

Landmarks in Hierarchical Planning

Mohamed Elkawkagy

Bernd Schattenberg

Susanne Biundo

Institute of Artificial Intelligence

Ulm University, Germany

Motivation

- Landmarks in classical state based planning are facts that have to hold in some intermediate state of every plan that solves the given planning problem.
- ➢ Hierarchical Planning
- Accomplish some set of tasks, rather than to achieve a goal
- Based on the concepts of tasks and methods
- High-level tasks are recursively decomposed down to sub-tasks
- Landmarks in hierarchical planning are tasks that occur in any sequence of

decompositions leading from the initial plan to a solution plan.

Formal Framework (I)

Task

- Primitive task \rightarrow action in state based planning
- Abstract task \rightarrow complex task (implemented by primitive tasks) t (τ) = < prec (t (τ)), add (t (τ)), del (t (τ)) >
- Difference: Primitive tasks are executed directly while abstract tasks require a sequence of primitive tasks to be performed
- **Plan**: $P = \langle S, C \rangle$
- **Method** : m = < t , P >
- \succ Declarative domain model : D = (T, M)

Formal Framework (Π)

Planning problem specification $\Pi = \langle \mathbf{D}, \mathbf{P}_{init} \rangle$

Plan refinement \rightarrow transforming the current plan into a more specific plan

Possible ways to refine it

Solution Plan of a planning problem Π is obtained by refining the initial plan Planning Strategy compare the available plans refinement to choose the most **P**_{init} stepwise into a plan **P** = (**S**, **C**) that has only primitive plan steps and the set suitable one to refine the current plan. of constraints are consistent.

Our Approach

1) Analyzing task decomposition structure

- Building Task Decomposition Tree (TDT).
- 2) Extracting Landmark
- Identify the essential tasks.
- 3) Exploiting Landmark information during the planning process
- Operating in reduced domain by ignoring unsuccessful decomposition methods.

Task Decomposition Tree

Task Decomposition Tree (TDT): AND/OR tree that represents all possible ways to decompose the abstract tasks of P_{init} by methods in D until a primitive level is reached or a task is encountered that is already included in an upper level of the TDT

Operators

Common Task Set $\widehat{\cap}$: For two methods m_i , and m_j of a task t, the Common Task Set is defined as: $m_i \cap m_j = S_i \cap S_j$

Remaining Task Sets : For two methods m_i, and m_j of a task t, the

Remaining Task Set of \mathbf{m}_i and \mathbf{m}_j is defined as: $\mathbf{m}_i \ \hat{\mathbf{m}}_j = \{\{\mathbf{s}_i \setminus (\mathbf{m}_i \ \hat{\mathbf{m}}_j)\}, \{\mathbf{s}_j \setminus (\mathbf{m}_i \ \hat{\mathbf{m}}_j)\}\}$

Identifying Landmarks

Landmark Table : represents a mapping between abstract landmark and the subtasks in the decomposition methods that define the abstract task.

The intersection **I(t)** contains those subtasks which occur on every possible path of decompositions that transform **t** into a primitive plan.

Identifying Landmarks

Landmark Table : represents a mapping between abstract landmark and the subtasks in the decomposition methods that define the abstract task.

- The options **O(t)** represent sets of those subtasks that optionally occur when decomposing the respective landmark task towards a solution plan.
- Every set is indexed by the name of the method which contains these subtasks.

Landmark Extraction(TDT, i, LT) **Initialize**: $LT \leftarrow null, i \leftarrow 1$ Input : TDT : Task Decomposition Tree, i: Index of the current level in TDT, LT: LandmarkTable Output: a LandmarkTable begin if $i \geq maxlevel(TDT)$ then return LT else **foreach** abstract task t in task level i with $t \notin LT$ do $\{m_1, m_2, \cdots, m_n\} \longleftarrow Methods(TDT_i(t))$ $I(t) \leftarrow \cap \bigcap_{i=1}^{n} m_i$ $O(t) \leftarrow = \widehat{\cup}_{i=1}^{n} m_i$ for each set $T \in O(t)$ do **foreach** *task tst* \in *T* **do** if tst is a primitive task with tst is unreachable then $TDT \leftarrow Remove(TDT, ta): \forall tasks ta \in T$ $O(t) \longleftarrow O(t) \setminus T$ continue with next set T from O(t). $LT \longleftarrow Append(LT, (t, I(t), O(t)))$ **return** Landmark Extraction(TDT, i + 1, LT)

end

It runs recursively through all levels of the TDT until the maximum level has been reached.

Landmark Extraction(TDT, i, LT)

Initialize: $LT \leftarrow null, i \leftarrow 1$ Input : TDT : Task Decomposition Tree, i: Index of the current level in TDT, LT: LandmarkTable Output: a LandmarkTable begin if i > maxlevel(TDT) then return LT else **foreach** abstract task t in task level i with $t \notin LT$ do $\{m_1, m_2, \cdots, m_n\} \longleftarrow Methods(\dot{T}DT_i(t))$ $I(t) \leftarrow = \widehat{\cap}_{i=1}^{n} m_i$ $Q(t) \leftarrow \hat{\mathbb{O}}_{i=1}^n m_i$ foreach set $T \in O(t)$ do **foreach** *task tst* \in *T* **do** if tst is a primitive task with tst is unreachable then $TDT \leftarrow Remove(TDT, ta): \forall tasks ta \in T$ $O(t) \leftarrow O(t) \setminus T$ continue with next set T from O(t). $LT \longleftarrow Append(LT, (t, I(t), O(t)))$ **return** Landmark Extraction(TDT, i + 1, LT)

The Methods M={m₁, m₂, ..., m_n} that decompose a current task t are collected.
The intersection I(t) and Options

O(t) sets are computed.

Landmark Extraction(TDT, i, LT)

```
Initialize: LT \leftarrow null, i \leftarrow 1
Input : TDT : Task Decomposition Tree,
          i: Index of the current level in TDT, LT: LandmarkTable
Output: a LandmarkTable
begin
  if i > maxlevel(TDT) then
      return LT
  else
      foreach abstract task t in task level i with t \notin LT do
         \{m_1, m_2, \cdots, m_n\} \longleftarrow Methods(TDT_i(t))
         I(t) \leftarrow = \widehat{\cap}_{i=1}^n m_i
                  -\hat{\cup}^{n}_{\cdot,m}
         for each set T \in O(t) do
           foreach task tst \in T do
              if tst is a primitive task with tst is unreachable then
                 TDT \leftarrow Remove(TDT, ta): \forall tasks ta \in T
                 O(t) \leftarrow O(t) \setminus T
                  continue with next set T from O(t).
                    Append(LT, (t, I(t), O(t)))
         LT \leftarrow
      return Landmark Extraction(TDT, i + 1, LT)
```

 The reachability of each primitive task in set T in O(t) is investigated by estimating the achievability of the preconditions of a task.

 TDT is updated by pruning all sub trees with root tasks ∈ T.

Landmark Extraction(TDT, i, LT)

```
Initialize: LT \leftarrow null, i \leftarrow 1
Input : TDT : Task Decomposition Tree,
          i: Index of the current level in TDT, LT: LandmarkTable
Output: a LandmarkTable
begin
  if i > maxlevel(TDT) then
      return LT
  else
      foreach abstract task t in task level i with t \notin LT do
         \{m_1, m_2, \cdots, m_n\} \longleftarrow Methods(TDT_i(t))
         I(t) \leftarrow \cap \bigcap_{i=1}^{n} m_i
        O(t) \leftarrow = \widehat{\cup}_{i=1}^{n} m_i
         for each set T \in O(t) do
           foreach task tst \in T do
              if tst is a primitive task with tst is unreachable then
                 TDT \leftarrow Remove(TDT, ta): \forall tasks ta \in T
                  O(t) \longleftarrow O(t) \setminus T
                  continue with part set T from O(t).
         LT \longleftarrow Append(LT, (t, I(t), O(t)))
      return Landmark Extraction(TDT, i + 1, LT)
end
```

Landmark Table is updated

Landmark	Intersection(I)	Options(O)
$Task_1$	$\{t_{11},t_{12},\cdots\}$	$ \{ \{t_{h1}, t_{h2}, \cdots \}_{m,h}, \\ \{t_{l1}, t_{l2}, \cdots \}_{m,l}, \cdots \} $
$Task_n$	$\{t_{n1},t_{n2},\cdots\}$	$ \{ \{t_{k1}, t_{k2}, \cdots \}_{m_k}, \\ \{t_{o1}, t_{o2}, \cdots \}_{m_o}, \cdots \} $
t	I(t)	O(t)

Landmark Extraction is called recursively with the modified
TDT and updated Landmark
Table to inspect the next level of the tree.

Landmark Exploitation

 Hierarchical planning refines an abstract task by considering all decomposition methods in the domain model that implement it.

 The process of refining abstract tasks in our system is deployed with a reference to the Landmark Table of the planning problem.

It operates on a reduced set of applicable methods according to the repective options

Landmark	Intersection(I)	Options(O)
$Task_1$	$\{t_{11},t_{12},\cdots\}$	$\{ \{t_{h1}, t_{h2}, \cdots, t_{m,h} \\ \{t_{l1}, t_{l2}, \cdots \}_{m,l}, \cdots \} \}$
Taskn	$\{t_{n1},t_{n2},\cdots\}$	$ \{ \{t_{k1}, t_{k2}, \cdots \}_{m_k}, \\ \{t_{o1}, t_{o2}, \cdots \}_{m_o}, \cdots \} $

O(t) in the Landmark Table

Evaluation

We run our evaluations over two distinguished benchmark domains:

Domain Name	Methods	Abstract tasks	Primitive tasks	
UM-Translog	51	21	48	
Satellite	8	3	5	

- <u>UM-Translog Domain</u> describes scenarios of transporting various types of goods by various means (trucks, trains,...) via appropriate infrastructures (roads, transport centers,...).
- The difficulty of UM-Translog problems is due to various transportation means.

Evaluation

Satellite domain manages scientific stellar observations by earth-orbiting

instrument platforms .

- The satellite problems become difficult when modeling a repetition of observations, which means that a small number of methods is used multiple times in different context of the plan.
- Evaluation factors: -
- Search Space Size (SSS) : The number of plans that are visited for obtaining the first solution.
- CPU time : The total running time of the planning system in seconds.

Lisbon - ECAI 2010

Evaluation – UM-Translog Domain

Duckless	Mod. Selection	Plan Selection	PANDA		PANDA+LM	
name			SSS	Time	SSS	Time
	Lcf+Hz	Fmh+Fmf	81	182	58	140
	Lcf+Ems	Fmh+Fmf	120	269	90	216
Flatbed Truck	Lcf+Du	Fhz+Fmf	96	216	54	129
	Hz+Lcf	Fhz+Lcp+Fmf	130	299	69	162
	Shop Strategy	First plan	243	595	98	257
	Lcf+Hz	Fmh+Fmf	149	377	73	203
Regular	Lcf+Ems	Fmh+Fmf	234	613	105	206
Truck-3- Location	Lcf+Du	Fhz+Fmf	241	483	131	370
	Hz+Lcf	Fhz+Lcp+Fmf	190	458	115	307
	Shop Strategy	First plan	163	479	146	406
Regular Truck – 2	Lcf+Hz	Fmh+Fmf	-	-	275	1237
	Lcf+Ems	Fmh+Fmf	-	-	293	1144
	Lcf+Du	Fhz+Fmf	753	2755	295	1262
	Hz+Lcf	Fhz+Lcp+Fmf	-	-	787	3544
	Shop Strategy	First plan	-	-	926	4005

he average performance improvement over all strategies and over all Dashes indicate that the plan generation process did not find a solution problems in the UM- Translog domain is about 40% in search space size and within the allowed maximum number of 5,000 plans and 9,000 seconds. about 30% in CPU time.

Evaluation – UM-Translog Domain

Problem name	Mod. Plan Selection Selection	Dlan	PANDA		PANDA+LM	
		Selection	SSS	Time	SSS	Time
	Lcf+Hz	Fmh+Fmf	380	1241	89	221
	Lcf+Ems	Fmh+Fmf	590	1805	138	313
Mail Traincar	Lcf+Du	Fhz+Fmf	559	1450	64	160
	Hz+Lcf	Fhz+Lcp+Fmf	93	213	70	171
	Shop Strategy	First plan	832	1911	121	274
	Lcf+Hz	Fmh+Fmf	384	1240	89	215
Dofrig	Lcf+Ems	Fmh+Fmf	634	1861	138	315
Regular	Lcf+Du	Fhz+Fmf	446	1074	64	159
Traincar	Hz+Lcf	Fhz+Lcp+Fmf	92	198	70	172
	Shop Strategy	First plan	777	1735	173	353
Auto Traincar	Lcf+Hz	Fmh+Fmf	342	1137	144	421
	Lcf+Ems	Fmh+Fmf	360	1425	177	477
	Lcf+Du	Fhz+Fmf	365	1044	107	328
	Hz+Lcf	Fhz+Lcp+Fmf	357	958	278	770
	Shop Strategy	First plan	541	1282	247	963

The biggest improvements in the transportation tasks that involve special goods and transportation means, e.g., the transport of auto-mobiles, frozen goods, and mail via train saves between 53% and 71%.
Lisbon - ECAI 2010

Evaluation – Satellite Domain

	Mod. Selection	Plan Selection	PANDA		PANDA+LM	
Problem name			SSS	Time	SSS	Time
	Lcf+Hz	Fmh+Fmf	38	41	37	41
1 - Obs –	Lcf+Ems	Fmh+Fmf	46	51	46	51
1-Sat –	Lcf+Du	Fhz+Fmf	67	72	67	72
1-Mod	Hz+Lcf	Fhz+Lcp+Fmf	58	62	53	60
	Shop Strategy	First plan	61	67	57	61
2- Obs – 1- Sat –	Lcf+Hz	Fmh+Fmf	602	788	539	708
	Lcf+Ems	Fmh+Fmf	964	1631	903	1428
	Lcf+Du	Fhz+Fmf	1135	1319	901	1030
1- Mod	Hz+Lcf	Fhz+Lcp+Fmf	1468	1699	1216	1474
	Shop Strategy	First plan	251	270	237	264
2- Obs – 2- Sat – 1- Mod	Lcf+Hz	Fmh+Fmf	-	-	-	-
	Lcf+Ems	Fmh+Fmf	-	-	-	-
	Lcf+Du	Fhz+Fmf	-	-	2821	3353
	Hz+Lcf	Fhz+Lcp+Fmf	-	-	-	-
	Shop Strategy	First plan	-	-	1406	1780

The Satellite domain does not benefit significantly from the landmark technique due to its shallow decomposition hierarchy.

Conclusion

- LandmarkTable is generated automatically.
- Avoids unsuitable plan refinements.
- Domain- and strategy independent.
- Help any hierarchical planner to improve its performance.
- Significance performance gain, especially for problems with a deep hierarchy of tasks.