Exploiting Landmarks for Hybrid Planning

Mohamed Elkawkagy Pascal Bercher
Bernd Schattenberg Susanne Biundo

Institute of Artificial Intelligence

ulm university un|ver5|tat |

M

Motivation

» Landmarks in classical state based planning are facts that have to hold in some
Intermediate state of every plan that solves the given planning problem .
» Hierarchical Planning
= Accomplish some set of tasks, rather than to achieve a goal
= Based on the concepts of tasks and methods
= High-level tasks are recursively decomposed down to sub-tasks
» Landmarks in hierarchical planning are tasks that occur in any sequence of

decompositions leading from the initial plan to a solution plan.

Karlsruhe - PuK 2010 2

Formal Framework (I)

> Task

= Primitive task — action in state based planning

= Abstract task — complex task (implemented by primitive tasks)
t(z)=<prec(t(z)),add (t(z)),del(t(z) >

= Difference: Primitive tasks are executed directly while abstract tasks

require a sequence of primitive tasks to be performed
» Plan: P=<S C>
» Method: m=<t, P>

» Declarative domain model : D= (T, M)

Karlsruhe - PuK 2010

Formal Framework (IT)

Planning problem specification I1 = < D, Sinit, Pinit >

Plan refinement — transforming the current plan into a more specific plan

A task that needs to Plan_i Plan_]j
be refined

= B2

Possible ways to
refine it

Solution Plan of a planning problem II is obtained by refining the initial plan Pini

Plannin Strate(gix compares the available I}?Ian refinements to choose the most
stepwise mto a plan P = < S, C > that has only primitive plan steps and the set of

suitable one to refine the current plan.
constraints Is consistent.

Karlsruhe - PuK 2010

Our Approach

1) Analyzing task decomposition structure

= Building Task Decomposition Tree (TDT).

2) Extracting Landmark

= |dentify the essential tasks.

3) Exploiting Landmark information during the planning process

= QOperating on reduced domain model by ignoring
unsuccessful decomposition methods.

= Providing search strategy with focal information

Karlsruhe - PuK 2010

Task Decomposition Tree

Task Decomposition Tree (TDT): AND/OR tree that represents all
possible ways to decompose the abstract tasks of Pinit by methods in D

until a primitive level is reached or a task is encountered that is

already included in an upper level of the TDT

Karlsruhe - PuK 2010

Operators

mi=<t<Si,Ci>> “m) mi=<t<Sj,Ci>>

Common Task Set Operator: In the TDT, for two methods mi, and m;

of a task t, the Common Task Set Operator is defined via:
m;Nm; = Tasks(S;) N Tasks(S ;)

Remaining Task Set Operator: In the TDT, for two methods mi, and m;

of a task t, the Remaining Task Set Operator of mi and m; is defined via:

mi ij- = {Tasks(S;) \ (m; ﬁm}-}: Tasks(S;) \ (m; ﬁmf}}

Karlsruhe - PuK 2010

Identifying Landmarks

Landmark Table: represents a mapping between an abstract task and its

subtasks in the decomposition methods that refine this abstract task.

‘ R R————.
[Landmark | Jintersection(IN |

> The intersection I(t) contains those subtasks which occur on every

possible path of decompositions that transform t into a primitive plan.

Karlsruhe - PuK 2010

Identifying Landmarks

Landmark Table: represents a mapping between an abstract task and its

subtasks in the decomposition methods that refine this abstract task.

_
- Landmark] Tntersection(T] |7 Options(O)~, |\
m.h;s |

t;;I, ‘ |
‘ A

» The remaining task sets R(t) (aka options) represent sets of those subtasks that

optionally occur when decomposing an abstract task towards a solution plan.

> Every set is indexed by the name of the method which contains these subtasks.

Karlsruhe - PuK 2010 9

|_andmark Extraction

Input : A task decomposition tree TDT.
Output: The flled landmark table LT
LT @ s=f-ocivie «—y
for i 4= 1 to TOT moaxDepthi) do
foreach abstract lask § in level i of TDT do
i LT condains an enlry for @ then continue
repeat
Let A2 pe s ssvssaus we ¢in the TV

fity = @ m
g M

Rit) e (O m)" {0}
i S
foreach primitive task t" € I{t) do
if ' can be proven wifeasible then

break
end
end
foreach remaining task set v € R{t) do
foreach primilioe losk " € v do
if " can be proven infeasible then
remove the method m = (8, P}, with

stb-nodes,
continue
end
end
e
until wo melhod was removed from TOT
LT « LT u {{t, £{t), R{1)]}
if (i) = R(t) = B then
| infeasible + infeasible Ll {t}
e

| end
end
return propagate LT TOT infeasible)

remove all wmo& M from the TDT, including all sub-nodes.

Tuasks{) = (1) Ur from the TDT, including all

Karlsruhe - PuK 2010

It runs iteratively through
all levels of the TDT until
the maximum level has

been reached.

10

|_andmark Extraction

Input : A task decomposition tree TDT.
Output: The flled landmark table LT
LT + §. infeasible + @
for i + 1 to TOT moarDepthi} do

foreach abstract lask § in level i of TDT do
if LT condains an enlry for § then continue
repeal
Let M be the methods of ¢ in the TIYT.
Ity « ﬁ. i

Rit) e (O m)" {0}
i S
foreach primitive fask " € 1{t) do
| if &' can be proven infeasible then

break
end
end
foreach rermaining toask set r € f{t) do
foreach primilioe losk " € v do

if " can be proven infeasible then
remove the method m = (8, P}, with
Tuasks{) = (1) Ur from the TDT, including all
stb-nodes,
continue

end

end
e

until wo melhod was removed from TOT
LT « LT u {{t, £{t), R{1)]}

if f{i) = R(t) = 0 then

| infeasible + infeasible Ll {t}

e

| end
e
return propagate LT TOT infeasible)

remove all wmo& M from the TDT, including all sub-nodes.

» The Methods M={m1, mz, ..., mn}
that decompose a current task t are
collected.

» The intersection I(t) and remaining

tasks sets R(t) are computed.

Karlsruhe - PuK 2010 11

|_andmark Extraction

Input

: A task decomposition tree T,

Output: The flled landmark table LT

LT +
for 4

f. infeasible «
I to TOT moxDepth() do

foreach abstract lask § in level i of TDT do

| end

e

return propagate LT TOT infeasible)

i LT condains an enlry for @ then continue
repeat

Let A be the methods of ¢ in the TDT.
Ity « ﬁ. i

Rit) e { O m)" {0}
i S
foreach primitive fask " € 1{t) do
if ' can be proven wifeasible then

remove all wmo& M from the TDT, including all sub-nodes.

break
end
end
foreach remaining tosk sel v € Rt do
foreach primilioe losk " € v do
if " can be proven infeasible then
remove the method m = (8, P}, with
Tuasks{) = (1) Ur from the TDT, including all
stb-nodes,
continue

endd
end

end

until wo melhod was removed from TOT
LT « LT u {{t, £{t), R{1)]}

if f{i) = R(t) = 0 then

| infeasible + infeasible Ll {t}

e

Karlsruhe - PuK 2010

» The reachability of each primitive

task t’ in I(t) is investigated by
estimating the achievability of the

preconditions of a task.

If test succeeds:
TDT is updated by pruning all
methods of t (this triggers further
updates).

unreachable12

|_andmark Extraction

Input : A task decomposition tree TDT.
Output: The flled landmark table LT
LT + §. infeasible + @
for i + 1 to TOT moarDepthi} do

foreach abstract lask § in level i of TDT do
i LT condains an enlry for @ then continue
repeal
Let M be the methods of ¢ in the TIYT.
fity = @ m

y
Mg N

Rit) e { O m)\ {0)
i S

foreach primitive fask " € 1{t) do
if ' can be proven wifeasible then

break
e
enid
foreach remoning tosk set r € f{t) do
foreach primilive losk 1" € ¢ do
if " can be proven infeasible then
remove the method m = (8, P}, with

stb-nodes,
continue
end
| el
e
until wo melhod was removed from TOT
LT « LT u {{t, £}, A1)}
if f{i) = R(t) = 0 then
| infeasible + infeasible Ll {t}
e

| end
end
return propagate LT TOT infeasible)

remove all wmo& M from the TDT, including all sub-nodes.

Tuskes(Py = F(1) Ur from the TDT, including all

Karlsruhe - PuK 2010

The reachability of each primitive
task t” in each set r in R(t) Is
Investigated by estimating the
achievability of the preconditions
of a task.

If test succeeds:
TDT is updated by pruning failed
methods of t (this may trigger
further updates).

13

|_andmark Extraction

Input - A task decomposition tree TDT.
Output: The filled landmark table LT.

LT + §. infeasibla + 0

for i + 1 to TDT . maxDepth{} do

foreach abstract task £ in fevel i of TOT do

if LT contains an entry for ¢ then continue
repeat

Let Af be the methods of ¢ in the TDT.

Ity = 1
I: } g M i

Rit) e { T m)" {0}
i S
foreach primitive task t" € I{t) do
if i can be proven infeasible then

break
e
end
foreach remaining task set v € R{t) do
foreach primitive lask t' € r do
iIf ¢ can e proven infeasible then
remove the method m = (8, P}, with
Tusks{ Py = I({i) Ur from the TDT, including all
sub-nodes,
conlinue
end
ernd
e
until no method was removed from TOT
LT « LT u {{t, £{t), R{1)]}
if I{t) = Rit) = 0 then
| inTwacitl= + infaasihlalllsl
e
end
end
return propagate LT TOT infeasible)

remove all m € M from the TDT, including all sub-nodes.

Karlsruhe - PuK 2010

= |_andmark table is updated

| Landmark | Intersection(I) | Options(0) |

-

= Recursive procedure is called

for propagating the results of

the feasibility analysis.

14

_Landmark Exploitation — Model Reduction

— —————

= Hierarchical planning refines an abstract task Plan

by considering all decomposition methods In ‘/A\K

————
———— — - "

the domain model that implement it. ! ~ %

AN\ A

. : _ N N
» The process of refining abstract tasks in our | |
system is deployed with a reference to the
Landmark Table of the planning problem.
= It operates on a reduced set of applicable Plan

methods according to the respective options ‘/L)vk\

R(t) in the Landmark Table - (&
A A A A

Karlsruhe - PuK 2010 15

Landmark Exploitation — Strategies

= Modification Ordering Functions implement preferences on
refinements
= Landmark-Aware Strategy
= For two given modification m; and m;, let f; and f; be the addressed
(abstract task) flaws
" gt K andrt; be-the a5k TaTaGNCRAY & iy then
re R for (¢ PV RV e LT, ¢ e F. and ¥ € R*{1}).

Criterion: [R*{#;}) < |[R*(#;)]

» Implements the least commitment principle by prefering a lower

branching factor estimate

Karlsruhe - PuK 2010 16

Evaluation

» We run our evaluations over two distinguished benchmark domains:
= UM-Translog
= |ogistics, difficulty of problems due to various transportation means.
= Satellite
= Earth observation, problems become difficult when modeling a
repetition of observations: small number of methods is used multiple

times in different contexts of the plan.

Karlsruhe - PuK 2010 17

Evaluation — Model Reduction

UM-Translog

Problem

abstr. Tasks

Methods

[of 21) fof 51)
Regular Truck Problems
Hopper Trck,
Auto]:'1_|c.'k. | | 19 20
Hesular Truck 3 Locations (5T =07 1
Hesular Truck 2 Heglon, 2T (58]
RHesular Truck 1,
Resular Truck 2,
Varrouws Truck Type Problems . o
Flatbed Truck,]_... 'L.I.
Armored-R-Track (577%) (6372)
Trarecar Problerms
.;II'Llul.qlr.[:! I!':-!.L]J-I.':-I.I!'. 14 39
Mail Traincar, D e
Auto Traincar bis, (677%) (6372)
Helriperated Regular Traincar
Airplane Problem 14 37
Alrplane (67%) (T3%]

Karlsruhe - PuK 2010

Average performance

Improvement over all
strategies and problems is
about 40% in search space
size and about 30% in CPU

time.

Satellite does not benefit
significantly from landmark
technique due to a shallow
decomposition hierarchy

18

Evaluation — Strategies

UM-Translog

Mod. ordering

Refrigerated Resular Traincar

Aute Traincar bis

Time

Airplane

S pace

Time

function fModCrd Space Time Space
lef) 225 227 026 247 T8
h 76 196 01 116 345 1323
Iy 183 60=
iy &0 212 180 GT6
ems S0 1048 2558 6447 T84 2517
da FEE 1958 154 705 172 G20
du 307 775 1390 4018 643 2134
SHOP 173 353 247 i3 150 450
In all cases, one of the Landmark-Aware strategies all

benchmark candidates.

Karlsruhe - PuK 2010

19

Conclusion

Landmark table is generated automatically.

Avoids unsuitable plan refinements.

Domain- and strategy independent technique.

Information helps any hierarchical planner to improve its performance.
Significance performance gain, especially for problems with a deep
hierarchy of tasks.

... but many open issues left

Karlsruhe - PuK 2010

20

