, thereby quantify-
ing to which extent solving one deficiency may interfere with the so-
lution options for coupled components. The Direct Uniform HotSpot
(du) strategy consequently avoids those modifications which address
flaws that refer to HotSpot plan components. As a generalization of
singular HotSpots to commonly affected areas of plan components,
the HotZone (hz) modification selection takes into account connec-
tions between HotSpots and tries to avoid selecting modifications
that deal with these clusters.

Plan selection functions control the traversal through the refine-
ment space that is provided by the modification selection functions.
The strategies in our experimental evaluation were based on the fol-
lowing five components: The least commitment principle on the plan
selection level is represented in two different ways, namely the Fewer
Modifications First (fmf) strategy, which prefers plans for which a
smaller number of refinement options has been announced, and the
Less Constrained Plan (lcp) strategy, which is based on the ratio of
plan steps to the number of constraints on the plan.

The HotSpot concept can be lifted on the plan selection level:
The Fewer HotZone (fhz) strategy prefers plans with fewer Hot-
Zone clusters. The rationale for this search principle is to focus on
plans in which the deficiencies are more closely related and that
are hence candidates for an early decision concerning the com-
patibility of the refinement options. The fourth strategy operates
on the HotSpot principle implemented on plan modifications: the
Fewer Modification-based HotSpots (fmh) function summarizes for
all refinement-operators that are proposed for a plan the HotSpot val-
ues of the corresponding flaws. It then prefers those plans for which
the ratio of plan modifications to accumulated HotSpot values is less.
By doing so, this search schema focuses on plans that are expected
to have less interfering refinement options.

Finally, since our framework’s representation of the SHOP strat-
egy solely relies on modification selection, a depth first plan selection
is used for constructing a simple hierarchical ordered planner.

It is furthermore important to mention, that our strategy functions
can be combined into selection cascades (denoted by the symbol +)
in which succeeding components decide on those cases for which
the result of the preceeding ones is a tie. We have built five com-
binations from the components above, which can be regarded as
representatives for completely different approaches to plan develop-
ment. Please note that the resulting strategies are general domain-
independent planning strategies, which are not tailored to the appli-
cation of domain model reduction by pre-processing in any way.

We ran our experiments on two distinguished planning domains.
The Satellite domain is an established benchmark in the field of non-
hierarchical planning. It is inspired by the problem of managing sci-
entific stellar observations by earth-orbiting instrument platforms.
Our hybrid version regards the original primitive operators as im-
plementations of abstract observation tasks, which results in a do-
main model with 3 abstract and 5 primitive tasks, related by 8 meth-
ods. The second domain is known as UM-Translog, a transportation
and logistics model originally written for HTN planning systems.
We adopted its type and decomposition structure to our hybrid ap-
proach which yielded a deep expansion hierarchy in 51 methods for
decomposing 21 abstract tasks into 48 different primitive ones. We
have chosen the above domain models because of the problem char-
acteristics they induce: Satellite problems typically become difficult
when modelling a repetition of observations, which means that a
small number of methods is used multiple times in different contexts
of a plan. The evaluated scenarios are thus defined as observations
on one or two satellites. UM-Translog problems, on the other hand,



typically differ in terms of the decomposition structure, because spe-
cific transportation goods are treated differently, e.g., toxic liquids in
trains require completely different methods than transporting regular
packages in trucks. We consequently conducted our experiments on
qualitatively different problems by specifying various transportation
means and goods.

Table 5: Results for the Satellite domain.

Problem Mod. Sel. Plan Sel. PANDA PANDA+LM
Space Time Space Time

lcf+hz fmh+fmf 38 41 37 42
1obs- lcf+ems fmh+fmf 46 51 46 53
1sat lcf+du fhz+fmf 67 72 67 72
1mode hz+lcf fhz+lcp+fmf 58 62 53 60

SHOP Strategy 61 67 57 61
lcf+hz fmh+fmf 602 788 539 708

2obs- lcf+ems fmh+fmf 964 1631 903 1428
1sat lcf+du fhz+fmf 1135 1319 901 1030
1mode hz+lcf fhz+lcp+fmf 1468 1699 1216 1474

SHOP Strategy 251 270 237 264
lcf+hz fmh+fmf – – – –

2obs- lcf+ems fmh+fmf – – – –
2sat lcf+du fhz+fmf – – 2821 3353
1mode hz+lcf fhz+lcp+fmf – – – –

SHOP Strategy – – 1406 1780

Tables 4 and 5 show the runtime behavior of our system in terms
of the size of the average search space and CPU time consumption
for the problems in the UM-Translog and Satellite domains, respec-
tively. The size of the search space is measured in the number of
plans visited for obtaining the first solution. The CPU time denotes
the total running time of the planning system in seconds, including
the pre-processing phase. Dashes indicate that the plan generation
process did not find a solution within the allowed maximum num-
ber of 5,000 plans and 9,000 seconds and has therefore been can-
celed. The column PANDA refers to the reference system behavior,
the PANDA+LT to the version that performs a pre-processing phase.

Reviewing the overall result, it is quite obvious that the landmark
pre-processing pays off in all strategy configurations and problems.
It does so in terms of search space size as well as in terms of run-
time. The only exceptions are two configurations in the easiest satel-
lite problem in which the search space cannot be reduced but a ne-
glectable overhead is introduced by pre-processing. Furthermore, the
problem concerning air freight is the only one on which landmarking
has a measurable negative effect (decrease of performance of 18%).

The average performance improvement over all strategies and over
all problems in the UM-Translog domain is about 40% as is docu-
mented in Table 4. The biggest gain is achieved in the transportation
tasks that involve special goods and transportation means, e.g., the
transport of auto-mobiles, frozen goods, and mail via train saves be-
tween 53% and 71%. In general, the flexible strategies profit from
the landmark technique, which gives further evidence to the previ-
ously obtained results that opportunistic planning strategies are very
powerful general-purpose procedures and in addition offer potential
to be improved by pre-processing methods. The SHOP-style strat-
egy cannot take that much advantage of the reduced domain model,
because it cannot adapt its focus on the reduced method alternatives.

The Satellite domain does not benefit significantly from the land-
mark technique due to its shallow decomposition hierarchy. We are,
however, able to solve problems for which the participating strategies
do not find solutions within the given resource bounds otherwise.

6 Conclusion
We have presented an effective landmark technique for hierarchical
planning. It analyzes the planning problem by pre-processing the un-

derlying domain and prunes those regions of the search space where a
solution cannot be found. Our experiments on a number of represen-
tative hierarchical planning domains and problems give reliable evi-
dence for the practical relevance of our approach. The performance
gain went up to about 70% for problems with a deep hierarchy of
tasks. Our technique is domain- and strategy-independent and can
help any hierarchical planner to improve its performance.
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