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Abstract. Very recently, the well-known concept of land-
marks has been adapted from the classical planning setting to
hierarchical planning. It was shown how a pre-processing step
that extracts local landmarks from a planning domain and
problem description can be used in order to prune the search
space that is to be explored before the actual search is per-
formed. This pruning technique eliminates all branches of the
task decomposition tree, for which can be proven that they
will never lead to a solution. In this paper, we investigate
this technique in more detail and extend it by introducing
search strategies which use these local landmarks in order to
guide the planning process more effectively towards a solu-
tion. Our empirical evaluation shows that the pre-processing
step dramatically improves performance because dead ends
can be detected much earlier than without pruning and that
our search strategies using the local landmarks outperform
many other possible search strategies.

1 Introduction

In recent years, the exploitation of knowledge gained by pre-
processing a planning domain and/or problem description has
proven to be an effective means to reduce planning effort. Var-
ious pre-processing procedures, like effect relaxation [3, 13],
abstractions [11], and landmarks [20] have been proposed for
classical planning, where they serve to compute strong search
heuristics. However, pre-processing techniques can also be
used to perform some pruning of the search space before the
actual search is performed. Very recently, different techniques
have been introduced which restrict the domain and problem
description of an Hierarchical Task Network (HTN) problem
to a smaller subset, since some parts of the domain descrip-
tion might be irrelevant for the given problem at hand [5, 10].
In this paper, we investigate our previously introduced land-
mark technique [5] in more detail, which uses local landmarks
to prune the search space that is to be explored before the ac-
tual search is performed. We further investigate, how search
strategies can take advantage of these extracted local land-
marks.

While the use of landmark tasks is a novelty in hierarchical
planning, it is a familiar concept in classical state-based plan-
ning. There, landmarks are facts that have to hold in some
intermediate state of every plan that solves the problem. The
concept was introduced by Porteous et al. [20] and further
developed by Hoffmann et al. [14] and Zhu and Givan [27],
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where landmarks and orderings between them are extracted
from a planning graph of the relaxed planning problem. Other
strands of research arranged landmarks into groups of inter-
mediate goals to be achieved [25] and extended the landmark
concept to so-called disjunctive landmarks [9, 19]. A disjunc-
tive landmark is a set of literals any of which has to be satisfied
in the course of a valid plan. A generalization of landmarks
resulted in the notion of so-called action landmarks [16, 26].
An action is an action landmark if it occurs in every solu-
tion plan. Most of the recent landmark approaches use land-
mark information to compute heuristic functions for a for-
ward searching planner [16, 21] and investigate their relations
to critical-path-, relaxation-, and abstraction-heuristics [12].
In summary, it turned out that the use of landmark infor-
mation can significantly improve the performance of classical
state-based planners.

In hierarchical planning, landmarks are mandatory abstract
or primitive tasks, i.e. tasks that have to be performed by
any solution plan. Local landmarks are abstract or primitive
tasks that are mandatory, given their parent task is manda-
tory (where a parent task is the abstract task that introduced
the local landmark by decomposition). That is, a local land-
mark is also a landmark if its parent is one, too. For an initial
task network that states a current planning problem, a pre-
processing procedure computes the corresponding local land-
marks. It does so by systematically inspecting the methods
that are eligible to decompose the relevant abstract tasks.
Beginning with the (landmark) tasks of the initial network,
the procedure follows the way down the decomposition hierar-
chy until no further abstract tasks qualify as local landmarks.
Using the precondition and effects of primitive tasks, one can
perform a relaxed reachability test [8]. A failure indicates that
the method which introduced the primitive task is no longer
eligible. If the tested primitive task was a local landmark, we
can even get further: its parent abstract task can never be de-
composed into a solution because one of its local landmarks
cannot be achieved. Hence, this abstract (parent) task can
also be pruned without the need of inspecting the primitive
tasks in the other methods for this abstract task. Being able
to prune useless regions of the search space this way, a hi-
erarchical planner performs significantly better than it does
without exploiting the local landmark information.

Before introducing the local landmark extraction procedure
for hierarchical planning in Section 3, we will briefly review
HTN planning in general and our underlying framework and
planning procedure in particular (Section 2). Afterwards, Sec-
tion 4 shows how the information about local landmarks can
be used during planning. It presents experimental results from



a set of benchmark problems of the UM-Translog [1] and
Satellite domains, which give evidence for the considerable
performance increase gained by pre-processing the planning
problem to prune unnecessary parts and by the use of the
novel search strategies using the local landmarks. The paper
ends with possible extensions to our approach (Section 5) and
with some concluding remarks in Section 6.

2 Formal Framework

Hierarchical Task Network (HTN) planning is based on the
concepts of tasks and methods [6]. Abstract tasks represent
compound activities like making a business trip or trans-
porting certain goods to a specific location. Primitive tasks
correspond to classical planning operators. Hierarchical do-
main models hold a number of methods for each abstract
task. Each method provides a task network, also called par-
tial plan, which specifies a pre-defined (abstract) solution of
the corresponding abstract task. A planning problem consists
of finding a decomposition of the initial task network, using
the tasks and methods provided by the domain model. Thus,
the planning problem is solved by incrementally decomposing
the abstract tasks in the initial task network until it contains
only primitive tasks and is consistent w.r.t. their ordering and
causal structure. The decomposition of an abstract task by an
appropriate method replaces the abstract task by the partial
plan specified by the respective method.

Our approach [2] relies on a hybrid planning framework [7,
15], which combines HTN planning with concepts of partial-
order-causal-link (POCL) planning. The resulting systems in-
tegrate task decomposition with explicit causal reasoning.
Therefore, they are able to use predefined standard solutions
like in pure HTN planning and can thus benefit from the
landmark technique we will introduce below; they can also
develop (parts of) a plan from scratch or modify a default
solution (i.e., a method’s task network) in cases where the
initial state deviates from the presumed standard. It is this
flexibility that makes hybrid planning particularly well suited
for real-world applications [4, 7].

In our framework, a task network or partial plan P =
〈S,≺, V, C〉 consists of a set of plan steps S, i.e., (partially)
instantiated task schemata, augmented with a unique label to
differentiate between multiple occurrences of the same task.
We denote by Tasks(P ) the set of (partially) instantiated task
schemata in the plan steps S of P , i.e., S without labels. It
also contains a set of ordering constraints ≺ that impose a
partial order on the plan steps, a set of variable constraints
V , and a set C of causal links. Variable constraints are (in-)
equations between variables or between variables and con-
stants. A causal link si →ϕ sj indicates that the precondition
ϕ of plan step sj is an effect of plan step si and is supported
this way. A domain model D = 〈T,M〉 includes a set of task
schemata and a set of decomposition methods. A task schema
t(τ ) = 〈prec(t(τ )), add(t(τ )), del(t(τ ))〉 specifies the precon-
ditions as well as the positive and negative effects of a task.
Preconditions and effects are sets of literals and τ̄ = τ1 . . . τn
are the task parameters. In the hybrid setting, both primitive
and abstract tasks show preconditions and effects. This en-
ables the use of POCL planning operations even on abstract
levels. However, in this paper we restrict our language to pure
HTN; preconditions and effects are thus omitted for abstract

tasks. A method m = 〈t, P 〉 relates an abstract task t to a
partial plan P , which represents an (abstract) solution or “im-
plementation” of the task. In general, a number of different
methods are provided for each abstract task. Please note that
no application conditions are associated with the methods,
as opposed to other representatives of HTN-style planning.
A planning problem Π = 〈D, sinit, Pinit〉 includes a domain
model D, an initial state sinit, and Pinit, which represents an
initial partial plan. Please note, that in our hybrid planning
framework, one can also specify a goal state. However, since
we restrict ourselves in this paper to pure HTN planning, the
goal state is omitted.

Based on these strictly declarative specifications of plan-
ning domains and problems, hybrid and HTN planning is per-
formed by refining an initial partial plan Pinit of Π stepwise
until a partial plan P = 〈S,≺, V, C〉 is obtained that satisfies
the following solution criteria:

1. P is a refinement of Pinit, i.e., it is a successor of the initial
plan in the induced search space (cf. Definition 1),

2. each precondition of a plan step in P is supported by a
causal link in C,

3. the ordering and variable constraints are consistent, i.e.,
the ordering does not induce cycles on the plan steps and
the (in-) equations of variable constraints are free of con-
tradiction,

4. none of the causal links in C is threatened, i.e., for each
causal link si →ϕ sj the ordering constraints ensure that
no plan step sk with effect ¬ϕ can be ordered between plan
steps si and sj , and

5. all plan steps in S are primitive tasks.

Please note that we encode the initial state description via
the effects of an artificial primitive task, as it is usually done
in pocl planning. In doing so, the second criterion guarantees
that the solution is executable in the initial state.

Before we present our planning algorithm in more detail, we
define the search space induced by the HTN planning problem
Π. Refinement steps include the decomposition of abstract
tasks by appropriate methods, the insertion of causal links
to support open preconditions of plan steps as well as the
insertion of ordering and variable constraints. We call such a
refinement step a plan modification.

Definition 1 (Induced Search Space). Let PΠ = 〈V, E〉
be the directed acyclic graph which represents the (possibly
infinite) search space induced by a planning problem Π =
〈D, sinit, Pinit〉. Then, the set of vertexes V is the set of plans
in the induced search space and the set of edges E corresponds
to the set of plan used modifications. By abuse of notation,
we write P ∈ PΠ to state P ∈ V. The root of PΠ is the initial
plan of Π; thus, Pinit ∈ PΠ . The direct successors of a plan
P ∈ PΠ are all Plans P ′, such that P ′ resulted from P by
applying a plan modification m to P . Then, m ∈ E.

Now, we present our planning algorithm (Algorithm 1)
which takes the initial plan of the planning problem Π as
an input and refines it stepwise until a solution is found. Our
algorithm performs an informed search, guided by so-called
search strategies, in the search space induced by the HTN
planning problem Π (cf. Definition 1).

The fringe of the algorithm is a plan sequence 〈P1 . . . Pn〉
ordered by the used search strategy. It contains all non-visited



Algorithm 1: Planning Algorithm

Input : The sequence Fringe = 〈Pinit〉.
Output: A solution or fail.

1 while Fringe = 〈P1 . . . Pn〉 6= ε do

2 F ← fFlawDet(P1)
3 if F = ∅ then return P1

4 〈m1 . . .mn′〉 ← fModOrd(
⋃
f∈F

fModGen(f))

5 succ← 〈app(m1, P1) . . . app(mn′ , P1)〉
6 Fringe← fPlanOrd(succ ◦ 〈P2 . . . Pn〉)
7 return fail

plans that are direct successors of visited non-solution plans.
According to the used search strategy, a plan Pi leads more
quickly to a solution than plans Pj for j > i. The current
plan under consideration is always the first plan of the fringe.
The planning algorithm loops as long as no solution is found
and there are still plans to refine (line 1). Hence, in line 2,
the flaw detection function fFlawDet calculates all flaws of the
current plan. A flaw is a plan component that violates a so-
lution criterion. For instance, in the HTN planning setting,
(the occurrence of) an abstract task is a flaw. If no flaws can
be found, the plan is a solution and is returned (line 3). In
line 4, all plan modifications are calculated by the modifi-
cation generating function fModGen, which address all found
flaws. Afterwards, the modification ordering function fModOrd

orders all these modifications according to a given strategy.
Finally, this fringe is updated in two steps: First, the plans re-
sulting from applying the modifications are calculated (line 5)
to be inserted at the head of the fringe in line 6. Afterwards,
the plan ordering function fPlanOrd takes the updated fringe
and orders it according to its strategy. This step can also
be used in order to discard some plans (i.e., to delete some
plans permanently from the fringe). This is useful for plans
which contain unresolvable flaws like an inconsistent ordering
of tasks. If the fringe becomes empty, no solution exists and
fail gets returned.

In contrast to other systems, which implicitly define their
search strategy by their search procedure, our approach
– implemented in the planning environment PANDA [22]
(Planning and Acting in a Network Decomposition
Architecture) – explicitly defines the search strategy: It is
the result of the combination of the used modification and
plan ordering functions. Let us take a look at a simple exam-
ple strategy for clarification: To perform a depth first strat-
egy, the plan ordering strategy has to be the identity (i.e.,
fPlanOrd(P ) = P for any plan sequence P ), whereas the mod-
ification ordering strategy fModOrd can be arbitrary (but de-
cides, which branches to visit first). Thus, the plan ordering
strategy is used to prioritize the plans; several strategies can
be concatenated for tie-braking. The plan ordering strategy
uses also its input sequence for tie braking: If two plans are
still invariant after application of the plan ordering function,
the order given in the input is used.

Many different plan ordering strategies3 have been de-
scribed and evaluated in our previous work [22, 23, 24]. In
this work, we will only sketch those used in the experiments

3 In previous work, we called the plan and modification ordering
functions plan and modification selection functions, respectively.

(cf. Subsection 4.1).

3 Local Landmark Extraction

For a given hierarchical planning problem Π =
〈D, sinit, Pinit〉, global landmarks4 are the tasks that
occur in every sequence of decompositions leading from the
initial task network Pinit to a solution plan. However, we
do not calculate (global) landmarks, but – what we call
– local landmarks. Local landmarks are landmarks with
respect to a given abstract task. We will define them more
formally in this section. The local landmark extraction is
performed using a so-called task decomposition tree (TDT)
of Π. Figure 1 depicts such a tree schematically. The TDT
of Π is an AND/OR tree that represents all possible ways
to decompose the abstract tasks of Pinit by methods in D
until a primitive level is reached or a task is encountered
that is already included somewhere in the TDT. Each level
of a TDT consists of two parts: a task and a method level.
Method nodes are AND nodes, because their children are
the tasks that occur in the partial plan of the respective
method, all of which have to be performed in order to apply
the corresponding method. Task nodes, on the other side, are
OR nodes, because their children are the methods that can
be used to decompose the respective task. To avoid loops,
each abstract task is decomposed only once in the TDT;
hence, all but one identical and fully grounded abstract tasks
become leaf nodes in the TDT. Other leaf nodes are the
primitive tasks. A TDT is built by forward chaining from the
(grounded) abstract tasks in the initial task network until all
nodes of the fringe are leaf nodes. The root node on level 0
is an artificial method node that represents the initial partial
plan Pinit.

and

 and and and

 Method level1

Task level1                                                                                   

Task level2

 Artificial level  Root

 t2t1

  method 11   method 12   method 13   method 21   method 22

  t111    t112   t113   t121   t131    t132   t211   t212   t221

Figure 1: A schematic task decomposition tree.

Before we can formally define landmarks and local land-
marks, we first need to define plan and solution sequences,
respectively.

Definition 2 (Plan and Solution Sequences). For a planning
problem Π and a given plan P ∈ PΠ , let SeqΠ(P ) be the set of
all plan sequences in PΠ rooted in that plan, i.e., SeqΠ(P ) =
{〈P1 . . . Pn〉|P = P1, P1 ∈ PΠ and Pi+1 is a direct successor
of Pi ∈ PΠ for all 1 ≤ i < n}.

The set of all solution sequences rooted in P is then
SolSeqΠ(P ) = {〈P1 . . . Pn〉 ∈ SeqΠ(P )|Pn solution of Π, n ≥
1} ⊆ SeqΠ(P ).

Definition 3 (Landmark). A landmark is a grounded (i.e.,
fully instantiated) task that occurs in every sequence of decom-
positions leading from the initial task network to a solution.

4 In the following, we will only call them landmarks.



That is, the task t is called a landmark of Π = 〈D, sinit, Pinit〉,
if for every sequence 〈P1 . . . Pn〉 ∈ SolSeqΠ(Pinit) there is an
1 ≤ i ≤ n, such that t ∈ Tasks(Pi).

Whereas a landmark has to occur in every decomposition
sequence of a solution (which is rooted in the initial plan),
a local landmark only has to occur in each solution sequence
rooted in a plan containing a specific task t.

Definition 4 (Local Landmark of an Abstract Task). For a
given grounded abstract task t, let PΠ(t) be the set of all plans
in PΠ containing t, i.e., PΠ(t) = {P ∈ PΠ |t ∈ Tasks(P )}.

We call the grounded task t′ a local landmark of t, if for
all P ∈ PΠ(t) holds, that for all sequences 〈P1 . . . Pn〉 ∈
SolSeqΠ(P ) there is a Pi with i > 1 such that t′ ∈ Tasks(Pi).

We use the next definition to calculate all tasks that occur
in all available methods for the same abstract task.

Definition 5 (Common Task Set Operator ∩̂). Let t be an
abstract task in the TDT and mi = 〈t, 〈Si,≺i, Vi, Ci〉〉 and
mj = 〈t, 〈Sj ,≺j , Vj , Cj〉〉 two of its methods in the TDT. That
is, both t and its methods are fully grounded. Then, the Com-
mon Task Set Operator ∩̂ of mi and mj is defined as

mi ∩̂mj = Tasks(Si) ∩ Tasks(Sj)

Using this definition, we can calculate the mandatory tasks
of an abstract task t, M(t), by intersecting all available meth-
ods. Obviously, the tasks contained in M(t) are local land-
marks of t, because these tasks are contained in all solu-
tion sequences that are rooted in a plan containing t. It
is also notable, that all tasks in M(t) are local landmarks
of t if t is not contained in any solution sequence5 (i.e., if
for all 〈P1 . . . Pn〉 ∈ SolSeqΠ(Pinit) holds, that there is no
Pi, 1 ≤ i ≤ n such that t ∈ Tasks(Pj)).

However, not all local landmarks of an abstract task can be
detected that way because not all local landmarks have to be
in such an intersection.

We would also like to emphasize, that local landmarks are
in general no landmarks. This is obvious, because one can
calculate the local landmarks of an abstract task which is not
contained in all valid decompositions (or even in any valid
decomposition) of the initial plan.

Based on the definition of the common task set operator, we
will now define the remaining task set operator which calcu-
lates the set of tasks in which two (grounded) methods differ.

Definition 6 (Remaining Task Set Operator ∪̂). Let t be
an abstract task in the TDT and mi = 〈t, 〈Si,≺i, Vi, Ci〉〉
and mj = 〈t, 〈Sj ,≺j , Vj , Cj〉〉 two of its methods in the TDT.
Then, the Remaining Task Set Operator ∪̂ of mi and mj is
defined as

mi ∪̂mj = {Tasks(Si) \ (mi ∩̂mj),Tasks(Sj) \ (mi ∩̂mj)}

Analogously to the mandatory tasks M(t) of an abstract
task t, we can define its optional tasks O(t), by applying the
remaining task set operator to all methods of t in the TDT.
M(t) and O(t) can be regarded as a partition of the methods
of t in the TDT, i.e., it holds:

{Tasks(P ) | there is a method m = 〈t, P 〉 in the TDT} =

{M(t) ∪ o | o ∈ O(t), if O(t) 6= ∅ or o = ∅, else}.

Table 1: A schematic landmark table, showing in each line an
ground instance of an abstract task, its mandatory abstract
tasks and its optional tasks.

abstr. Tasks Mandatory Optional

t1 M(t1) O(t1)
t2 M(t2) O(t2)
...

...
...

The landmark extraction algorithm (Algorithm 2) calcu-
lates for each abstract task occurring in the TDT these two
sets and stores it into a so-called landmark table. Table 1
shows such a landmark table schematically. The algorithm
takes a TDT6, which is computed before the algorithm is
called, as input and returns a landmark table after its termi-
nation.

Intuitively, the algorithm simply tests all primitive tasks for
relaxed reachability, starting with the initial plan (the root of
the TDT) and proceeding level by level of the TDT. If a task
can be proven unreachable, the method introducing this task
is pruned from the TDT and all its sub-nodes (and so forth).
After all infeasible methods of an abstract task t have been
pruned from the TDT, this task, its mandatory tasks, and its
optional tasks are stored into the landmark table.

Now we take a look how this is achieved by our algorithm:
First, the landmark table and a set for backward propagation
get initialized (line 1). Afterwards, each abstract task, which
is not yet stored into the landmark table is considered level by
level of the TDT (line 2 to 4). For the current abstract task
at hand, line 6 to 8 calculate the mandatory and the optional
tasks in the yet unpruned TDT according to Definition 5 and
6. After the tasks introduced by decomposition of t have been
partitioned into M(t) and O(t), these sets are analyzed for
infeasibility. This test is performed by a relaxed reachability
analysis. First, we study the primitive tasks of M(t) (line 9).
If such a task can be proven to be infeasible, all methods of
t become obsolete and can hence be pruned from the TDT7

(line 10 and 12). After this test, each optional task set is tested
for reachability. If an infeasible task can be found, only this
specific method gets pruned from the TDT (line 13 to 17). If
something was pruned, the loop (line 5 to 18) enters another
cycle, because the set M(t) might have grown. If no more
pruning is possible, the mandatory and optional task sets for
t are stored into the landmark table in line 19. When storing
an entry in line 21, it is checked whether the stored abstract
task is feasible or not (an abstract task is infeasible if it does
not have any methods left, i.e., if M(t) and O(t) are empty).
If some abstract task could actually be proven infeasible, it is
stored for backward propagation, because again all methods
containing this abstract task can be pruned from the TDT
and from the landmark table. Finally, if all abstract tasks are
checked, the backward propagation procedure is called with
the current landmark table and TDT in line 22.

5 In fact, all grounded tasks t′ are local landmarks of t if t is not
contained in any solution sequence.

6 We use the indefinite article, because only the task decomposition
graph is unique, whereas the resulting task decomposition tree
depends on the chosen order in which tasks get decomposed.

7 In the presented algorithm, the optional task sets would still be
tested, which is obviously not necessary. However, for the sake of
readability, we did not handle this case in the algorithm.



Procedure propagate takes as input the already filled land-
mark table, the possibly pruned TDT and a set infeasible

of abstract tasks which have been proved infeasible due to no
remaining methods in the TDT. It works tail-recursively and
returns the final landmark table as soon as no propagation
is possible (line 1). To this end, it first takes and removes
some arbitrary task t′ from the set infeasible. Because this
abstract task was proven infeasible, its landmark table en-
try can be removed (line 3); also, all methods containing this
task can be pruned from the TDT (line 6). To calculate the
methods that can possibly be pruned, all parent tasks of t′

are identified (line 4). Then, for all these parents (line 5), the
respective methods are removed in line 6. Because methods
were removed, the mandatory and the optional task sets could
have changed again. Hence, they are recalculated in line 7 to 9.
Next, the the old landmark table entry of the current parent
t is removed and replaced by the new one (line 10). In line 12,
it is tested again, whether the new landmark table entry cor-
responds to an infeasible abstract task. If so, it is put into the
set infeasible for later processing. The procedure is then
called with the modified parameters in line 13.

Without a formal proof, we want to mention that Algo-
rithm 2 (i.e., the initial landmark table calculation as well as
the backward propagation) always terminates. For the first
part of the algorithm, this is easy to see because both loop
conditions (line 2 and 3) cannot be modified within the loops.
For the second part, i.e., the propagate procedure, we have
to show that the set infeasible becomes empty eventually.
This is the case because each task gets inserted at most once
and will be removed at some point.

After the algorithm terminated, the TDT does not have to
be considered anymore. All necessary information is encoded
in the landmark table.

As we have already pointed out, we only calculate lo-
cal landmarks. That is, given a landmark table entry
(t,M(t),O(t)), M(t) contains some of the local landmarks of
t, which, in general, don’t have to be actual landmarks be-
cause t was not proven to be a landmark. However, all local
landmarks of the abstract tasks in the task level 1 of the TDT
are also actual landmarks, because all tasks in the task level 1
are those contained in the initial plan and hence landmarks.
Thus, if we restrict our local landmark extraction procedure
to calculate only the local landmarks of tasks which are (lo-
cal) landmarks by themselves, all tasks in the M(t) sets in
the local landmark table returned are actual landmarks, too.
These landmarks are, however, of limited use because every
decomposition contains them anyway. Thus, a “guiding” to-
wards these landmarks as done in classical planning does not
bring any benefit.

Example

In order to illustrate our landmark extraction technique, let us
consider a simple example from the UM-Translog domain [1].
Assume a package P1 is at location L1 in the initial state and
we would like to transport it to a customer location L3 in the
same city. Figure 2 shows a part of the task decomposition
tree of this example.

The local landmark extraction algorithm detects that
the first level in the TDT contains only one abstract
task t = transport(P1,L1,L3) and that there is only

Algorithm 2: Local landmark Extraction Algorithm

Input : A task decomposition tree TDT.
Output: The filled landmark table LT.

1 LT ← ∅, infeasible← ∅
2 for i← 1 to TDT.maxDepth() do
3 foreach abstract task t in level i of TDT do
4 if LT contains an entry for t then continue
5 repeat
6 Let M be the methods of t in the TDT.
7 M(t)← ∩̂

m∈M
m

8 O(t)← ∪̂
m∈M

m

9 foreach primitive task t′ ∈M(t) do
10 if t′ can be proven infeasible then
11 remove all m ∈M from the TDT,

including all sub-nodes.
12 break

13 foreach optional task set o ∈ O(t) do
14 foreach primitive task t′ ∈ o do
15 if t′ can be proven infeasible then
16 remove the method m = 〈t, P 〉, with

Tasks(P ) = M(t) ∪ o from the TDT,
including all sub-nodes.

17 continue

18 until no method was removed from TDT
19 LT ← LT ∪ {(t,M(t), O(t))}
20 if M(t) = O(t) = ∅ then
21 infeasible← infeasible ∪ {t}

22 return propagate(LT,TDT,infeasible)

one method, Pi ca de, that can decompose the task into
a partial plan, which contains the subtasks pickup(P1),
carry(P1, L1, L3), and deliver(P1). Hence, M(t) becomes
{pickup(P1),carry(P1, L1, L3),deliver(P1)} and O(t) = ∅. The
current abstract task and the sets M(t) and O(t) are entered
as the first row of the landmark table as shown in Table 2.

The landmark extraction algorithm then takes the (un-
changed) TDT to investigate the next tree level. The ab-
stract tasks to be inspected on this level are pickup(P1) and
carry(P1, L1, L3). The primitive task deliver(P1) is tested
and considered executable. Suppose, the task t = pickup(P1)
is chosen first in line 3 of Algorithm 2. As shown in
Figure 2, the TDT accounts for three methods to de-
compose this task: Pickup hazardous, Pickup normal, and
Pickup valuable. Therefore, we get M(t) = {collect fees(P1)},
and O(t) = {{have permit(P1)}, ∅, {collect insurance(P1)}}.
At this point, the relaxed reachability analysis is performed.
First, collect fees(P1) is being tested, because it is contained
in the intersection M(t). Suppose, this task can not be proven
to be infeasible. Then, each primitive task in each set r ∈ O(t)
has to be checked. Assume the primitive task have permit(P1)
is feasible, whereas collect insurance(P1) is not. The method
Pickup valuable is therefore deleted from the TDT. After an
additional iteration in which M(t) and O(t) get recalculated,
the current abstract task t = pickup(P1), the set M(t), and
the modified set O(t) are added to the landmark table as de-
picted in the second line of Table 2.
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Figure 2: Part of the TDT for the transportation task

Table 2: Example landmark table containing the first three entries for the transportation task illustrated in Figure 2. The sets
in the right most column are indexed by the method’s name that contains its tasks.

abstr. Task Mandatory Optional

transport(P1, L1, L3) {pickup(P1),carry(P1, L1, L3),deliver(P1)} ∅
pickup(P1) {collect fees(P1)} {{have permit(P1)}Pickup hazardous,∅Pickup normal}

carry(P1, L1, L3) {carry direct(T1, P1, L1, L3)} ∅

Procedure propagate(LT,TDT,infeasible)

Input : A landmark table LT, a task decomposition
tree TDT, possibly pruned, and a set of
abstract tasks infeasible, which have been
proved infeasible.

Output: the updated landmark table LT, in which
methods are pruned that contain infeasible
abstract tasks.

1 if infeasible = ∅ then return LT
2 infeasible← infeasible \ {t′}, where t′ ∈ infeasible.
3 LT ← LT \{(t′,M(t′), O(t′)) ∈ LT}
4 parents← {t|(t,M(t), O(t)) ∈ LT, t′ ∈M(t) ∪

⋃
o∈O(t)

o}
5 foreach t ∈ parents do
6 Remove all methods from the TDT, that contain t′ in

its plan, i.e., all m = 〈t, P 〉 with t′ ∈ Tasks(P ).
7 Let M be the methods of t in the TDT.
8 M(t)← ∩̂

m∈M
m

9 O(t)← ∪̂
m∈M

m

10 LT← (LT\{(t,M ′(t), O′(t)) ∈ LT})∪{(t,M(t), O(t))}
11 if M(t) = O(t) = ∅ then
12 infeasible← infeasible ∪ {t}

13 return propagate(LT,TDT,infeasible)

In the second iteration (line 3) the abstract task t =
carry(P1, L1, L3) is considered. The methods Carry normal
and Carry via hub are available to decompose this task. We
obtain M(t) = ∅ and O(t) = {{carry direct(T1, P1, L1, L3)},
{carry via hub(. . . ), go through tcenters(. . . )}}. Suppose the
primitive task go through tcenters(. . . ) is infeasible. The sub
tree with root carry via hub(. . . ) has then to be removed
from the TDT. Because the TDT was changed, the itera-
tion (line 5 to 18) enters another cycle. Because there is
now only one method left, M(t) now contains all tasks of

this remaining method. Hence, the current abstract task t =
carry(P1, L1, L3) together with the modified M(t) and O(t)
are added to the landmark table as depicted in the last line
of Table 2.

4 Landmark Exploitation

The information about landmarks can be exploited in two
ways: The first is to deduce heuristic guidance from the knowl-
edge about which tasks have to be decomposed on refinement
paths that lead towards a solution. But before we investigate
into this matter, we will present a second way of landmark ex-
ploitation, namely the reduction of domain models or, more
precisely, the transformation of a universal domain model into
one that includes problem-specific pruning information.

4.1 Domain Model Reduction

During the construction of the landmark table, the feasibility
check and the consecutive propagation of its result into the
abstract task level lead to a pruning of the task decomposition
tree. The result of this analysis implies that if a method is
removed from the TDT during the operation of our landmark
extraction algorithm, it can be safely ignored as a refinement
option during plan generation.

We consequently supply our refinement generating module
with the landmark table for the current planning problem
and verify for every incoming abstract task flaw, which of the
methods specified in the domain model are reasonably appli-
cable. However, the landmark table is built from grounded
tasks, while the plan generation procedure operates on lifted
instances for which the final grounding is yet to be computed.
We therefore calculate all groundings of the abstract task at
hand that are consistent with the current variable constraints
and match these grounded tasks t with the entries in the land-
mark table. The union of the (lifted) method schemata that
constitute the (grounded) instances in the optional task sets



O(t) is the set of method schemata that we consider for ap-
plication to the currently flawed abstract task. Obviously, the
earlier a task is addressed in the planning process, the less
variable constraints are typically introduced in the partial
plan, the more task groundings are implied by the lifted in-
stance, and consequently the less probable is one of its meth-
ods pruned by this technique.

In order to quantify the effect of this landmark exploitation
technique, we have performed several benchmark tests on the
UM-Translog and the Satellite domain with various different
search strategies. Table 3 shows the domain model sizes of
the UM-Translog domain after our pruning process. For the
Satellite domain, our pruning technique did not change the
domain model. According to this table, the pruning technique
achieves a reduction of the number of abstract task instances
that ranges between 33% and 43%, while the reduction of the
number of inapplicable methods per instance varied between
27% and 41%.

Table 3: This table shows the remaining sizes of the domain
model after our reduction for typical problems from the UM-
Translog domain. On all problems that are grouped together
the same reduction was achieved.

Problem
abstr. Tasks Methods

(of 21) (of 51)

Regular Truck Problems

12
(57%)

30
(59%)

Hopper Truck,
Auto Truck,
Regular Truck (a)8

Regular Truck (b)
Regular Truck (c)
Regular Truck (d)

Various Truck Type Problems
12

(57%)
32

(63%)
Flatbed Truck,
Armored R-Truck

Traincar Problems

14
(67%)

32
(63%)

Auto Traincar (a),
Auto Traincar (b),
Mail Traincar,
Refrigerated Regular Traincar

Airplane Problem 14
(67%)

37
(73%)Airplane

In theory, it is quite intuitive that a reduced domain model
leads to an improved performance of the planning system.
It is however hard to predict the actual effect the pruning
information on the grounded instance level has on the lifted
computations, in particular taking into account that the land-
mark table typically contains a number of “distracting” local
landmarks that are located on non-solution paths. In order
to quantify the practical performance gained by the hierar-
chical landmark technique, we therefore conducted a series of
experiments in the PANDA planning environment [22]. The
planning strategies we used are representatives from the rich
portfolio provided by PANDA, which has been discussed in
previous work [22, 23, 24]. We briefly review the ones on which
we based our experiments.

As was already mentioned in Section 2, the search strategy
is encoded by the combination of the modification and plan

8 Different sub-versions of a problem differ in the number of parcels
to transport and the number and kind of involved locations.

ordering functions. We distinguish ordering principles that
are based on a prioritization of certain flaw or modification
classes and strategies that opportunistically choose from the
presented set. We call the latter ones flexible strategies.

Representatives for inflexible strategies are the classical
HTN strategy patterns that try to balance task expansion
with respect to other plan refinements. A classical HTN strat-
egy is the preference of expansion the way it has been real-
ized in the UMCP system [6]: Plans are developed into com-
pletely primitive task networks in which causal interactions
are dealt with afterwards. This technique presumably ben-
efits most from a reduced method set. The SHOP strategy,
like the system it is named after [18], prefers task expansion
for the abstract tasks in the order in which they are to be
executed. The expand-then-make-sound (ems) modification
ordering strategy [17] alternates task expansion modifications
with other classes, resulting in a “level-wise” concretion of all
plan steps.

As for the flexible modification orderings, we included the
well-established Least Committing First (lcf) paradigm, a
generalization of POCL strategies that prioritizes those modi-
fications higher that address flaws for which the smallest num-
ber of alternative solutions has been proposed. From previ-
ous work on planning strategy development we deployed two
HotSpot-based strategies: HotSpots denote those components
in a plan that are referred to by multiple flaws, thereby quan-
tifying to which extent solving one deficiency may interfere
with the solution options for coupled components. The Di-
rect Uniform HotSpot (du) strategy consequently avoids those
modifications which address flaws that refer to HotSpot plan
components. While the du heuristic takes all flaws uniformly
into account when calculating their interference potential, the
Direct Adaptive HotSpot (da) strategy puts problem-specific
weights on the binary combinations of flaw types that occur
in the plan. The strategy adapts to a repeated occurrence
of type combinations by increasing their weights: If abstract
task flaws happen to coincide with causal threats, their com-
bined occurrence becomes more important for this plan gen-
eration episode. As a generalization of singular HotSpots to
commonly affected areas of plan components, the HotZone
(hz ) modification ordering takes into account connections be-
tween HotSpots and tries to give modifications that deal with
these clusters a low priority.

Plan ordering functions control the traversal through the
refinement space that is provided by the modification order-
ing functions. The strategies in our experimental evaluation
were based on the following five components: The least com-
mitment principle on the plan ordering level is represented
in two different ways, namely the Fewer Modifications First
(fmf) strategy, which prefers plans for which a smaller num-
ber of refinement options has been announced, and the Less
Constrained Plan (lcp) strategy, which is based on the ratio
of plan steps to the number of variable constraints and causal
links in the plan.

The HotSpot concept can be lifted on the plan ordering
level: The Fewer HotZone (fhz) strategy prefers plans with
fewer HotZone clusters. The rationale for this search princi-
ple is to focus on plans in which the deficiencies are more
closely related and that are hence candidates for an early
decision concerning the compatibility of the refinement op-
tions. The fourth strategy operates on the HotSpot principle



implemented on plan modifications: the Fewer Modification-
based HotSpots (fmh) function summarizes for all refinement-
operators that are proposed for a plan the HotSpot values of
the corresponding flaws. It then prefers those plans for which
the ratio of plan modifications to accumulated HotSpot val-
ues is less. By doing so, this search schema focuses on plans
that are expected to have less interfering refinement options.

Finally, since our framework’s representation of the SHOP
strategy solely relies on modification ordering, a depth first
plan selection is used for constructing a simple hierarchical
ordered planner (that is, the plan ordering function is the
identity function).

It is furthermore important to mention that our strategy
functions can be combined into selection cascades in which
succeeding components decide on those cases for which the
result of the preceding ones is a tie: With s1 ◦ s2 we denote,
that the strategy s1 is applied first and afterwards strategy
s2 for tie-braking.

We have built five combinations from the components
above, which can be regarded as representatives for com-
pletely different approaches to plan development. Please note
that the resulting strategies are general domain-independent
planning strategies, which means that they are not tailored to
the application of domain model reduction by pre-processing
in any way.

We ran our experiments on two distinguished planning do-
mains. The Satellite domain is an established benchmark in
the field of non-hierarchical planning. It is inspired by the
problem of managing scientific stellar observations by earth-
orbiting instrument platforms. Our encoding of this domain
regards the original primitive operators as implementations of
abstract observation tasks, which results in a domain model
with 3 abstract and 5 primitive tasks, related by 8 methods.
The second domain is known as UM-Translog, a transporta-
tion and logistics model originally written for HTN planning
systems. We adopted its type and decomposition structure
to our representation which yielded a deep expansion hierar-
chy in 51 methods for decomposing 21 abstract tasks into 48
different primitive ones.

We have chosen the above domain models because of the
problem characteristics they induce: Satellite problems typi-
cally become difficult when modeling a repetition of observa-
tions, which means that a small number of methods is used
multiple times in different contexts of a plan. The evaluated
scenarios are thus defined as observations on one or two satel-
lites. UM-Translog problems, on the other hand, typically dif-
fer in terms of the decomposition structure, because specific
transportation goods are treated differently, e.g., toxic liquids
in trains require completely different methods than transport-
ing regular packages in trucks. We consequently conducted
our experiments on qualitatively different problems by speci-
fying various transportation means and goods.

Table 4 shows the runtime behavior of our system in terms
of the size of the average search space and CPU time con-
sumption for the problems in the UM-Translog and Satellite
domains, respectively. The size of the search space is mea-
sured in the number of plans visited for obtaining the first
solution. Reviewing the overall result, it is quite obvious that
the landmark pre-processing pays off in all strategy configu-
rations and problems. It does so in terms of search space size
as well as in terms of runtime. The only exception to this is

the UM-Translog problem concerning air freight, on which us-
ing the pruned domain model has a measurable negative effect
(decrease of performance of 18%). In two configurations in the
easiest Satellite problem the search space cannot be reduced
but a negligible overhead is introduced by pre-processing.

The average performance improvement over all strategies
and over all problems in the UM-Translog domain is about
40% as is documented in Table 4a. The biggest gain is
achieved in the transportation tasks that involve special goods
and transportation means, e.g., the transport of auto-mobiles,
frozen goods, and mail via train saves between 53% and
71%. In general, the flexible strategies profit from the land-
mark technique, which gives further evidence to the previ-
ously obtained results that opportunistic planning strategies
are very powerful general-purpose procedures and in addition
offer potential to be improved by pre-processing methods. The
SHOP-style strategy cannot take that much advantage of the
reduced domain model, because it does not adapt its focus
on the reduced method alternatives. It continues to address
the abstract tasks in the order of their intended execution, re-
gardless of the opportunities that the changes in the method
structure may offer. We believe, however, that there may be
other possibilities for a SHOP strategy to take into account
the reduced domain models.

The Satellite domain does not benefit significantly from the
landmark technique due to its shallow decomposition hierar-
chy (cf. Table 4b). We are, however, able to solve problems for
which the participating strategies do not find solutions within
the given resource bounds otherwise.

4.2 Landmark-Aware Strategies

Our landmark-aware strategies are based on the idea that the
refinement options, which are basically stored in the optional
task set column of the landmark table, estimate an upper
bound for the number of expansion refinements that an ab-
stract task requires before a solution is found. In the previ-
ous example (see Table 2), the implementation options for
the abstract task pickup can be completely explored via the
Pickup hazardous and Pickup normal methods. This heuristic
is only a rough estimation for the “expansion effort” because
the table may contain tasks that turn out to be un-achievable
and it does not take into account the refinement effort it takes
to make an implementation operationable on the primitive
level. For our first strategies, we assume that all methods de-
viate more or less to the same amount in terms of both factors.
We will see that this simplification already yields a heuristic
with good performance.

For our landmark strategies, we first need to define the
landmark cardinality of a set o of tasks to be the number of
its (abstract) tasks, for which there is a landmark table entry.
That is, let |o|LT = |{t ∈ o | (t,M(t), O(t)) ∈ LT}|.

Our first modification ordering function lm is defined as
follows:

Definition 7 (Landmark-Aware Ordering lm). Let fi and
fj be two abstract task flaws in a plan P and let ti and tj
be ground instances of the abstract tasks that are compati-
ble with the (in-) equations in the variable constraints of P
and that are referenced by fi and fj, respectively. Further-
more, let the landmark table contain corresponding entries
(ti,M(ti), O(ti)) and (tj ,M(tj), O(tj)).



Table 4: This table shows the impact of the introduced pruning technique. The column pruned refers to the reduced domain
models, whereas unpruned refers to the original ones (cf. Table 3). The tests were run with the planning environment PANDA [22]
on a machine with a 3 GHz CPU and 256 MB Heap memory for the Java VM. Space refers to the number of created plans and
Time refers to the used time in seconds including pre-processing. Values are the averages of three runs. Dashes indicate that
no solution was found within a limitation of 5,000 created nodes and a time limit of 150 minutes.

(a) Results for the UM-Translog domain.

Problem
Modification ordering Plan ordering unpruned pruned

function fModOrd function fPlanOrd Space Time Space Time

Hopper Truck

lcf ◦ hz fmh ◦ fmf 72 147 41 95
lcf ◦ ems fmh ◦ fmf 101 211 72 174
lcf ◦ du fhz ◦ fmf 75 155 46 99
hz ◦ lcf fhz ◦ lcp ◦ fmf 71 143 54 115

SHOP Strategy 160 323 89 212
UMCP Strategy 96 187 58 122

Auto Truck

lcf ◦ hz fmh ◦ fmf 119 301 85 236
lcf ◦ ems fmh ◦ fmf 191 443 114 298
lcf ◦ du fhz ◦ fmf 129 314 92 251
hz ◦ lcf fhz ◦ lcp ◦ fmf 183 469 157 413

SHOP Strategy 226 558 164 433
UMCP Strategy 216 535 156 474

Regular Truck (a)

lcf ◦ hz fmh ◦ fmf 149 377 73 203
lcf ◦ ems fmh ◦ fmf 234 613 105 206
lcf ◦ du fhz ◦ fmf 241 483 131 370
hz ◦ lcf fhz ◦ lcp ◦ fmf 190 458 115 307

SHOP Strategy 163 479 146 406
UMCP Strategy 216 550 177 506

Regular Truck (b)

lcf ◦ hz fmh ◦ fmf 70 142 42 98
lcf ◦ ems fmh ◦ fmf 106 216 81 182
lcf ◦ du fhz ◦ fmf 83 160 46 105
hz ◦ lcf fhz ◦ lcp ◦ fmf 75 152 54 122

SHOP Strategy 146 283 106 241
UMCP Strategy 146 278 55 113

Regular Truck (c)

lcf ◦ hz fmh ◦ fmf 72 149 41 92
lcf ◦ ems fmh ◦ fmf 109 225 78 179
hz ◦ lcf fhz ◦ lcp ◦ fmf 74 153 54 120
lcf ◦ du fhz ◦ fmf 84 173 46 104

SHOP Strategy 409 911 80 177
UMCP Strategy 110 215 57 127

Regular Truck (d)

lcf ◦ hz fmh ◦ fmf – – 275 1237
lcf ◦ ems fmh ◦ fmf – – 293 1144
lcf ◦ du fhz ◦ fmf 753 2755 295 1262
hz ◦ lcf fhz ◦ lcp ◦ fmf – – 787 3544

SHOP Strategy – – 926 4005
UMCP Strategy 1396 4893 308 1263

Flatebed Truck

lcf ◦ hz fmh ◦ fmf 81 182 58 40
lcf ◦ ems fmh ◦ fmf 120 269 90 216
lcf ◦ du fhz ◦ fmf 96 216 54 129
hz ◦ lcf fhz ◦ lcp ◦ fmf 130 299 69 162

SHOP Strategy 243 595 98 257
UMCP Strategy 164 344 63 149

Armored R-Truck

lcf ◦ hz fmh ◦ fmf 73 176 52 138
lcf ◦ ems fmh ◦ fmf 147 326 142 317
lcf ◦ du fhz ◦ fmf 84 203 56 135
hz ◦ lcf fhz ◦ lcp ◦ fmf 72 174 57 150

SHOP Strategy 144 369 100 253
UMCP Strategy 134 330 75 172



Table 4: (continued)

(a) Results for the UM-Translog domain (continued).

Problem
Modification ordering Plan ordering unpruned pruned

function fModOrd function fPlanOrd Space Time Space Time

Auto Traincar (a)

lcf ◦ hz fmh ◦ fmf 454 1547 218 742
lcf ◦ ems fmh ◦ fmf 945 3057 243 728
lcf ◦ du fhz ◦ fmf – – – –
hz ◦ lcf fhz ◦ lcp ◦ fmf – – – –

SHOP Strategy – – – –
UMCP Strategy 282 1300 220 739

Auto Traincar (b)

lcf ◦ hz fmh ◦ fmf 342 1137 144 421
lcf ◦ ems fmh ◦ fmf 460 1425 177 477
lcf ◦ du fhz ◦ fmf 365 1044 107 328
hz ◦ lcf fhz ◦ lcp ◦ fmf 357 958 278 770

SHOP Strategy 541 1282 247 963
UMCP Strategy 413 1168 161 546

Mail Traincar

lcf ◦ hz fmh ◦ fmf 380 1241 89 221
lcf ◦ ems fmh ◦ fmf 590 1805 138 313
lcf ◦ du fhz ◦ fmf 559 1450 64 160
hz ◦ lcf fhz ◦ lcp ◦ fmf 93 213 70 171

SHOP Strategy 832 1911 121 274
UMCP Strategy 397 994 92 229

Refrigerated
Regular Traincar

lcf ◦ hz fmh ◦ fmf 384 1240 89 215
lcf ◦ ems fmh ◦ fmf 634 1861 138 315
lcf ◦ du fhz ◦ fmf 446 1074 64 159
hz ◦ lcf fhz ◦ lcp ◦ fmf 92 198 70 172

SHOP Strategy 777 1735 173 353
UMCP Strategy 400 952 90 244

Airplane

lcf ◦ hz fmh ◦ fmf 164 507 141 435
lcf ◦ ems fmh ◦ fmf 142 413 167 471
lcf ◦ du fhz ◦ fmf 257 749 200 621
hz ◦ lcf fhz ◦ lcp ◦ fmf 280 777 240 700

SHOP Strategy 335 821 150 450
UMCP Strategy 91 253 70 215

(b) Results for the Satellite domain.

Problem
Modification ordering Plan ordering unpruned pruned

function fModOrd function fPlanOrd Space Time Space Time

1obs-1sat-1mode

lcf ◦ hz fmh ◦ fmf 38 41 37 42
lcf ◦ ems fmh ◦ fmf 46 51 46 53
lcf ◦ du fhz ◦ fmf 67 72 67 72
hz ◦ lcf fhz ◦ lcp ◦ fmf 58 62 53 60

SHOP Strategy 61 67 57 61
UMCP Strategy 83 91 83 91

2obs-1sat-1mode

lcf ◦ hz fmh ◦ fmf 602 788 539 708
lcf ◦ ems fmh ◦ fmf 964 1631 903 1428
lcf ◦ du fhz ◦ fmf 1135 1319 901 1030
hz ◦ lcf fhz ◦ lcp ◦ fmf 1468 1699 1216 1474

SHOP Strategy 251 270 237 264
UMCP Strategy 1132 1336 883 1035

2obs-2sat-1mode

lcf ◦ hz fmh ◦ fmf – – – –
lcf ◦ ems fmh ◦ fmf – – – –
lcf ◦ du fhz ◦ fmf – – 2821 3353
hz ◦ lcf fhz ◦ lcp ◦ fmf – – – –

SHOP Strategy – – 1406 1780
UMCP Strategy 448 510 278 1097



The modification ordering function lm then orders a plan
modification mi before mj if and only if mi addresses fi, mj

addresses fj, and
∑

o∈O(ti)

|o|LT <
∑

o∈O(tj)

|o|LT holds.

This strategy implements a rationale that is similar to the
least commitment principle of the lcf, because it favors those
plan refinements that impose less successor plans, that means,
is reduces the effective branching factor of the search space.
We note, that the proper choice of the grounded task instances
ti and tj in the above definition is crucial for the actual per-
formance, because the plan modifications typically operate
on the lifted abstract tasks and method definitions. For our
first experiments, we implemented a random choice on the
compatible grounded landmark table entries, future work will
however focus on a better informed candidate selection.

While the above heuristic focuses on the very next level of
refinement, the following definition also takes into account es-
timates for subsequent refinement levels thus minimizing the
number of refinement choices until no more decompositions
are necessary.

Definition 8 (Indirect Landmark-Aware Ordering lm∗). Let
fi and fj be two abstract task flaws in a plan P and let ti and
tj be ground instances of the abstract tasks that are compatible
with the (in-) equations in the variable constraints of P and
that are referenced by fi and fj, respectively.

Furthermore, let O∗(t) be the transitive closure of a recur-
sive traversal of the landmark table that begins in t. More
formally: O∗(t) = {o|o ∈ O(t) for (t,M(t), O(t)) ∈ LT or o ∈
O(t′) for (t′,M(t′), O(t′)) ∈ LT, t′ ∈ o′, and o′ ∈ O∗(t)}.

The modification ordering function lm∗ then orders a plan
modification mi before mj if and only if mi addresses fi, mj

addresses fj, and
∑

o∈O∗(ti)
|o|LT <

∑
o∈O∗(tj)

|o|LT holds.

We would like to point out that O∗ is always finite due to
the finiteness of the landmark table, even for cyclic method
definitions.

The results of our first experimental evaluation of these
landmark-aware strategies is given in Table 5: lm and lm∗ do
outperform the other strategies on practically all problems in
the UM-Translog domain (cf. Table 5a) in terms of both size of
the explored search space and computational time. We believe
that it is because of the relatively unreliable random choice
of grounded candidates for the lifted task instances that the
supposedly better informed lm∗ does not consistently perform
better than lm. We will address this crucial issue in future
work by focusing the computational methods for lifting the
landmark information: We will investigate into calculating the
average optional task set sizes of the compatible ground task
instances, use the minimal set sizes for consistently underes-
timating the effort (analog to admissible heuristics), and the
like. In the Satellite domain, our landmark-aware strategies
show only average performance, as there is hardly any land-
mark information available due to the shallow decomposition
hierarchy of this domain.

5 Outlook

We have empirically shown that pruning the planning prob-
lem can significantly reduce the explored search space. This
pruning relies on a relaxed reachability analysis of fully

grounded primitive tasks. So far, a very basic reachability
test has been used, which only tests for unsatisfied rigid predi-
cates9. In future work, we will use a more elaborated technique
as, for instance, explained by Fox and Long [8].

Our empirical evaluation has also shown the success of the
two introduced search strategies which use the calculated local
landmarks in order to guide the search process. As has been
shown earlier [22, 23, 24], many different search strategies can
be developed. Future work will introduce additional landmark
strategies and discuss the results in more detail.

The techniques discussed in this paper directly apply to
hierarchical planning. However, there are various extensions
possible that apply to hybrid planning. One of the main dif-
ferences between those two approaches is that in hybrid plan-
ning, not only primitive tasks show preconditions and effects,
but also abstract tasks. This allows to test even the abstract
tasks for reachability. Another difference is that hybrid plan-
ning problems also specify a goal state that has to be accom-
plished. Using this goal state, one can use techniques from
classical planning in order to generate classical (action) land-
marks which can then be used in the hybrid setting.

6 Conclusion

We have presented an effective landmark technique for hier-
archical planning. It analyzes the planning problem by pre-
processing the underlying domain and prunes those regions of
the search space where a solution cannot be found. Our ex-
periments on a number of representative hierarchical planning
domains and problems give reliable evidence for the practical
relevance of our approach. The best performance gain could
be achieved for problems with a deep hierarchy of tasks. Our
technique is domain- and strategy-independent and can help
any hierarchical planner to improve its performance. We have
also introduced two search strategies which use the local land-
marks in order to guide the search process more efficiently to-
wards a solution. In our empirical evaluation, both strategies
outperform the other strategies we chose for comparison in
most cases.
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search process, respectively. The tests were run with the planning environment PANDA [22] on a machine with a 3 GHz CPU
and 256 MB Heap memory for the Java VM. Space refers to the number of created plans and Time refers to the used time in
seconds including pre-processing. Values are the averages of three runs. Dashes indicate that no solution was found within a
limitation of 5,000 created nodes and a time limit of 150 minutes. The best result for a given problem is emphasized bold, the
second best bold and italic.

(a) Results for the UM-Translog domain

Mod. ordering Hopper Truck Auto Truck Regular Truck (a) Regular Truck (b)
function fModOrd Space Time Space Time Space Time Space Time

lcf 55 118 155 470 162 463 78 173
hz 55 121 197 527 191 473 55 117
lm 52 111 133 329 145 374 62 135
lm∗ 51 109 135 462 154 430 52 112
ems 147 295 405 976 211 507 127 262
da 144 352 644 2077 239 562 114 257
du 101 224 459 1304 1508 4097 160 460

SHOP 89 212 164 433 146 406 106 241
UMCP 58 122 156 474 177 506 55 113

Mod. ordering Regular Truck (c) Regular Truck (d) Flatbed Truck Armored R-Truck
function fModOrd Space Time Space Time Space Time Space Time

lcf 127 222 327 1278 62 179 86 198
hz 55 137 – – 159 399 122 355
lm 53 122 291 1172 63 155 71 177
lm∗ 65 142 266 1162 61 144 61 155
ems 114 235 – – 1571 3797 113 269
da 148 352 723 2560 99 237 120 359
du 117 258 – – 1047 2601 75 201

SHOP 83 190 926 4005 98 257 95 227
UMCP 57 127 308 1263 63 149 75 172

Mod. ordering Auto Traincar (a) Auto Traincar (b) Mail Traincar
function fModOrd Space Time Space Time Space Time

lcf – – 227 926 79 209
hz – – 701 1616 81 224
lm 158 596 183 608 75 184
lm∗ 304 1473 158 543 78 205
ems – – 2558 6447 879 1806
da – – 184 705 641 2031
du – – 1390 4018 424 1090

SHOP – – 247 963 121 274
UMCP 220 739 161 546 92 229

Mod. ordering Refrigerated Regular Traincar Airplane
function fModOrd Space Time Space Time

lcf 90 225 247 798
hz 76 196 345 1323
lm 72 180 142 441
lm∗ 89 212 189 676
ems 500 1048 784 2517
da 588 1958 172 620
du 307 775 643 2134

SHOP 173 353 150 450
UMCP 90 244 70 215



Table 5: (continued)

(b) Results for the Satellite domain.

Mod. ordering 1obs-1sat-1mode 2obs-1sat-1mode 2obs-2sat-1mode
function fModOrd Space Time Space Time Space Time

lcf 86 93 1120 1338 407 701
hz 61 60 1281 4764 1094 1338
lm 73 80 560 652 693 785
lm∗ 78 85 847 969 739 813
ems 65 64 1586 2608 1219 1579
da 56 60 782 1131 2186 6841
du 100 107 – – – –

SHOP 62 66 138 155 1406 1780
UMCP 83 91 883 1035 278 1097
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