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Abstract. We propose an extension of the syntactic restriction for complex role
inclusion axioms in the description logic SROIQ. Like the original restriction in
SROIQ, our restrictions can be checked in polynomial time and they guarantee
regularity for the sets of role chains implying roles, and thereby decidability for
the main reasoning problems. But unlike the original restrictions, our syntactic
restrictions can represent any regular compositional properties on roles. In par-
ticular, many practically relevant complex role inclusion axioms, such as those
describing various parthood relations, can be expressed in our extension, but could
not be expressed in the original SROIQ.

1 Introduction

The description logic (DL) SROIQ [11] provides a logical foundation for the new
version of the web ontology language OWL 2.1 In comparison to the DL SHOIN
which underpins the first version of OWL,2 SROIQ provides several new constructors
for classes and axioms. One of the new powerful features of SROIQ are so-called
complex role inclusion axioms (RIAs) which allow for expressing implications between
role chains and roles: R1 · · ·Rn v R. It is well-known that unrestricted usage of such
axioms can easily lead to undecidability for modal and description logics [6, 8, 9, 12],
with a notable exception of the DL EL++ [2]. Therefore, certain syntactic restrictions
are imposed on RIAs in SROIQ to regain decidability. Specifically, the restrictions
ensure that RIAs R1 · · ·Rn v R when viewed as production rules for context-free
grammars R→ R1 . . . Rn induce a regular language. In fact, the reasoning procedures
for SROIQ [11, 13] do not use the syntactic restrictions directly, but take as an input
the resulting non-deterministic finite automata for RIAs. This means that it is possible to
use exactly the same procedure for any set of RIAs for which the corresponding regular
automata can be constructed.

Unfortunately, the syntactic restrictions on RIAs in SROIQ are not satisfied in
all cases when the language induced by the RIAs is regular. In this paper we analyze
several common use cases of RIAs which correspond to regular languages but cannot
be expressed within SROIQ. To extend the expressive power of RIAs, we introduce
a notion of stratified set of RIAs and demonstrate that it can be used to express the
required axioms. Our restrictions have several nice properties, which could allow for
their seamless integration into future revisions of OWL:

1 http://www.w3.org/TR/owl2-overview/
2 http://www.w3.org/TR/owl-ref/



Table 1. The syntax and semantics of SROIQ

Name Syntax Semantics

Concepts
atomic concept A AI (given)
nominal {a} {aI}
top concept > ∆I

negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

existential restriction ∃R.C {x | RI(x,CI) 6= ∅}
min cardinality >nS.C {x | ||SI(x,CI)|| ≥ n}
exists self ∃S.Self {x | 〈x, x〉 ∈ SI}

Axioms
complex role inclusion ρ v R ρI ⊆ RI

disjoint roles Disj(S1, S2) S
I
1 ∩ SI

2 = ∅
concept inclusion C v D CI ⊆ DI

concept assertion C(a) aI ∈ CI

role assertion R(a, b) 〈a, b〉 ∈ RI

1. Our restrictions are conservative over the current restrictions in SROIQ. That is,
every set of RIAs that satisfies the current restriction in SROIQ will automatically
satisfy our restrictions.

2. Our restrictions are tractable, that is, they can be verified in polynomial time in the
size of the input set of RIAs.

3. Our restrictions are constructive, which means that there is a procedure that builds the
corresponding regular automaton for every set of RIAs that satisfies our restrictions.

4. Finally, unlike the original restrictions in SROIQ, our restrictions are complete
w.r.t. regular compositional properties. This means that any regular compositional
properties on roles can be expressed using a stratified set of RIAs.

2 Preliminaries

In this section we introduce syntax and semantics of the DL SROIQ [11]. A SROIQ
vocabulary consists of countably infinite sets NC of atomic concepts, NR of atomic
roles, and NI of individuals. A SROIQ role is either r ∈ NR, an inverse role r− with
r ∈ NR, or the universal role U . A role chain is a sequence of roles ρ = R1 · · ·Rn,
n ≥ 0, where Ri 6= U , 1 ≤ i ≤ n; in this case we denote by ||ρ|| := n the size of
ρ; when n = 0, ρ is called the empty role chain and is denoted by ε. With ρ1ρ2 we
denote the concatenation of role chains ρ1 and ρ2, and with ρR (Rρ) we denote the
role chain obtained by appending (prepending) R to ρ. We denote by Inv(R) the inverse
of a role R defined by Inv(R) := r− when R = r, Inv(R) := r when R = r−, and
Inv(R) := U when R = U . The inverse of a role chain ρ = R1 · · ·Rn is a role chain
Inv(ρ) := Inv(Rn) · · · Inv(R1).

The syntax and semantics of SROIQ is summarized in Table 1. The set of SROIQ



concepts is recursively defined using the constructors in the upper part of the table, where
A ∈ NC , C, D are concepts, R, S roles, a an individual, and n a positive integer.

A regular order on roles is an irreflexive transitive binary relation≺ on roles such that
R1 ≺ R2 iff Inv(R1) ≺ R2. A (complex) role inclusion axiom (RIA) R1 · · ·Rn v R
is said to be ≺-regular, if either: (i) n = 2 and R1 = R2 = R, or (ii) n = 1 and
R1 = Inv(R), or (iii) Ri ≺ R for 1 ≤ i ≤ n, or (iv) R1 = R and Ri ≺ R for
1 < i ≤ n, or (v) Rn = R and Ri ≺ R for 1 ≤ i < n. A setR of RIAs is ≺-regular if
every RIA inR is ≺-regular.

A SROIQ ontology is a set O of axioms listed in the lower part of Table 1, where
ρ is a role chain, R(i) and S(i) are roles, C, D concepts, and a, b individuals, such that
the set of all RIAs in O is ≺-regular for some regular order ≺ on roles.

For a RIA α = (ρ v R) and role chains ρ′ and ρ′′, we write ρ′ vα ρ′′ if ρ′ = ρ′1ρρ
′
2

and ρ′′ = ρ′1Rρ
′
2 for some ρ′1 and ρ′2. To indicate a position where α was used, we

also write ρ′ vα,k ρ′′ where k = ||ρ′1||. For a set of RIAs R, we write ρ′ vR ρ′′

(ρ′ vR,k ρ′′) if ρ′ vα ρ′′ (ρ′ vα,k ρ′′) for some α ∈ R. We denote by v∗R (v∗R,k)
the reflexive transitive closure of vR (vR,k). The sequence ρ0 vα1

ρ1 · · · vαn ρn
(ρ0 vα1,k1 ρ1 · · · vαn,kn ρn), n ≥ 0, αi ∈ R (1 ≤ i ≤ n) is called a proof for ρ0 v ρn
inR. In this case we also say that ρ0 v ρn is provable inR.

We denote by R̄ the extension of R with inverses Inv(ρ) v Inv(R) of RIAs ρ v
R ∈ R. Let O be a SROIQ ontology andR the set of RIAs in O. A role S is simple if
ρ v∗R̄ S implies ||ρ|| ≤ 1. It is required that all roles S(i) in Table 1 are simple w.r.t.R.
Other constructors of SROIQ [11] can be expressed using those in Table 1. The bottom
concept ⊥ stands for ¬>, disjunction C t D for ¬(¬C u ¬D), universal restriction
∀R.C for ¬(∃R.¬C), max cardinality 6nS.C for ¬(>(n+ 1)S.C), role transitivity
Tra(S) for S · S v S, role reflexivity Ref(R) for ε v R, role symmetry Sym(R) for
Inv(R) v R, role irreflexivity Irr(S) for ∃S.Self v ⊥, role asymmetry Asy(S) for
Disj(S, Inv(S)), concept equivalence C ≡ D for C v D and D v C, and negative role
assertion ¬S(a, b) for SS(a, b) and Disj(S, SS), where SS is a fresh (simple) role for S.
Of all constructors and axioms, only RIAs are of a primary focus in this paper.

The semantics of SROIQ is defined using interpretations. An interpretation is a
pair I = (∆I , ·I) where ∆I is a non-empty set called the domain of the interpretation
and ·I is the interpretation function, which assigns to every A ∈ NC a set AI ⊆ ∆I , to
every r ∈ NR a relation rI ∈ ∆I ×∆I , and to every a ∈ NI an element aI ∈ ∆I . I is
extended to roles by UI := ∆I ×∆I and (r−)I := {〈x, y〉 | 〈y, x〉 ∈ rI}, and to role
chains by (R1 · · ·Rn)I := RI1 ◦ · · · ◦RIn where ◦ is the composition of binary relations.
The empty role chain ε is interpreted by εI := {〈x, x〉 | x ∈ ∆I}.

The interpretation of concepts is defined according to the right column of the upper
part of Table 1, where δ(x, V ) for δ ⊆ ∆I ×∆I , V ⊆ ∆I , and x ∈ ∆I denotes the
set {y | 〈x, y〉 ∈ δ ∧ y ∈ V }, and ||V || denotes the cardinality of a set V ⊆ ∆I . An
interpretation I satisfies an axiom α (written I |= α) if the respective condition to the
right of the axiom in Table 1 holds; I is a model of an ontology O (written I |= O) if I
satisfies every axiom in O. We say that α is a (logical) consequence of O or is entailed
by O (written O |= α) if every model of O satisfies α.



3 Regularity for Sets of Role Inclusion Axioms

Given a set of RIAsR, for every role R, define the following language LR(R) of role
chains (viewed as words over roles):

LR(R) := {ρ | ρ v∗R R} (1)

We say that R is regular if the language LR(R) is regular for every role R. It has
been shown [12] that ≺-regularity forR implies regularity for R̄. The converse of this
property, however, does not always hold, as demonstrated in the following example.

Consider the following setR of RIAs:

isProperPartOf v isPartOf (2)
isPartOf · isPartOf v isPartOf (3)

isPartOf · isProperPartOf v isProperPartOf (4)

R expresses properties of parthood relations isPartOf and isProperPartOf: RIA (2)
says that isProperPartOf is a sub-relation of isPartOf; RIA (3) says that isPartOf is
transitive; RIA (4) says that if x is a part of y which is a proper part of z, then x is a
proper part of z. Since any role chain consisting of isPartOf and isProperPartOf can be
reduced using (2) and (3) to isPartOf, it is easy to see that:

LR̄(isPartOf) = (isPartOf | isProperPartOf)+ (5)

Since isProperPartOf is only implied by (4), we also have:

LR̄(isProperPartOf) = (isPartOf∗ · isProperPartOf)+ (6)

Thus, the languages (5) and (6) induced by RIAs (2)–(4) are regular. However, there
is no order ≺ for which RIAs (2)–(4) are ≺-regular. Indeed, by conditions (i)–(v) of
≺-regularity, it follows from (2) that isProperPartOf ≺ isPartOf, and from (4) that
isPartOf ≺ isProperPartOf, which is not possible if ≺ is a transitive irreflexive relation.

In fact, there is no set of RIAsR, possibly with additional roles, that could express
properties (2)–(4) using only ≺-regular RIAs. It is easy to show by induction over the
definition of v∗R that if the RIAs ofR are ≺-regular, then R1 · · ·Rn v∗R̄ R implies that
for every i with 1 ≤ i ≤ n, either Ri = R, or Ri = Inv(R), or Ri ≺ R. This means
that for every role R, the language LR̄(R) contains only words over R, Inv(R), or R′

with R′ ≺ R. Clearly, this is not possible if LR̄(isPartOf) and LR̄(isProperPartOf) are
extensions of the languages defined in (5) and (6).

Axioms such as (2)–(4) naturally appear in ontologies describing parthood relations,
such as those between anatomical parts of the human body. For example, release 7 of the
GRAIL version of the OpenGALEN ontology3 contains the following axioms, which
are analogous to (2)–(4):

isNonPartitivelyContainedIn v isContainedIn (7)
isContainedIn · isContainedIn v isContainedIn (8)

isNonPartitivelyContainedIn · isContainedIn v isNonPartitivelyContainedIn (9)

3 http://www.opengalen.org/



Complex RIAs such as (7)–(9) are used in OpenGALEN to propagate properties over
chains of various parthood relations. For example, the next axiom taken from Open-
GALEN expresses that every instance of body structure contained in spinal canal is a
structural component of nervous system:

BodyStructure u ∃isContainedIn.SpinalCanal
v ∃isStructuralComponentOf.NervousSystem

(10)

Recently, complex RIAs over parthood relations have been proposed as an alterna-
tive to SEP-triplet encoding [19]. The SEP-triplet encoding was introduced [17] as a
technique to enable the propagation of some properties over parthood relations, while
ensuring that other properties are not propagated. For example, if a finger is defined
as part of a hand, then any injury to a finger should be classified as an injury to the
hand, however, the amputation of a finger should not be classified as an amputation of
the hand. The proposed new encoding makes use of complex RIAs such as (2)–(4) to
express propagation properties. For example, propagation of the injury property over the
proper-part relation can be expressed using the following RIA:

isInjuryOf · isProperPartOf v isInjuryOf. (11)

It was argued that the usage of complex RIAs can eliminate many potential problems
with the existing SEP-triplet encoding, used, e.g., in SNOMED CT,4 and can dramatically
reduce the size of the ontology. However, since RIAs (2)–(4) do not satisfy ≺-regularity,
this technique is currently limited to EL++ ontologies where≺-regularity is not required,
and can be problematic when an expressivity beyond EL++ is required, such as for
translating OpenGALEN into OWL 2. In this paper we propose an extension of regularity
conditions, which, in particular, can handle axioms such as (2)–(4).

4 Stratified Sets of Role Inclusion Axioms and Regularity

As can be seen from example RIAs (2)–(4), one limitation of ≺-regularity is that it
cannot deal with cyclic dependencies on roles. Our first step is to relax this requirement
by considering arbitrary (i.e., not necessarily strict) orders on roles.

Definition 1. Let - be a preorder (a transitive reflexive relation) on roles. We write
R1 h R2 if R1 - R2 and R2 - R1, and R1 ≺ R2 if R1 - R2 and R2 6- R1. The level
l-(R) of R w.r.t. - is the largest n such that there exists roles R1 ≺ R2 ≺ · · · ≺ Rn ≺
R. We say that a RIA R1 · · ·Rn v R is --admissible if Ri - R (1 ≤ i ≤ n).

Unlike ≺-regularity, however, --admissibility is not sufficient for regularity since every
RIA is --admissible for the total preorder -, i.e., the one such that R1 - R2 holds for
all roles R1 and R2. Note l-(R) = 0 for every role R w.r.t. to this preorder. To regain
regularity, we impose an additional condition on the set of RIAsR as a whole.

4 http://www.ihtsdo.org/



Definition 2. Given a set of --admissible RIAs R, we say that a RIA ρ v R′ is --
stratified in R, if for every R h R′ such that ρ = ρ1Rρ2, there exists R1 such that
ρ1R v∗R R1 and R1ρ2 v∗R R′. We say that R is --stratified if every RIA ρ v R
provable inR, is --stratified inR.

Intuitively, a set of RIAsR is --stratified, if every RIA ρ v R′ provable inR is always
provable inR when reducing the left-most roles of the maximal level first. For example,
consider the set R consisting of RIAs (2)–(4) and (11) and the preorder - such that
isPartOf h isProperPartOf - isInjuryOf w.r.t. whichR is clearly stratified. Then both
of the following RIAs are provable inR and are --stratified inR:

isPartOf · isPartOf · isPropertPartOf v isProperPartOf, (12)
isInjuryOf · isPartOf · isPropertPartOf v isInjuryOf. (13)

RIA (12) is stratified because for ρ1 := isPartOf, R := isPartOf h isProperPartOf =:
R′, and ρ2 := isProperPartOf, we have ρ1R = isPartOf ·isPartOf v(3) isPartOf := R1

andR1ρ2 = isPartOf · isProperParOf v(4) isProperPartOf = R′. Note that when either
ρ1 = ε or ρ2 = ε, the conditions of Definition 2 hold trivially. RIA (13) is stratified
because R h R′ := isInjuryOf holds only for R = isInjuryOf, in which case ρ1 = ε. It
can be similarly shown that every RIA provable in R, is --stratified in R, so R is --
stratified. If we, however, extend the preorder- such that isPartOf h isProperPartOf h
isInjuryOf, i.e., take the total preorder-, RIA (13) will be no longer--stratified. Indeed,
for ρ1 := isInjuryOf, R := isPartOf h isInjuryOf := R′, and ρ2 := isProperPartOf,
there does not exist R1 such that ρ1R = isInjuryOf · isPartOf v∗R R1.

As seen from this example, the choice of the preorder - has an impact on whetherR
is--stratified or not. As we pointed out, every RIA is--admissible for the total preorder
-. However, since all roles R have the same maximal level L-(R) = 0 for the total
preorder -, to check if ρ v R′ is --stratified, one has to consider every role R in ρ, and
prove that ρ1R v∗R R1 and R1ρ2 v∗R R′ hold for the respective prefix ρ1 and suffix
ρ2. On the other hand, by taking the smallest preorder -R for which the RIAs inR are
-R-admissible, one can avoid many of these tests. The smallest preorder -R forR can
be defined as the transitive reflexive closure of the relation ≺R such that R1 ≺R R2

iff ρ1R1ρ2 v R2 ∈ R for some ρ1 and ρ2. It can easily be shown using Definition 1
and Definition 2 that for every preorder -, (i) all RIAs in R are --admissible iff -
extends -R, and (ii) ifR is --stratified thenR is -R-stratified. From (ii) it follows,
in particular, thatR is --stratified for some order - iffR is -R-stratified.

Our next goal is to prove that every --stratified set of RIAs R induces a regular
language LR(R) for every role R. From now on, we assume that we are given a fixed
preorder - and a set of --admissible RIAsR. So, when we say thatR is stratified or a
RIA is stratified, we meanR is --stratified and the RIA is --stratified inR.

First, we distinguish two types of RIAs according to the levels of their roles:

Definition 3. The level of a RIA α = (R1 · · ·Rn v R) ∈ R (w.r.t. -) is l-(α) :=
l-(R). We say that α is simple ifRi ≺ R for all i with 1 ≤ i ≤ (n−1); otherwise we say
that α is complex. For n ≥ 0, defineRn := {α ∈ R | l-(α) = n},R<n :=

⋃
k<nRk,

and defineRsn to be the set of simple RIAs inRn.



In the next lemma, we demonstrate that for every stratified set of RIAs w.l.o.g. one can
assume a certain precedence on RIAs in proofs: RIAs of smaller level are applied first;
simple RIAs are applied before complex RIAs of the same level; and complex RIAs are
only applied to the prefix of the role chain, i.e, at the position 0.

Lemma 1. For every ρ and R′ such that ρ v∗R R′, there exist ρ1 and ρ2 such that
ρ v∗R<n ρ

1 v∗Rsn ρ
2 v∗Rn,0 R

′, where n = l-(R′).

Proof. W.l.o.g., one can assume that R does not contain RIAs of the form ε v R.
Indeed, otherwise for Rε := {ε v R ∈ R} and R′ := R \ Rε, we have ρ v∗R R′ iff
ρ v∗Rε ρ1 v∗R′ R′ for some ρ1. Now if the lemma holds forR′, then there exist ρ1

1 and
ρ2

1 such that ρ1 v∗R′<n ρ
1
1 v∗R′sn ρ

2
1 v∗R′n,0 R

′. In this case, it can be readily seen that

ρ v∗Rε<n ρ
1 v∗R′<n ρ

2 v∗Rεn ρ
3 v∗R′sn ρ

2
1 v∗R′n,0 R

′ for some ρ1, ρ2, and ρ3.
Now, consider all ρ′ such that ρ v∗R ρ′ v∗R R′. Since R does not contain RIAs

of the form ε v R, the number of all such ρ′ is bounded. From all such ρ′, select all
ρ′ = ρ′0R1ρ

′
1 · · ·Rmρ′m with the maximal number of occurrences R1, . . . , Rm of roles

of level n, and from them select one of the largest length. Then ρ = ρ0ρ
1
1ρ1 · · · ρ1

mρm
such that ρi v∗R<n ρ

′
i (0 ≤ i ≤ m) and ρ1

i v∗R<n ρ
2
i v∗Rsn Ri (1 ≤ i ≤ m). Otherwise

one could find ρ′ with more occurrences of roles of level n or the same number of
occurrences but of a larger length.

Since ρ′0R1ρ
′
1 · · ·Rmρ′m v∗R R′ and R is stratified, there exist R′i (1 ≤ i ≤ m)

such that ρ′0R1 v∗R R′1, R′iρ
′
iRi+1 v∗R R′i+1 (1 ≤ i < m), and R′mρ

′
m v∗R R′. In

particular, there exist ρ′1i (1 ≤ i ≤ m), ρ′2i (0 ≤ i < m) that do not contain roles of
level n, and R1

i (1 < i ≤ m) such that ρ′0 v∗R<n ρ
′2
0 , ρ′20 R1 v∗Rsn R

′
1, ρ′i v∗R<n ρ

′1
i ρ
′2
i ,

ρ′2i Ri+1 v∗Rsn R1
i+1, R′iρ

′1
i R

1
i+1 v∗Rn,0 R′i+1 (1 ≤ i < m), ρ′m v∗R<n ρ′1m, and

R′mρ
′1
m v∗Rn,0 R

′. Otherwise one could again find ρ′ with more roles of level n or with
the same number of roles but of a larger length.

Summing up, we obtain the required ρ1 and ρ2 as follows:

ρ =ρ0ρ
1
1ρ1 · · · ρ1

mρm v∗R<n ρ
1 := ρ′20 ρ

2
1ρ
′1
1 ρ
′2
1 · · · ρ2

mρ
′1
m

v∗Rsn ρ
2 := R′1ρ

′1
1 R

1
2ρ
′1
2 · · ·R1

mρ
′1
m v∗Rn,0 R

′. ut

We are now in a position to prove that every stratified set of RIAsR is regular.

Theorem 1. For every --stratified set of RIAsR and every role R, one can construct
a non-deterministic finite automaton (NFA) that recognizes the language LR(R). The
size (i.e., the number of transitions) of the automaton is bounded by (c ·m)2·n where
m := ||R||, n := l-(R), and c is some fixed constant.

Proof. By Lemma 1, for every role R we have:

LR(R) = {ρ | ∃ρ1∃ρ2 : ρ v∗R<n ρ
1 v∗Rsn ρ

2 v∗Rn,0R}. (14)

We first show that the languages LRsn(R) and LRn,0(R) := {ρ | ρ v∗Rn,0 R} can
be recognized by NFAs. For every role R, introduce a terminal symbol aR and a non-
terminal symbolAR. ForRsn, consider a grammar containing production rulesAR → aR



for every role R and AR → aR1
· · · aRk−1

ARk for every RIA R1 · · ·Rk v R ∈ Rsn.
Since for every simple RIA R1 · · ·Rk v R ∈ Rsn the level of the roles Ri with
1 ≤ i < k is smaller than n, it is easy to show by induction that R1 · · ·Rm ∈ LRsn(R)
iff AR →∗ aR1 . . . aRm . Since the grammar is right-linear, the language LRsn(R) is
regular. Similarly, the language LRn,0(R) is regular since it corresponds to the left-
linear grammar containing production rules AR → aR for every role R and AR →
AR1

aR2
· · · aRk for every RIA R1 · · ·Rk v R ∈ Rn. It is well-known that for left-

and right-linear grammars one can construct an NFA with size linear in the size of the
grammar, which in our cases is bounded by c ·m where m := ||R|| and c a constant.

Assume, by induction hypothesis, that for every R such that l-(R) < n, LR(R)
can be recognized by an NFA of size at most (c ·m)2·(n−1). Since LR<n(R) = {R} if
l-(R) ≥ n and LR<n(R) = LR(R) if l-(R) < n, for LR<n(R) one can construct an
NFA of size bounded by (c ·m)2·(n−1). For the remaining case l-(R) = n, consider
Ln(R) := {ρ1 | ∃ρ2 : ρ1 v∗Rsn ρ

2 v∗Rn,0 R}. Clearly, ρ1 ∈ Ln(R) iff there exists ρ2 =
R1 · · ·Rk ∈ LRn,0(R) such that ρ1 = ρ1

1 · · · ρ1
k where ρ1

i ∈ LRsn(Ri) (1 ≤ i ≤ k).
Hence Ln(R) = LRn,0(R)[R1/LRsn(R1), . . . , Rk/LRsn(Rk)] where Ri are all roles
of level n and L[R1/L1, . . . , Rk/Lk] denotes the language obtained by substituting in
every word from L the letters Ri with words from Li in all possible ways. Since regular
languages are closed under substitution and an NFA for L[R1/L1, . . . , Rm/Lm] can
be constructed with the size bounded by the size of the NFA for L multiplied with the
maximum size of the NFA for L1, . . . , Lm, the language Ln(R) is regular and can be
recognized by an NFA of size at most (c ·m)2.

Similarly, by (14), we have LR(R) = Ln(R)[R1/LR<n(R1), . . . , Rk/LR<n(Rk)]
where Ri for 1 ≤ i ≤ k are all roles of level n. Thus, one can construct an NFA of size
bounded by (c ·m)2 · (c ·m)2·(n−1) = (c ·m)2·n that recognizes LR(R). ut

5 Testing if a Set of RIAs is Stratified

Up to now we have demonstrated that, similar to ≺-regularity, Definition 2 provides
a sufficient condition for regularity of a set of RIAs R. However, unlike ≺-regularity,
Definition 2 does not provide for any effective means of testing this condition since
it requires to test if all (of possibly infinitely many) RIAs ρ v R provable in R, are
stratified. Below we demonstrate that it suffices to test regularity only for finitely many
RIAs that can be effectively computed fromR.

Definition 4. Let R be a set of --admissible RIAs. RIA ρ1Rρ2 v R′ is an overlap
of two RIAs ρε2Rρ2 v R1 and ρ1R2ρ

ε
1 v R′ (w.r.t. R and -) if R h R′, ε v∗R ρε2,

ε v∗R ρε1, and R1 v∗R R2.R is weakly --stratified if (i) every RIA inR is --stratified
inR and (ii) the overlap of every two RIAs inR is --stratified inR.

Note that the overlap ρ1Rρ2 v R′ is provable inR in a such a way that only RIAs
ρε2Rρ2 v R1 and ρ1R2ρ

ε
1 v R′ involved in the overlap reduce the length of the role

chains: ρ1(Rρ2) v∗R ρ1(ρε2Rρ2) vR ρ1R1 v∗R ρ1R2 v∗R ρ1R2ρ
ε
1 vR R′. Intuitively,

to prove thatR is weakly stratified, one has to consider only RIAs provable inR using
at most two reducing steps, first, reducing the suffix of a role chain, and second, reducing
the prefix of the role chain: ρ1(Rρ2) v∗R ρ1R1 v∗R R′.



For example, the setR of RIAs (2)–(4) is weakly stratified. Indeed, every RIA inR
is trivially stratified since no role chain inR has more than two roles. RIAs (3) and (4)
can overlap (possibly with themselves) only in the following three cases:

isPartOf · (isPartOf · isPartOf) v(2) isPartOf · isPartOf v(3) isPartOf, (15)

isPartOf · (isPartOf · isProperPartOf) v(4)

isPartOf · isProperPartOf v(4) isProperPartOf,
(16)

isPartOf · (isPartOf · isProperPartOf) v(4)

isPartOf · isProperPartOf v(2)

isPartOf · isPartOf v(3) isPartOf.

(17)

The resulted overlaps are provable using (2)–(4) “left-to-right” and thus stratified:

(isPartOf · isPartOf) · isPartOf v(3),(3) isPartOf, (18)
(isPartOf · isPartOf) · isProperPartOf v(3),(4) isProperPartOf, (19)

(isPartOf · isPartOf) · isProperPartOf v(3),(4),(2) isPartOf. (20)

Similarly, one can show that R̄ is weakly stratified by considering all overlaps between
the inverses of (3) and (4).

The notion of overlap and conditions for a weakly stratified set of RIAs are reminis-
cent of the well-known notions of a critical pair and the weak Church-Rosser property
from term rewriting [3]. Despite close resemblance, there seem, however, to be no direct
correspondence between these properties—if to consider the entailment relation vR as
a rewriting relation on chains of roles, the conditions of Definition 4 essentially mean
that if a role chain can be rewritten to a role using at most two complex “rightmost”
reductions, then it can also be rewritten to the same role chain using only “leftmost”
reductions. Like in Church-Rosser theorem, however, it is possible to prove that every
weakly stratified set of RIAs is stratified:

Theorem 2. For every preorder - and every set of --admissible RIAs R, R is --
stratified iffR is weakly --stratified.

Proof. As in the proof of Lemma 1, we first prove that w.l.o.g. one can assume thatR
does not contain RIAs of the form ε v R. Otherwise, we extendR by repeatedly adding
for every ε v R ∈ R and ρ1Rρ2 v R′ ∈ R a RIA ρ1ρ2 v R. This transformation
preserves the set of implied RIAs, and therefore the result R′ is stratified iff R is
stratified. It can also be shown that if ρ v R′ is provable inR′ and ρ 6= ε then ρ v R′
is provable in R′ without using RIAs of the form ε v R. Hence, if we prove that is
R′ weakly stratified iffR is weakly stratified, we can disregard all axioms of the form
ε v R in this proof (since all provable RIAs ρ v R for ρ = ε are trivially stratified).

It is clear that if R′ is weakly stratified then R is as well since R′ contains R. To
prove the converse, assume thatR is weakly stratified. LetRε := {ε v R ∈ R}. Note
that if ρ′ vRε ρ and ρ v R is stratified then ρ′ v R is stratified as well (in bothR and
R′). Hence the condition (i) of Definition 4 forR′ is immediate from this property and
the construction ofR′. To prove condition (ii) of Definition 4 forR′, let ρ1Rρ2 v R′



be an overlap of two RIAs ρε2Rρ2 v R1 and ρ1R2ρ
ε
1 v R′ inR′. From the construction

ofR′, there should be RIAs ρε4Rρ4 v R1 and ρ3R2ρ
ε
3 v R′ inR such that ρε2 v∗Rε ρε4,

ρ2 v∗Rε ρ4, ρ1 v∗Rε ρ3, and ρε1 v∗Rε ρε3. In particular ε v∗R ρε2 v∗R ρε4, ε v∗R ρε1 v∗R ρε3,
and so, ρ3Rρ4 v R′ is an overlap of RIAs in R, which by condition (ii) should be
stratified. Since ρ1Rρ2 v∗Rε ρ3Rρ4, we obtain that ρ1Rρ2 v R′ is stratified as well.

So now, w.l.o.g., we can assume thatR does not contain RIAs of the form ε v R.
The “only if” direction of the theorem is trivial since RIAs in R and overlaps of

RIAs inR are provable inR.
To prove the “if” direction, assume to the contrary that there exists ρ such that

ρ v∗R R′ but ρ v R′ is not stratified w.r.t.R and -.
Take such a ρ of the smallest length. Then ρ = ρ1Rρ2 where R h R′ and there

exists no R1 such that ρ1R v∗R R1 and R1ρ2 v∗R R′. Clearly, ρ1 6= ε and ρ2 6= ε.
Since ρ = ρ1Rρ2 v∗R R′, there exist ρ1

1, ρ2
1, ρ1

2, ρ2
2, R1, and R2 such that ρ1 v∗R

ρ2
1ρ

1
1, ρ2 v∗R ρ1

2ρ
2
2, R v∗R R1, ρ1

1R
1ρ1

2 v R2 ∈ R, ρ2
1R

2ρ2
2 v∗R R′, and ρ1

1ρ
1
2 6= ε, so:

ρ1Rρ2 v∗R ρ2
1(ρ1

1R
1ρ1

2)ρ2
2 vR ρ2

1R
2ρ2

2 v∗R R′.

Since R is weakly stratified and ρ1
1R

1ρ1
2 v R2 ∈ R, by condition (i) in Definition 4,

ρ1
1R

1 v∗R R1
1 and R1

1ρ
1
2 v∗R R2 for some R1

1. In particular, ρ2
1R

1
1ρ

1
2ρ

2
2 v∗R R′.

We prove that ρ1
1 = ε. If ρ1

1 6= ε, then ||ρ2
1R

1
1ρ

1
2ρ

2
2|| < ||ρ||, so, ρ2

1R
1
1 v∗R R1 and

R1ρ
1
2ρ

2
2 v∗R R′ for some R1. We obtain a contradiction since ρ1R v∗R ρ2

1(ρ1
1R

1) v∗R
ρ2

1R
1
1 v∗R R1 and R1ρ2 v∗R R1ρ

1
2ρ

2
2 v∗R R′, but we assumed that no such R1 exists.

Thus ρ1
1 = ε.

Now we prove that ρ2
2 = ε. Since ρ1

1ρ
1
2 6= ε, ||ρ2

1R
2ρ2

2|| < ||ρ||, so, ρ2
1R

2 v∗R
R2

1 and R2
1ρ

2
2 v∗R R′ for some R2

1. In particular, ρ2
1ρ

1
1R

1ρ1
2 v∗R R2

1. If ρ2
2 6= ε then

||ρ2
1ρ

1
1R

1ρ1
2|| < ||ρ||, so ρ2

1ρ
1
1R

1 v∗R R1 andR1ρ
1
2 v∗R R2

1 for someR1. We obtain a con-
tradiction since ρ1R v∗R ρ2

1ρ
1
1R

1 v∗R R1 and R1ρ2 v∗R (R1ρ
1
2)ρ2

2 v∗R R2
1ρ

2
2 v∗R R′,

but we assumed that no such R1 exists. Thus ρ2
2 = ε.

Now since ρ2
1R

2 v∗R R′, there exist ρ3
1, ρ4

1, R3, and R4 such that ρ2
1 v∗R ρ4

1ρ
3
1,

R2 v∗R R3, ρ3
1R

3 v R4 ∈ R, ρ4
1R

4 v∗R R′, and ρ3
1 6= ε. So the full picture is:

ρ1Rρ2 v∗R ρ2
1R

1ρ1
2 v∗R ρ4

1ρ
3
1(R1ρ1

2) vR
ρ4

1ρ
3
1R

2 v∗R ρ4
1(ρ3

1R
3) vR ρ4

1R
4 v∗R R′.

In this case, ρ3
1R

1ρ1
2 v R4 is an overlap of the RIAs R1ρ1

2 v R2 and ρ3
1R

3 v R4 w.r.t.
R and -. SinceR is weakly stratified, by condition (ii) in Definition 4, ρ3

1R
1 v∗R R3

1

and R3
1ρ

1
2 v R4 for some R3

1. In particular, ρ4
1R

3
1ρ

1
2 v∗R R′. Since p3

1 6= ε, ||ρ4
1R

1
1ρ

1
2|| <

||ρ||, so, ρ4
1R

3
1 v∗R R1 and R1ρ

1
2 v∗R R′ for some R1. We obtain a contradiction since

ρ1R v∗R ρ4
1(ρ3

1R
1) v∗R ρ4

1R
3
1 v∗R R1 and R1ρ2 v∗R R1ρ

1
2 v∗R R′, but we assumed

that no such R1 exists. ut

Now, in order to present an algorithm for deciding whether a set of RIAs R is
stratified, according to Theorem 2, it is sufficient to prove that one can effectively check
the conditions of Definition 4.

Lemma 2. Given a set of RIAsR and a RIA ρ v R, it is possible to decide in polynomial
time whether ρ v∗R R.



Proof. Define a context-free grammar with terminal symbols aR and non-terminal
symbols AR for every role R, and production rules AR → aR for every role R and
AR → AR1 . . . ARn for every RIA R1 · · ·Rn v R ∈ R. It is easy to show that
AR →∗ aR1 . . . aRn w.r.t. this grammar iff R1 · · ·Rn v∗R R. Since the word problem
(membership in the language) for context-free grammars is decidable in polynomial time
(see, e.g. [10]), so is the property ρ v∗R R. ut

Corollary 1. For every --admissible set of RIAsR, one can check in polynomial time
in ||R|| ifR is --stratified.

Proof. By Theorem 2, to check if R is stratified, it is sufficient to check if every RIA
in R is stratified and every overlap of two RIAs is stratified. Hence there are only
polynomially-many RIAs to test. In order to test whether ρ1Rρ2 v R′ is stratified for R,
we enumerate all roles R1 in R and check if ρ1R v∗R R1 and R1ρ2 v∗R R′ hold. By
Lemma 2, each of these conditions can be checked in polynomial time. ut

Using the criterion in Theorem 2, it is now possible to show that for every setR of
≺-regular RIAs (according to the original conditions in SROIQ), R̄ is stratified w.r.t.
- defined by R1 - R2 if either R1 ≺ R2, R1 = R2 or R1 = Inv(R2). Clearly, the
conditions of ≺-regularity ensure that every ρ v R ∈ R̄ is stratified. Note also that if
ρR v R′ ∈ R̄ or Rρ v R′ ∈ R̄ with R h R′ then either R′ = R or ρ = ε. Now, if
ρ1Rρ2 v R′ is an overlap of two RIAs ρε2Rρ2 v R2 and ρ1R1ρ

ε
1 v R′ in R̄with ρ1 6= ε

and ρ2 6= ε (otherwise it is trivially stratified), then R2 v∗R̄ R1, R h R2 h R1 h R′, so
ρε1 = ρε2 = ε, R2 = R, R′ = R1, and either R1 = R2 or R1 = Inv(R2) (by definition
of -). From the last and the fact that R2 v∗R̄ R1, it follows that R1 v∗R̄ R2. Hence,
ρ1R = ρ1R2 v∗R̄ ρ1R1 vR̄ R′ = R1 v∗R̄ R2 = R, Rρ2 vR̄ R2 v∗R̄ R1 = R′, and so
ρ1Rρ2 v R′ is stratified.

To illustrate the practical benefits of Definition 4, consider the setR of RIAs (2)–(4)
and (11) for the total preorder -. As we showed before, R̄ is not stratified because of
RIA (13) provable in R̄. RIA (13) can be obtained as an overlap of RIAs (4) and (11):

isInjuryOf · (isPartOf · isProperPartOf) v(4)

isInjuryOf · isProperPartOf v(11) isInjuryOf.
(21)

RIA (13) is not stratified, because there is no R1 such that isInjuryOf · isPartOf v∗R̄ R1

and R1 · isProperPartPf v∗R̄ isInjuryOf hold. In our situation, the roles isInjuryOf and
isPartOf can be “composed” together with the third role isProperPartOf, but cannot
be composed directly. This typically indicates on some missing properties, which the
domain expert, presented with this situation, could often easily identify. In our case,
the set of RIAs becomes stratified as soon as we add the axiom propagating the injury
relation over the part-of relation, which then subsumes (11) given (2):

isInjuryOf · isPartOf v isInjuryOf. (22)

Thus, Definition 4 has two practical benefits. First, it can be used to check automati-
cally if the given set of RIAs is stratified. Second, in the case when the set of RIAs is
not stratified, it is possible to use this definition in interactive setting when the user is
presented with problematic overlaps and prompted to enter the missing RIAs.



It is a natural question, whether for any set of RIAsR that induces regular languages,
there exists an extensionR′, as in this example, that is stratified. The following theorem
gives a surprising positive answer to this question. It turns out, there always exists a
stratified conservative extension of R—a super-set R′ of R possibly containing new
roles, such that any model I of R can be extended to a model J of R′ that interprets
the roles occurring inR exactly as I does.

Theorem 3. LetR be a set of RIAs such that LR̄(R) is regular for every role R. Then
there exists a conservative extensionR′ ofR such that R̄′ is --stratified for every -.

Proof. Let Σ be the set of all roles occurring in R̄. For every R ∈ Σ and ρ1, ρ2 ∈ Σ∗,
define the language LR̄(R, ρ1, ρ2) := {ρ | ρ1ρρ2 ∈ LR̄(R)}. It follows from Myhill-
Nerode theorem (see, e.g., [18]) that LR̄(R) is regular iff there are only finitely many dif-
ferent languages LR̄(R, ρ1, ρ2) for all possible ρ1 and ρ2. Let LR̄ := {LR̄(R, ρ1, ρ2) |
R ∈ Σ, ρ1, ρ2 ∈ Σ∗} be the set of all languages of this form, and SR := {

⋂
L∈S L |

S ⊆ LR̄} be the set of all their possible intersections (the empty intersection is Σ∗).
Since every language LR̄(R) is regular, clearly, both sets LR̄ and SR are finite. Note that
LR̄(R) = LR̄(R, ε, ε) ∈ LR̄ ⊆ SR. For languages L1, . . . , Ln ⊆ Σ∗ (not necessarily
in SR), let L1 · · ·Ln := {ρ1 · · · ρn | ρi ∈ Li, 1 ≤ i ≤ n} if n > 0, or {ε} if n = 0.
One nice feature of SR is the following interpolation-like property:

Claim 1 For every L1, L2, L such that L1 · L2 ⊆ L ∈ SR, there exists L′1 ∈ SR and
L′2 ∈ SR such that Li ⊆ L′i, i = 1, 2, and L′1 · L′2 ⊆ L.

Indeed, let L =
⋂

1≤i≤n LR̄(Ri, ρ
1
i , ρ

2
i ) for some Ri, ρ1

i , and ρ2
i , (1 ≤ i ≤ n). Define:

L′1 :=
⋂

ρ2∈L2,1≤i≤n

LR̄(Ri, ρ
1
i , ρ2ρ

2
i ); L′2 :=

⋂
ρ1∈L′1,1≤i≤n

LR̄(Ri, ρ
1
i ρ1, ρ

2
i ).

To prove that L1 ⊆ L′1, take any ρ1 ∈ L1. Since L1 · L2 ⊆ L, for every ρ2 ∈ L2, we
have ρ1ρ2 ∈ L. By definition of L and LR̄(Ri, ρ

1
i , ρ

2
i ), we have ρ1

i ρ1ρ2ρ
2
i ∈ LR̄(Ri),

(1 ≤ i ≤ n), so ρ1 ∈ LR̄(Ri, ρ
1
i , ρ2ρ

2
i ), (1 ≤ i ≤ n). Thus ρ1 ∈ L′1.

We now prove that L′1 ·L2 ⊆ L. Take any any ρ1 ∈ L′1 and ρ2 ∈ L2. By definition of
L′1, ρ1 ∈ LR̄(Ri, ρ

1
i , ρ2ρ

2
i ), so ρ1ρ2 ∈ LR̄(Ri, ρ

1
i , ρ

2
i ), (1 ≤ i ≤ n). Thus ρ1ρ2 ∈ L.

Using L′1 · L2 ⊆ L, it is now easy to show that L2 ⊆ L′2 and L′1 · L′2 ⊆ L
symmetrically to the proofs above.

To continue the proof of the theorem, for every L ∈ SR, we introduce a fresh role
RL. Consider the setR1 consisting of the following RIAs for every L,L1, L2 ∈ SR:

ε v RL if ε ∈ L, (23)
RL1 v RL if L1 ⊆ L, (24)

RL1 ·RL2 v RL if L1 · L2 ⊆ L. (25)

Claim 2 For every L1, . . . , Ln, L ∈ SR, L1 · · ·Ln ⊆ L iff RL1 · · ·RLn v∗R1
RL.

The “if” direction of the claim can easily be shown by induction on the length of the
proof of RL1

· · ·RLn v∗R1
RL.



We prove the “only if” direction of the claim by induction on n. For n ≤ 2 the claim
follows directly from (23)–(25).

Now, if L1 · · ·Ln · Ln+1 ⊆ L then by Claim 1, there exists L′ ∈ SR such that
L1 · · ·Ln ⊆ L′ and L′ · Ln+1 ⊆ L. By induction hypothesis, RL1 · · ·RLn v∗R1

RL′ .
Since by (25) we haveRL′ ·RLn+1

v RL ∈ R1, we obtain thatRL1
· · ·RLn+1

v∗R1
RL,

which was required to show.
We are now in a position to define the conservative extensionR′ ofR required by

the theorem. LetR′ be an extension ofR withR1 and the following axioms for every
role R ∈ Σ:

R v RL, and RL v R, where L = LR̄(R) ∈ SR. (26)

Clearly,R′ is a conservative extension ofR. Indeed, every model I ofR can be extended
to a model ofR′ by interpreting the fresh roles RL for L ∈ SR as RIL :=

⋃
ρ∈L ρ

I . It is
readily checked that I satisfies all RIAs (23)–(26).

Before proving that R̄′ is stratified, first note that for every R1 · · ·Rn v R ∈ R we
have RL1

· · ·RLn v∗R1
RL when Li = LR̄(Ri), (1 ≤ i ≤ n), and L = LR̄(R). This

follows directly from Claim 2 since L1 · · ·Ln ⊆ L. Thus, every RIA inR is provable
using axioms (23)–(26), and so, all RIAs in R can be disregarded. Moreover, we can
regard every role RL for L = LR̄(R) as a syntactic variant for the role R because of the
axioms (26). Thus, it is sufficient to show that R̄1 is stratified w.r.t. every - admissible
for R̄1.

Since the RIAs in R1 do not contain inverses, it is easy to see that ρ v∗R̄1
R

iff either ρ v∗R1
R or Inv(ρ) v∗R1

Inv(R). So, it is sufficient to show that for every
L1, . . . , Ln, L ∈ SR such that RL1

· · ·RLn v∗R1
RL and every k = 1 . . . n, there exist

R1
k and R2

k such that:

RL1
· · ·RLk v∗R1

R1
k, R1

kRLk+1
· · ·RLn v∗R1

RL, (27)

RLk · · ·RLn v∗R1
R2
k, RL1 · · ·RLk−1

R2
k v∗R1

RL. (28)

Indeed, by Claim 2, L1 · · ·Ln ⊆ L. By Claim 1, there exist L1
k, L

2
k ∈ SR such that

L1 · · ·Lk ⊆ L1
k, Lk · · ·Ln ⊆ L2

k, L1
kLk+1 · · ·Ln ⊆ L, and L1 · · ·Lk−1L

2
k ⊆ L. By

Claim 2 we obtain (27) and (28) for R1
k := RL1

k
and R2

k := RL2
k
. ut

6 Related Work and Outlook

Complex RIAs are closely related to inclusion (interaction) axioms in grammar modal
logics �i1 · · ·�inX → �j1 · · ·�jnX [6, 5, 8]. Such axioms often cause undecidability,
however Baldoni [5] and Demri [8] found a decidable class called the regular grammar
modal logics. Demri and de Nivelle [9] gave a decision procedure for this class by a
translation into the two-variable guarded fragment. The decision procedure assumes that
a regular automata are given as an input of the procedure. When applying these results
to ontologies and complex RIAs, such a restriction poses a serious practical problem
because the users are unlikely to provide such automata. One proposed solution to this
problem, is to use a sufficient syntactic condition for regularity, such as ≺-regularity [12,
11]. Another sufficient condition [20] requires associativity of RIAs: if R1R2 v R′1 and
R′1R3 v R′ then there should be R′2 such that R2R3 v R′2 and R1R

′
2 v R′. A similar



condition was required for completeness of the ordered chaining calculus for first-order
logic with compositional theories [4]. It is easy to see that associativity is a partial case
of our sufficient conditions, when - is a total relation on roles. Therefore, our syntactic
condition can be seen as a generalization of both associativity and≺-regularity. Note that
Theorem 3 is, in fact, proved for total preorders, and therefore it holds for all preorders.

Theorem 1 can possibly be relevant to several results in language theory identifying
regular fragments of context-free languages and semi-Thue systems such as non-self-
embedded languages, one-letter grammars, and finite languages (see, e.g., [7, 1, 15]).
However, neither the original regularity condition for SROIQ [11], nor our extended
condition, nor the associativity condition seem to relate to the known cases of regular
context-free grammars. The reason could probably be that the conditions that are natural
for compositional properties of binary relations (R1R2 v R3) might be not be so natural
in the context of formal language theory (A1 → A2A3) and vice versa.

Theorem 3 means that stratified sets of RIAs can express any regular compositional
properties of roles. In other words, our syntactic restriction has already maximal expres-
sive power w.r.t. such properties and no further extension is necessary. Note that the
proof of Theorem 3 is not constructive: it does not provide an algorithm for building the
extensionR′ automatically fromR—it is necessary to know the regular automata for
LR̄(R). It is an interesting question whether there exists such a completion procedure
that terminates if all LR̄(R) are regular. It seems to be not even clear if it is possible to
effectively check regularity forR. It was claimed [9] that this problem is undecidable
since it is undecidable whether a linear grammar is regular. But the problem of regularity
for context-free grammars seems to be harder since context-free grammars distinguish
between terminal and non-terminal symbols. There is no such a distinction between types
of roles in RIAs, which makes a reduction from context-free grammars to sets of RIAs
problematic. In this respect, the sets of RIAs are more related to so-called sentential
forms of context-free grammars [16] or pure context-free grammars [14] where the
symbols are not distinguished. A sentential form of a context-free grammar is a pure
grammar that generates the language consisting of terminal and non-terminal symbols.
The resulted language can be non-regular even for a regular grammar. For example, the
linear grammar A → a, A → aAa generates a regular language L(A) = a(aa)∗, but
its sentential form generates a non-regular language Ls(A) = L(A) ∪ {aiAai | i ≥ 0}.
Pure grammars have different algorithmic properties than context-free grammars. For
example, unlike for context-free grammars, given a pure context-free grammar and a
regular automaton, it is decidable if they generate the same language [14]. The problem
of regularity for pure grammars, however, is still open, to the best of our knowledge.

In this work we introduced a notion of stratified set of role inclusion axioms which
provides a syntactically-checkable sufficient condition for regularity of RIAs—a condi-
tion that ensures decidability of SROIQ [11]. We demonstrated that for every stratified
SROIQ ontology, one can construct a regular automaton representing the RIAs, which
is worst case exponential in the size of the ontology. This implies that the complexity of
reasoning with extended SROIQ remains the same as the complexity of the original
SROIQ, namely N2ExpTime-complete [13]. Moreover, we demonstrated that our
conditions for regularity are in a sense maximal—every ontology O with regular RIAs
can be conservatively extended to an ontology with stratified RIAs.
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