
Advanced User Assistance Based on AI Planning

Susanne Biundo, Pascal Bercher, Thomas Geier, Felix Müller,
Bernd Schattenberg

〈firstname〉.〈lastname〉@uni-ulm.de

Institute of Artificial Intelligence, Ulm University, 89069 Ulm, Germany

Abstract

Artificial Intelligence technologies enable the implementation of cognitive sys-
tems with advanced planning and reasoning capabilities. This article presents
an approach to use hybrid planning – a method that combines reasoning about
procedural knowledge and causalities – to provide user-centered assistance.

Based on a completely declarative description of actions, tasks, and solution
methods, hybrid planning allows for the generation of knowledge-rich plans of
action. The information those plans comprise includes causal dependencies be-
tween actions on both abstract and primitive levels as well as information about
their hierarchical and temporal relationships.

We present the hybrid planning approach in detail and show its potential
by describing the realization of various assistance functionalities based on com-
plex cognitive processes like the generation, repair, and explanation of plans.
Advanced user assistance is demonstrated by means of a practical application
scenario where an innovative electronic support mechanism helps a user to op-
erate a complex mobile communication device.

Keywords: cognitive technical systems, companion-technology, hybrid
planning, plan repair, plan explanation, real-world planning

1. Introduction

In professional and private daily business and especially when pursuing any
major undertaking, strategic planning, reasoning about the consequences of
acting, and weighing the pros and cons of various options are crucial cognitive
capabilities human beings routinely exhibit. When aiming at the construction
of advanced intelligent systems that assist users in high-level tasks and support
their decision making, it seems therefore quite natural and adequate to rely on
a technical equivalent of those cognitive capabilities.

The field of Artificial Intelligence (AI) Planning provides a large variety of
methods to plan and reason and to do so by taking specific characteristics of
prospective applications and environments into account [1]. Its most popular
realm nowadays is classical state-based planning that originates from early work

Preprint submitted to Cognitive Systems Research February 12, 2016



by Fikes and Nilsson [2]. The publication of the Graphplan algorithm in the mid-
1990s [3] and the setup of the International Planning Competition [4] revived
the area and launched a strong development towards heuristic forward-search-
based planning [5, 6, 7]. While state-based approaches aim at the generation
of linear action sequences that are intended to be automatically executed by
systems, there are two main strands in the field dedicated to the construction of
more elaborate plan structures and to explicitly reflecting the kinds of reasoning
humans perform when developing plans. In partial-order causal-link (POCL)
planning [8, 9], plans are partially ordered sets of actions and show causal de-
pendencies between actions explicitly. This allows for flexibility w.r.t. the order
in which actions are finally executed and enables a human user to grasp the
causal structure of the plan and to understand why certain actions are part
of it. Hierarchical task network (HTN) planning [10, 11] features another im-
portant principle of intelligent planning, namely abstraction. It allows for the
specification of both complex abstract tasks and predefined standard solutions
for these tasks. Here, plan generation is a top-down refinement process that
stepwise replaces abstract tasks by appropriate (abstract) solution plans until
an executable action sequence is obtained. HTN planning is particularly useful
for solving real-world planning problems since it provides the means to immedi-
ately reflect and employ the abstraction hierarchies that are inherent in many
domains.

By combining the characteristic features of POCL and HTN techniques hy-
brid planning [12, 13, 14, 15] smoothly integrates reasoning about procedural
knowledge and causalities, thereby providing an enabling technology for the
realization of complex cognitive capabilities of technical systems. Based on a
completely declarative description of actions, tasks, and solution methods, hy-
brid planning allows for the generation of knowledge-rich plans of action. The
information those plans comprise includes causal dependencies between actions
on both abstract and primitive levels as well as information about their hierar-
chical and temporal relationships. By making use of this information, as well
as of the underlying declarative domain models, complex cognitive capabilities
like the generation of courses of action on various abstraction levels, the stable
repair of failed plans in response to some unexpected environment changes, and
the explanation of different solutions for a given planning problem – to name
just a few – can be implemented by advanced automated reasoning techniques.

In this article, we present the potential of hybrid planning in view of complex
cognition by describing the realization of various assistance functionalities for
individual users of a technical system. They include (1) generating a plan for a
specific user and advising him to carry out the plan in order to achieve a current
task, (2) instructing the user on how to escape from a situation where the
execution of this plan unexpectedly failed, and (3) justifying and explaining the
proposed solution plans in an adequate manner. These assistance functionalities
can be provided by a component that relies on a domain-independent hybrid
planner, a plan repair component, and a plan explanation facility.

In the scenario we have chosen to illustrate our approach, such an assis-
tance component appears as an innovative electronic support mechanism that

2



Choose Recipient

pascal.bercher@uni-ulm.de

susanne.biundo@uni-ulm.de

josef.k.@praha.eu

mybestest.friend@uni-ulm.de

Incoming Mail Server

Setup Account

Outgoing Mail Server

Address

Login

SMS

Send Picture

MMS

colleague@where-I-work.com

Create Email Account

Figure 1: A schematic view of a commercially available smart phone.

smoothly helps a human user to operate his new mobile phone. In applications
where the domain is a technical device, like in this scenario, setting up the plan-
ning domain model is rather straightforward. It includes the representation of
relevant states and of actions that cause state transitions. Actions are applica-
ble if certain prerequisites hold; their effects specify properties of the successor
state.

The state of the phone includes aspects like the currently displayed menu
and the pictures saved on the phone, but also whether it currently has reception.
Our model does not account for every detail of the phone, however. Aspects
below a certain level of detail are not relevant for providing support, because
they are not relevant for operating the phone. For example, we do not model
how the cell phone internally handles the communication with the network or
signal strength; we only distinguish between having reception and not having
reception.

The state of the phone can be changed by performing actions like pressing
a button, activating the camera, and the like. Figure 1 shows a schematic
view of the mobile phone. Performing an action like pressing the touch-screen
button labeled with “MMS” changes the state of the phone. Before the button
is pressed, the state of the cell phone is that it displays the send menu for
pictures; afterwards, it displays the MMS dialog menu where the user can enter
the details of the message to send.

As we are dealing with a deterministic technical system, all actions have
a well-defined outcome. This allows us to predict future states of the mobile
phone: if we know the state of the phone and the action we want to apply,
we can determine its state after the application of the action. In addition, we
again abstract from unnecessary details and treat action application as atomic.
We thus do not need an explicit representation of time and assume that actions
change the state of the phone instantaneously.

Performing a single action is usually not enough to achieve a given objective;
a combination of various actions is required instead. The order in which these
actions are performed generally matters. For instance, one cannot send an MMS
before having entered a recipient. In some cases however, the order may not

3



be relevant: it does not matter in which order one fills out the fields of a form,
for example. Hence, the required actions are partially ordered. The particular
order in which the actions have to be executed is determined by their enabling
preconditions and their effects and with that imposed by causal dependencies
between the actions. As a consequence, it seems to be obvious that POCL plans
are an adequate means to represent the operation of a technical device.

Moreover, there are higher-level operations or tasks that comprise a whole
bunch of simpler actions, an example being sending an MMS. It consists of
selecting a recipient, typing in the message, and so forth. In order to perform
this task, the user needs to navigate to the MMS menu, enter the recipient and
various types of content, and finally has to press the send button. Those higher-
level operations are not limited to a single realization; in general, there are
various ways to perform them. Thus, it seems natural to use HTN representation
means when dealing with these kinds of operations.

The article continues with the introduction of our formal planning frame-
work. Section 3 presents the hybrid planning algorithm and its formal proper-
ties. Our formalizations and the respective algorithms are illustrated by a run-
ning example where a person is supported in using his new and yet unfamiliar
mobile phone. In Section 4 we address the problem of unexpected environment
changes and show how our plan repair mechanism is applied to help the user
escaping from a situation where his intended action is doomed to failure. After
that, we discuss the challenge to come up with adequate explanations of plan-
based user instructions. Section 5 describes the ways in which both the causal
structure of plans and the hybrid plan generation process from which they orig-
inate can be employed to achieve this objective. Finally, our presentation ends
with some concluding remarks in Section 6.

2. The Hybrid Planning Framework

Hybrid planning – the fusion of partial-order causal-link (POCL) planning
and hierarchical task network (HTN) planning – combines the advantages of
two different approaches for solving planning problems.

POCL planning is a technique used for solving state-based planning prob-
lems. The objective is to accomplish some desired property of the world, i. e., to
reach some goal state by applying actions in a correct order starting in a given
initial state.

As mentioned, POCL planning is quite suitable for the purpose of finding
plans that are intended to be executed by human users, since, on the one hand,
the explicit information about causality helps to understand the plan and, on
the other hand, the partial order of actions allows the user for more degrees of
freedom in selecting the next action to execute.

HTN planning extends the principle of state-based planning to a hierarchy
on the available actions. In HTN planning, actions are generally referred to as
tasks. This hierarchy is established using so-called primitive tasks with precon-
ditions and effects like in pure state-based planning, as well as abstract tasks

4



that do not have any precondition or effect, but solely serve as containers for
plans that represent predefined implementations. However, these implementa-
tions can again contain abstract tasks. The mapping between an abstract task
and the plan implementing it is done by so-called decomposition methods. Thus,
for each abstract task there is at least one method defining its implementation.
A crucial difference between state-based and HTN planning is the solution crite-
rion. Whereas the goal in state-based planning is to achieve a desired property,
no matter which actions have to be used to accomplish this, the goal in HTN
planning is to find a plan that is a valid decomposition of the initial abstract
task, such that the resulting plan only contains primitive tasks.

The top-down manner in which HTN planning systems search for plans is
similar to planning performed by humans when planning to achieve complex
tasks like planning a business trip to a conference or setting up a complex
technical device.

Most real-world application domains, like emergency evacuation and cri-
sis management [1, Chapter 22][14] and transportation/logistics problems [16],
make use of hierarchical structures on tasks and resources to a very high ex-
tent. HTN planning techniques are therefore essential to tackle those problems.
Traditional HTN planning can only come up with solutions that are modeled in
advance by means of decompositions for abstract tasks. In fact, HTN planning
is intended to allow only these solutions, since they have been carefully designed
by domain experts. We regard the procedural knowledge given in terms of de-
composition methods as an enrichment of the domain model (i. e., the encoding
of the world), rather than as a restriction to a subset of valid plans. Therefore,
we pursue the integration of HTN planning and state-based planning, called
hybrid planning [12, 13, 14, 15], which turned out to be well suited for solving
real-world problems [17, 18].

2.1. Logical Language

Our hybrid planning formalism relies on an order-sorted, quantifier-free pred-
icate logic. Due to space limitations we omit the definition of its semantics and
refer to our previous work for any further details [14]. Its syntax is based on
the logical language L = 〈Z,<,R,C, V, L〉.

In sorted logics, all variables and constants are of some sort z ∈ Z. Ta-
ble 1 lists the sorts used in our example domain model. Order-sorted logics
additionally impose a hierarchy on sorts which allows for more adequate and
concise formalizations. The relation < is used to express this hierarchy on the
sort symbols in Z. Figure 2 shows a graphical representation of a part of the
sort hierarchy of our domain model. R is a Z∗-indexed family of finite dis-
joint sets of relation symbols, which are used to express properties of objects
in the real world. Accordingly, C is a Z-indexed family of finite disjoint sets
of constant symbols that represent objects in the real world. If we want to
model that a specific email message is associated with a specific recipient, we
use a constant like EMAIL42 of sort Email to represent this email and a con-
stant like CONTACT23 of sort Contact to represent its recipient. The expression
RecipientIsSet(EMAIL42, CONTACT23) then states the desired association. The

5



used in our example

Communication

Message

SMS Mms Email

Phone Call

Figure 2: Part of the sort hierarchy of our smart phone domain model.

expression Mode(USINGCAMERA) encodes that the cell phone is in a mode in which
pictures can be taken. V is a Z-indexed family of infinite disjoint sets of vari-
able symbols; in our examples, variable symbols are written with a preceding
question mark to distinguish them from constant symbols. To refer to the set
of variables and constants of a sort z ∈ Z, we write Vz and Cz, respectively.
Finally, L is an infinite set of labels used for identifying different occurrences of
identical tasks.

2.2. Tasks and Plans

A task t is a tuple 〈pre, post〉, specifying a precondition and a postcondition.
Pre- and postconditions are sets of literals over the relations of the logical lan-
guage L and depend on the task parameters τ̄(t) = τ1(t) . . . τn(t)(t), where n(t)
is the length of this sequence, also called the arity of task t. For convenience,
we also write t(τ̄) to refer to a task t. For example, the task SetUpEmail-

Account(?acc1) = 〈{Mode(SENDMENU), ¬SetUp(?acc1)}, {SetUp(?acc1)}〉 states
that setting up an email account requires the cell phone to be in the appropriate
mode and that the account is not set up already; as a result, the respective email
account is set up and can hence be used. We collect in post+(t) and post−(t)
the atoms that occur positively and negatively in the postcondition of task t
and denote them as the positive and negative effects of t, respectively.

A state is a finite set of ground atoms. A task t with ground pre- and
postconditions is called applicable in a state s, if the positive literals of its
precondition are contained in s and the negative ones are not. If t is applicable
in a state s, its application leads to the state s′ = (s\post−(t))∪post+(t) and is
undefined, otherwise. The applicability of sequences of ground tasks is defined
inductively over state sequences as usual.

Let the state of the mobile phone be s = {Mode(SENDMENU), SetUp(ACC1)}.
The task SetUpEmailAccount with its parameter ?acc1 being associated with
the constant ACC2 is applicable in s, since all positive literals of its precondition
{Mode(SENDMENU),¬SetUp(?acc1)} are contained in s and the negative ones are
not. Its application leads to the state s′ = s ∪ {SetUp(ACC2)}.

A plan or task network is a tuple P = 〈TE,≺, VC,CL〉 consisting of a finite
set TE of plan steps or task expressions te = l : t, where t is a (partially)
grounded task and l ∈ L is a unique label to distinguish different occurrences
of the same task within the same plan.

6



Table 1: A subset of elements of the logical language L, which we use to model the functionality
of a smart phone.

Sorts Z

Name Description

Mode constants of this sort are used
to represent the possible modes
of the cell phone

Message messages
Mms MMS messages
Email email messages
Picture pictures
Contact address book entries
Account configurable email accounts

Relations R

Name Signature Description

RecipientIsSet Message×Contact associates a message, i. e., an
MMS or email with a recipient

Stored Picture true iff a picture is stored
Mode Mode the active mode
HasReception true iff the phone has reception
...

Constants C

Name Signature Description

USINGCAMERA Mode the mode in which pictures can
be taken

SHOWALBUM Mode the mode for displaying the
stored pictures

ACC1,ACC2,. . . Account email accounts
PIC1,PIC2,. . . Picture pictures
...

7



CL is a set of causal links, each of which has the form 〈li, φ, lj〉, indicating
that the task expression tei provides the task expression tej with its precon-
dition φ ∈ post(tei) ∩ pre(tej ), where post(te) and pre(te) refer to the post-
and precondition of t, if te = l : t. This explicit representation of causal rela-
tionships between tasks is, next to our integration of hierarchical concepts, one
of our main arguments for the adequacy of our formalism in our problem set-
ting of providing assistance to human users in scenarios which involve planning
capabilities because they are direct justifications for the occurrence of tasks.

Every causal link 〈li, φ, lj〉 implicitly induces an ordering between the plan
steps with labels li and lj . Additionally, the set of ordering constraints ≺
contains explicit orderings that are predefined by the model or are added as a
result of the planning process. We write ≺∗CL in infix notation when we refer to
the transitive closure imposed both by the constraints from ≺ and those induced
by CL. Note that ≺∗CL defines the partial order that governs the execution of
the plan – the ordering constraints ≺ alone are not enough.

The set of variable constraints VC is a set of (non-)co-designations used
for grounding tasks and to force (in-)equality between variables. Formally,
for two tasks t and t′, τi(t) =̇ τj(t

′) constrains τi(t) and τj(t
′) to be identical

and, for co-designating variables with constants, τi(t) =̇ c constrains the vari-
able τi(t) to be equal to the constant c ∈ Cz, where z ∈ Z is the sort of c.
Non-co-designations are defined analogously.

A causal threat is the situation in which the partial order of a plan would
allow the plan step tek with the postcondition ¬ψ to be ordered between two
plan steps tei and tej for which there is a causal link 〈li, φ, lj〉 such that under the
current variable constraints, φ and ψ can be unified. This situation is a threat
to the causal link, because the postcondition ¬φ would falsify the formula φ,
thus destroying the causal link. Causal threats can be resolved by promotion
or demotion (i. e., by inserting an ordering constraint tej ≺ tek or tek ≺ tei,
respectively), by separation (i. e., by inserting a variable constraint such that
φ and ψ cannot unify anymore), and by expansion (because the causal threat
might only exist on an abstract level; cf. Section 2.3).

Example for a Plan

Figure 3 shows a plan Psetup for setting up an email account in the mobile
phone. It uses the following tasks:

PressEmailSetup() = 〈{Mode(SENDMENU)},
{¬Mode(SENDMENU), Mode(EMAILSETUP)}〉

InputServerInfo(?acc2) = 〈{Mode(EMAILSETUP),¬SetUp(?acc2)},
{InfoEntered(?acc2)}〉

InputCredentials(?acc3) = 〈{Mode(EMAILSETUP),¬SetUp(?acc3)},
{CredentialsEntered(?acc3)}〉

8



PressEmailSetup

InputServerInfo InputCredentials

Confirm

Mode(EMAILSETUP) Mode(EMAILSETUP)

InfoEntered(?acc4) CredentialsEntered(?acc4)

Figure 3: The plan Psetup, which describes how an email account can be set up in the mobile
phone.

Confirm(?acc4) = 〈{Mode(EMAILSETUP), InfoEntered(?acc4),

CredentialsEntered(?acc4),

¬SetUp(?acc4)},
{¬Mode(EMAILSETUP), Mode(SENDMENU),

SetUp(?acc4)}〉

Psetup = 〈TEsetup,≺setup, VCsetup, CLsetup〉 is a plan where:

TEsetup = {l1 : PressEmailSetup(), l2 : InputServerInfo(?acc2),

l3 : InputCredentials(?acc3), l4 : Confirm(?acc4)}
≺setup = ∅
VCsetup = {?acc2 =̇ ?acc3, ?acc2 =̇ ?acc4}
CLsetup = {〈l1, Mode(EMAILSETUP), l2〉,

〈l1, Mode(EMAILSETUP), l3〉,
〈l2, InfoEntered(?acc4), l4〉,
〈l3, CredentialsEntered(?acc4), l4〉}

Please note that the set ≺ of explicit ordering constraints is empty, the
causal links however impose a partial order depicted in Figure 3. We include
explicit ordering constraints between tasks if causal threats need to be resolved
(by promotion or demotion) or if they are already present in a predefined plan
of the domain model.

This plan describes which actions need to be taken in order to set up an
email account. The first task is PressEmailSetup, which corresponds to the
action of pressing the menu entry Email Setup. For this being possible, the
mobile phone has to be in the state that actually shows the necessary menu,
which is encoded by the precondition Mode(SENDMENU) of the task. After the
execution of this action, the user has to enter the server information and the
credentials, which can be done in an arbitrary order. Finally, the setup will be
completed by pressing the confirmation button.

9



2.3. Domain Model

A domain model for hybrid planning is a tuple D = 〈L, T, M〉, consisting of the
logical language L, a set T of tasks and a set M of decomposition methods. We call
a task abstract if there is at least one method specifying a decomposition for this
task, otherwise we call it primitive. As an example for an abstract task, recall
the task SetUpEmailAccount(?acc1) introduced in Section 2.2. Abstract tasks
have pre- and postconditions like primitive tasks, but they do not correspond
to single actions in the real world and are hence not directly executable by
human users (they may be understandable, though; this issue will be addressed
in Section 5). Instead, abstract tasks serve as containers for plans that require
and achieve the pre- and postconditions of this abstract task and can thus be
regarded as predefined standard solutions.

A method m = 〈t, VC, P〉 ∈ M maps an abstract task t to a plan P that
implements t. Each method contains a set of additional variable constraints
VC to relate variables in t with variables occurring in the task network P. A
method m is applied to a plan P’ by replacing the abstract task t in P’ by
its implementation P and by inserting the variable constraints VC into the
variable constraints of the plan P’. Concerning the abstract task SetUpEmail-

Account, there is only one method that specifies how to decompose it: m =
〈SetUpEmailAccount(?acc1), {?acc1 =̇ ?acc2}, Psetup〉. This method specifies
that the task SetUpEmailAccount can be implemented by the task network
Psetup, that we have already seen (cf. Figure 3). The variable co-designation
?acc1 =̇ ?acc2 ensures that the variable ?acc1 of the abstract task is properly
identified with the corresponding variables used by Psetup. Figure 4 gives a
listing of all tasks and their corresponding decomposition structure of the smart
phone domain.

2.4. Problems and Solutions

A hybrid planning problem π = 〈D,Pinit〉 consists of a domain model D and
an initial plan Pinit. The initial plan does additionally contain two artificial task
expressions teinit and tegoal which are used to encode an initial and goal state,
respectively. The task teinit has the initial state as effect and the task tegoal has
the desired goal state as precondition. All other tasks are always ordered in
between.

A plan Psol = 〈TEsol,≺sol, VCsol, CLsol〉 is a solution to a planning problem
π = 〈D,Pinit〉 if the following criteria hold:

1. Psol is a refinement of Pinit. Informally, we call a plan a refinement of
Pinit, if it results from applying modifications to it. A modification is the
insertion of a plan element, i. e., an element from the set of task expres-
sions, temporal orderings, variable constraints and causal links. The only
modification that is not a pure insertion is the application of a method:
it replaces an abstract task by an implementing task network and adapts
the variable constraints and causal links. The formal description of the
modification is introduced in the next section.

2. Psol contains only primitive tasks.

10



PressHomeButton

ObtainPicture

EnterCameraMode

TakePicture

DisplayPicture

EnterAlbum

SelectPicture

SetUpEmailAccount

PressEmailSetup

InputServerInfo

InputCredentials

Confirm

SendPicture

EnterSendMenu

TransferPicture

ChooseSendByMMS

WriteMessage

ChooseRecipient

InputSubject

PressSend

ChooseSendByEmail

WriteMessage

Figure 4: This figure lists the tasks inside our example domain model. It depicts the de-
composition methods of abstract tasks by means of an angled line, while the subtasks of one
method are connected together by straight lines.

3. All preconditions of all plan steps in Psol are supported by a causal link,
i. e., for each precondition φ of a plan step tej ∈ TEsol there exists a causal
link 〈li, φ, lj〉 ∈ CLsol with tei ∈ TEsol.

4. There are no causal threats.

5. The ordering and variable constraints in Psol are consistent, i. e., there is
no plan step te ∈ TEsol, such that te ≺∗CL te and no v ∈ Vz for z ∈ Z,

such that VC |= v ˙6= v.

6. All tasks in Psol are grounded. That is, all variables are co-designated to
some constant.

Solution criterion (1) is inherited from HTN planning. In this approach, any
solution must be a decomposition of the initial plan Pinit. This HTN solution
criterion is reflected in hybrid planning by the requirement that solutions must
be refinements of Pinit. Since abstract tasks are regarded as non-executable, cri-
terion (2) ensures that only executable tasks, i. e., primitive tasks, are contained
in solution plans. Criterion (3) ensures the applicability of tasks in a plan: in
order for a task to be applicable in a state s, all its literals of its precondition
must hold in s, what can be ensured by establishing appropriate causal links.
(4) guarantees that all plan steps in all linearizations of a plan are applicable in
the sense of criterion (3): causal threats can cause a literal of the precondition
of a plan step to be false in some linearizations although it is supported by a
causal link. Since we require all linearizations of a plan to be valid solutions,
causal threats have to be eliminated. (5) is obviously necessary for constituting
meaningful plans since neither can a task be ordered before itself nor can a

11



Init ObtainPicture

SendPicture Goal

Stored(?pic2)

Figure 5: The initial plan Pinit of the planning problem of our running example. It encodes
James’ request to take a picture and send it to a contact in his address book by the means
of two abstract tasks. The initial plan contains a causal link between those tasks, because a
picture has to be stored on the device, before it can be sent.

constant be different from itself. (6) maps the variables used by tasks onto the
objects available in the modeled world.

Finally, we start our running example of providing plan-based support to a
user. To this end, we introduce James K., the protagonist of our story.

James K. is participating in a conference on cognitive systems research. He
has just attended a very interesting talk about modeling trials using ACT-R.
During the session, the speaker took notes on the blackboard and James would
like to discuss those with his colleagues at home. Fortunately, his new mobile
phone has an integrated digital camera that seems to be up to the task. Unfortu-
nately, the next talk is starting soon and James isn’t very familiar with all those
fancy functionalities, yet. Luckily, the phone is provided with an automated
assistance component, on which he can rely.

This component has knowledge of the internal state of the phone and its
available functions. Additionally, James can use it to query for help on sending
a picture of the blackboard to one of his colleagues.

The assistance component, based on hybrid planning technology, has thus
created the planning problem π = 〈D,Pinit〉, with D = 〈L, T, M〉 being the do-
main model and Pinit being the initial plan, formalized as follows and illustrated
in Figure 5. The initial plan Pinit of the planning problem consists of the fol-
lowing tasks:

Init() = 〈∅, {Mode(INIT), HasMobileNumber(CONTACT1),

HasEmail(CONTACT1), HasReception(),

HasWlanConnection()}〉

ObtainPicture(?pic1) = 〈∅, {Stored(?pic1)}〉

SendPicture(?pic2) = 〈{Stored(?pic2)}, ∅〉

Goal() = 〈∅, ∅〉

The tasks Init and Goal are artificial tasks used to encode the beginning and
the end of a plan, respectively. They thus occur only once in each plan and all

12



other tasks are always ordered in between. The effects of the initial task Init

encode the initial state: there is a contact (James’ colleague) that is stored in
the cell phone and has a mobile phone number and an email address. Also,
the moment the problem gets initialized, the phone has reception and W-LAN
connection. The precondition of the task Goal encodes the desired goal state.
In our example problem, any valid decomposition of the initial plan solves the
given problem without the need to explicitly satisfy a goal state.

The initial plan Pinit = 〈TEinit,≺init, VCinit, CLinit〉 is formalized as follows:

TEinit = {linit : Init(), l5 : ObtainPicture(?pic1),

l6 : SendPicture(?pic2), lgoal : Goal()}
≺init = {(linit, lgoal), (linit, l5), (linit, l6), (l5, lgoal), (l6, lgoal)}
VCinit = {?pic1 =̇ ?pic2}
CLinit = {〈l5, Stored(?pic2), l6〉}

3. Plan Generation

In order to find a solution to the problem π, our hybrid planning algorithm
has to refine the initial plan into a solution plan Psol.

3.1. Algorithm

Our planning procedure picks a plan P from a candidate set, called fringe,
which contains all plans that are yet to be examined. Initially, this is only the
initial plan, contained in the planning problem. If P constitutes a solution the
algorithm returns this plan and terminates. Otherwise, it identifies the prob-
lems with P and tries to resolve them. These problems (in the following called
flaws) explicitly indicate, why this plan does not meet the solution criteria. For
example, the second solution criterion states that all tasks of a solution plan
have to be primitive. Thus, if a plan P contains abstract tasks, P raises a flaw of
type abstract task for every abstract task in P. Obviously, the only possibility to
resolve such a flaw is to select and apply an appropriate decomposition method
m ∈ M, thus replacing the abstract task by the task network specified by m.
The procedure of (1) selecting a plan, (2) identifying its flaws, and (3) applying
all possible flaw-resolving modifications thereby generating a set of successor
plans is repeated until a solution has been found or it has been proven that
none exists. This kind of planning procedure is also referred to as refinement
planning [1, 19], because each modification application specializes and hence
refines the current plan.

A flaw is a syntactical structure that references all plan elements that are
involved in the violation of a solution criterion. Then, a flaw class is the set
of all possible flaws of a specific type and is used to relate types of flaws to
appropriate types of modifications (see our previous work [20] for formal defi-
nitions). For example, the initial plan Pinit raises (amongst others) two flaws
of the flaw class FAbstractTask which points to the abstract tasks ObtainPicture
and SendPicture.

13



Table 2: This table lists the solution criteria, their corresponding flaw classes and modifications
that can resolve those flaws. Solution criterion (1) is not associated with a flaw class, because
any refinement algorithm automatically satisfies it.

Solution Criterion Flaw Class Modification Class

(1) – –
(2) FAbstractTask MExpandTask

(3) FOpenPrecondition MAddCausalLink, MExpandTask,
MInsertTask

(4) FCausalThreat MExpandTask, MAddOrdering,
MBindVariable

(5) FInconsistentOrdering –
(6) FUnboundVariable MBindVariable

In order to resolve a particular flaw f that is detected in a plan P, a modifi-
cation m is applied to P. This results in a modified or refined plan, which is free
of f . A modification consists of plan elements to remove from the current plan
and plan elements to insert [20]. Note that the application of m might however
introduce new flaws into the plan. In our example, a modification that resolves
the abstract-task-flaw SendPicture would remove this task together with the
causal link that points to it. The task would be replaced by an implementing
task network. That is, it gets replaced by a task network P for which there
is a method 〈SendPicture(?pic2), VC, P〉 ∈ M. The causal link would also
be replaced, since its consumer would not be the abstract task SendPicture

anymore, but a more primitive task contained in the plan P.
A modification class is the set of all possible modifications of a specific type

and is used to relate types of flaws to appropriate types of modifications. For
instance, each modification decomposing an abstract task using its associated
method belongs to the modification classMExpandTask. Examples for other modi-
fication classes areMInsertTask andMAddCausalLink, which consist of modifications
inserting primitive and abstract tasks and establishing causal links between plan
steps, respectively. A complete list of modification classes, as well as the flaw
classes they can resolve, is given in Table 2.

As already mentioned, there is a relationship between flaw and modification
classes. For example, a flaw of the class FAbstractTask can only be resolved by a
modification of the class MExpandTask. Thus, only certain types of modifications
can be used to address a specific flaw. While this allows for an efficient and
distributed calculation of flaws and modifications [21], we will, for the sake of
readability, only present a simplified algorithm that calculates and addresses all
flaws in one step.

Our procedure is depicted in Algorithm 1; it performs search as long as there
are plans in the fringe that can possibly be refined into a solution (line 1). The
decision, which plan from the fringe to examine next is made by a function
fPlanSel, which we call plan selection strategy (line 2). It implicitly defines the

14



Algorithm 1: Our hybrid planning search procedure.

Input : The candidate set Fringe = {Pinit}.
Output: A solution plan or fail .

1while Fringe 6= ∅ do
2P ← fPlanSel(Fringe)

3F ← fFlawDet(P)
4if F = ∅ then return P

5Fringe← (Fringe \ {P }) ∪ {app(m,P) | m ∈ fModGen(F, P) }
6return fail

order in which the algorithm explores the space of all possible refinements of
the initial plan. If the search process cannot exhaust this space completely, it
depends on this function which parts will remain unexplored. fPlanSel is also
the means to introduce optimizations w.r.t. efficiency of search and quality of
solution into the search process. Many different plan selection strategies have
been described and evaluated in our previous work [15, 22, 20].

After P, the next plan to refine, has been chosen, all flaws are detected by
the flaw detection function fFlawDet and are stored into the set F (line 3). If
P does not contain any flaws, it is considered a solution to the given problem
and returned (line 4). Otherwise, the fringe is updated by removing the plan
currently under consideration and by inserting its successors (line 5). To this
end, the modification generation function fModGen computes for each detected
flaw all possible modifications that resolve it. Note that there are some flaws,
e. g., temporal ordering inconsistencies, that persist since they can never be
resolved. Let f be such a flaw. We set fModGen(F, P) = ∅ if f ∈ F in order
to discard plans containing these kinds of flaws. The calculated modifications
are applied to P (by means of the function app) and the resulting plans are
inserted into the fringe. If the fringe is empty, i. e., if there is no plan left that
can possibly be refined into a solution, the algorithm leaves its main loop and
returns fail (line 6). Figure 8 visualizes this procedure in the context of plan
repair.

3.2. Properties of the Algorithm

In the following, we present some theoretical properties of our algorithm and
sketch their proofs.

Property 1 (Correctness). Our algorithm is correct, i. e., if it returns a plan,
it is a solution to the given planning problem.

Obviously, the correctness depends on the completeness of the flaw detec-
tion and modification generation functions: every possible violation of a solution
criterion must be associated with a flaw, and for every flaw all possible modifi-
cations for resolving it must be detected. If both criteria hold – which they do
in our framework and implementation [15] – our claim follows by definition.

15



Property 2 (Completeness). If there exists a solution to a planning problem,
our algorithm finds a solution, provided an appropriate plan selection strategy
is chosen.

This property is related to the fact that we perform search in an infinitely
large space of plans, which may be caused by possibly recursive method appli-
cations and repeated task insertion, respectively: some tasks may be inserted,
either via HTN decomposition methods or via POCL task insertion, arbitrarily
often. The former is responsible for the semi-completeness of HTN planning [23],
whereas the latter is a general issue of partial order planners like ours [24, 25].

Hence, a search strategy (i. e., the plan selection function fPlanSel) can “get
lost” in this infinitely large search space. However, there are search strategies
that guarantee to find a solution (if one exists) like the uninformed breadth-first
search. Whereas informed search strategies [22, 20] do not guarantee complete-
ness in general, in most practical scenarios they do find a solution while being
much more efficient than uninformed search.

Property 3 (Termination). If no solution exists, our algorithm does not always
terminate. If there is a solution, termination depends on the choice of the plan
selection strategy.

Our first claim is easy to see, since for proving the non-existence of a solution
the fringe must become empty eventually. But the potential search space is
infinite while only a few plans get discarded from the fringe due to unresolvable
flaws; hence, termination cannot be guaranteed in cases where no solution exists.
We want to emphasize that this is just a theoretical result but not of much
importance for our purposes of assisting human users. This is, since we generally
assume the existence of a solution and are mainly interested in finding a trust-
worthy, user-adapted solution quickly, rather than proving that none exists.

Our second claim follows directly from the completeness property, as the
algorithm terminates as soon as a solution is encountered.

3.3. Example

Initially, the fringe contains only the initial plan Pinit, depicted in Figure 5.
The flaw detection function fFlawDet raises three flaws: Two flaws of the class
FAbstractTask, one for each of the two initial abstract tasks, and one flaw of the
class FUnboundVariable, because the variable ?pic1 is not yet bound to a con-
stant. The possible modifications detected by the modification detection func-
tion fModGen are applied, thereby generating a set of successor plans. At the
time our planner has generated a solution, the abstract task ObtainPicture

has been substituted by the tasks EnterCameraMode and TakePicture, and
the abstract task SendPicture has been substituted by a plan which sends the
picture via MMS. Note that in our domain model there are two methods that
specify how to decompose the abstract task SendPicture. One method uses an
MMS to send a picture, another one sends it by email. Our solution depicted in
Figure 6 used the former since we assume that the assistance component makes
use of a user profile in which the personal user preferences tell the system that

16



Init

EnterCameraMode

TakePicture

PressHomeButton

EnterAlbum

SelectPicture

EnterSendMenu

ChooseSendByMMS

InputSubject ChooseRecipient

PressSend

Goal

O
b
t
a
i
n
P
i
c
t
u
r
e

D
i
s
p
l
a
y
P
i
c
t
u
r
e S
e
n
d
P
i
c
t
u
r
e

Figure 6: A solution plan to the problem of sending a picture to a contact from the address
book of the smart phone. The annotations on the side describe by which abstract task
the primitive tasks were introduced into the plan. The abstract tasks ObtainPicture and
SendPicture were already present in the initial plan. The abstract task DisplayPicture and
the primitive task PressHomeButton were introduced into the plan in order to close open
preconditions of their succeeding tasks.

James has never used the email functionality before, whereas the task of sending
MMS messages is quite familiar to him. Because the task EnterSendMenu has
the precondition of the respective picture being selected, our planning system
inserts the abstract task DisplayPicture, which in turn gets decomposed into
a more primitive plan. After all flaws have been resolved, a plan has been ob-
tained that is free of flaws and that actually is a decomposition of the initial
plan.

Thus, the assistance component of James’ cell phone created a solution to
the problem π of taking a picture and sending it to a colleague. The solution
(cf. Figure 6) is presented to James, who begins executing it.

4. Plan Repair

One basic assumption underlying our planning approach discussed so far is
that the only way in which the environment changes is through actions executed
by the user. Since we want to offer advanced plan-based user assistance and
have to take the human user’s very dynamic environment into account, this
assumption is too restrictive.

James begins to follow the provided step-by-step instructions. He is able
to take a picture of the notes and begins composing an MMS message to his
colleague. James then leaves the room and heads for the next talk in a different
room. But while doing so, the reception signal of the mobile phone gets weaker
and finally completely fades.

A plan generated by the assistance component can be invalidated by excep-
tional events occurring at plan execution time, such as the fading reception in
our example. In this section, we will present an extension to our formalism that
meets the need to deal with such unforeseeable developments.

17



One possibility to cope with unexpected environmental changes is to restart
planning from scratch, using the modified situation as the new initial state.
Dealing with the problem in this way has the advantage that no modification of
the planning algorithm is needed. Plan repair, on the other hand, tries to adapt
a previously generated solution to a new situation. While plan repair is in terms
of computational complexity not easier than replanning in the general case [26],
the main advantage of plan repair is that it allows for more plan stability. Plan
stability is a measure of the similarity between the original solution and the
solution adapted to the new situation [27]. The goal is to present alternative
plans with only minimal deviations from the original plan, as there are several
reasons why plan stability is important.

First, overcoming a plan failure by generating a new solution from scratch
may result in a completely different plan, which most likely appears implausible
to the user and may lead to major confusion. Preserving as much of the original
plan as possible instead, appears much more appropriate and helps to gain
and/or preserve a user’s trust. Suppose our example solution Psol does not end
after James has sent his message but contains further tasks, then repairing the
plan will produce a plan close to the original one, while planning from scratch
would only produce some plan.

Second, solutions to real world planning problems generally tend to be large.
In case of a failure, many unexecuted parts of the plan may be unaffected. It
is thus not adequate and sometimes even infeasible to create a new plan just to
address a single execution failure.

Third, requests for resources or requests to third parties may have already
been carried out and undoing them might lead to unfavorable effects: if some-
thing goes wrong, say, after James has already bought a flight ticket for his trip
home, he is unlikely to accept a new solution that proposes to travel by train.

We will thus use a plan repair approach to deal with unpredictable envi-
ronmental changes. While there exist several different plan repair approaches
for classical state-based planning, there are hardly any for hierarchical plan-
ning [28]. In the following, we present our plan repair procedure for hybrid
planning, based on our previous work [29].

Before describing the plan repair process, we will show how failures are repre-
sented in the planning domain model. In our formalism described in Section 2,
the only way states can change is by the execution of actions; the formalism
does not foresee external influences that cause those changes. The task of the
repair procedure on the other hand is to produce a solution that compensates
an unexpected failure. As a consequence, a well-founded approach to plan re-
pair requires the means to explicitly represent failures. Unexpected changes to
the environment, sometimes called events in the literature [1, page 5f.], can be
interpreted as a kind of action themselves if we regard the environment as a
second actor in the domain. These actions can of course not be used by the
planner to construct plans, because they represent uncontrollable environmen-
tal developments. Instead, these so-called processes are inserted into the repair
plan to represent execution failures. Processes invert the truth value of literals
in state descriptions: the failing cell phone reception in our example is modeled

18



ChooseSendByMMS

InputSubject ChooseRecipient

PressSend

past

future

Mode(EDITMMS) Mode(EDITMMS)

HasReception()

Figure 7: An example of how the execution monitor is used to monitor the evolution of the
environment. The horizontal line identifies the execution horizon, i. e., the point in time
up to which the plan has been executed. Gray nodes are tasks marked as executed by the
monitor. If a failure is detected, the causal links crossing the execution horizon are candidates
for being failure-affected, because their properties are needed for the execution of a future
action. The causal link establishing the precondition HasReception for the task PressSend is
failure-affected, as illustrated by the failure symbol on the right.

by a process pHasReception with precondition HasReception and postcondition
¬HasReception. In this way, we are able to represent all imaginable changes to
the environment as a sequence of processes.

As a means to detect plan failures, we assume the existence of an execution
monitor, which keeps track of both the execution of the actions in the plan and
the evolution of the environment. When unexpected changes in the environ-
ment are discovered, it identifies which parts of the plan, if any, can no longer
be executed as intended. This includes unexpected results of action execution,
properties required as preconditions of future actions that do not hold as ex-
pected, and so on. The monitor maps these findings on the plan data structure
and annotates the problematic parts as failure-affected. In our running exam-
ple, the relation HasReception is a property required to enable a future action,
namely the task PressSend. By the time James arrives at the room of the
next talk, HasReception becomes false, and the execution monitor can identify
the causal link establishing the precondition HasReception for PressSend as
failure-affected. This situation is depicted in Figure 7. The figure also makes
clear that the failure assessment is not limited to the actions immediately follow-
ing the failed plan fragment; the causal structure of the plan allows us to infer
and anticipate causal breakdowns for actions to be executed far in the future.
We can correctly detect that the future action PressSend cannot be executed
as intended, even if several actions (InputSubject, ChooseRecipient) lie in
between.

Compared to our plan generation process presented in Algorithm 1, there is
slightly more to the plan repair process, because it has to take into account that
some parts of the plan are already executed and are therefore non-retractable
planning decisions. Every executed plan element needs to occur in the repaired
plan as well: James cannot go back on what he has already done. Therefore,

19



the basic idea behind our plan repair approach is to (1) make sure that the
repaired plan coincides with the failed plan on the executed parts, (2) include
the exceptional environmental processes, and (3) control repair plan generation
such that the new plan resembles the unexecuted parts of the original plan as
well, if possible. Note that we have to include the executed parts of the original
solution in the repaired plan. This is because we want it to be a solution
to the original planning problem, which might include abstract tasks whose
implementations are only executed in parts when the failure is detected. Thus,
the solution must contain a valid decomposition of all abstract tasks included in
the planning problem, cf. criterion (1) of the solution definition in Section 2.4.
To make sure that executed parts of the original solution are contained unaltered
in the new solution, we derive a template from the executed parts of the original
solution and use it to control the generation of the repair plan. This template
is represented using so-called obligations: for every executed plan element (like
ChooseSendByMMS in our example), we introduce a corresponding obligation into
the plan template, requiring its existence in the repair plan, including ordering
and causal information. To satisfy obligations, corresponding plan elements
have to be assigned to them during repair.

4.1. Problems and Solutions

Next, we will formally define plan repair problems and their corresponding
solutions. For the repair problem definition πr = 〈Dr, P r

init〉, we first augment
the domain model D = 〈L, T, M〉 by adding the processes, resulting in Dr =
〈L, T, M, Pr〉, where Pr is a set of processes as follows: for every relation, we
introduce two processes that invert the truth value of the respective relation
from true to false and vice versa. Note that we do not simply add the processes
to the set of available tasks T, because the system cannot actively use them to
construct plans. The initial repair plan P r

init = 〈TEinit,≺init, VCinit, CLinit, Oinit〉
is constructed by extending the initial plan of the original planning problem
Pinit = 〈TEinit,≺init, VCinit, CLinit〉 with the obligations Oinit computed from
the failed solution plan Pfail by the execution monitor. The obligations in Oinit

have two sources. Firstly, Oinit contains an obligation for every executed plan
element (tasks, causal links, etc.) of Pfail. Secondly, execution failures have
to be represented. Execution failures are caused by unexpected changes in the
environment and may thus falsify the annotated condition of causal links. These
failure-affected causal links result in appropriate obligations for processes, i. e.,
let 〈la, ϕ, lb〉 be a failure-affected causal link, then Oinit contains the following
obligations o:

• oa requires the existence of the task expression tea = la : ta,

• oϕ requires the existence of a process pϕ with precondition ϕ and post-
condition ¬ϕ, encoding the environmental change,

• and finally oCL = 〈oa, ϕ, oϕ〉 requires the existence of a causal link between
tea and the process pϕ.

20



This definition is based on the assumption that all initial goals persist and that
the underlying domain model is still adequate and stable. This is the case
for our example, neither has anything changed that would make the domain
model itself invalid nor has James changed his mind about his goals. We can
thus state a plan repair problem that contains obligations up to and including
the task ChooseSendByMMS, plus obligations as defined above for the process
pHasReception.

An obligation-extended plan P r
sol = 〈TEsol,≺sol, VCsol, CLsol, Osol〉 is a so-

lution to a plan repair problem πr = 〈Dr, P r
init〉 if and only if the following

conditions hold:

• P r
sol fulfills the planning solution criteria of Section 2.4. This implies in

particular that P r
sol is an executable solution to the original problem, if

we regard the processes added via obligations as additional tasks.

• The obligations in P r
sol are satisfied. A set of obligations O is satisfied w.r.t.

a plan P r, if every obligation in O is assigned to a plan element in P r

such that the ordering is consistent. This ensures that the non-retractable
decisions of the failed plan are respected and that the anomaly of the
environment is considered.

• For all task expressions tea and teb, if O contains an obligation for teb and
tea ≺∗CL teb, then O also contains an obligation for tea. This property
ensures that no executed plan step can occur after an unexecuted one.

4.2. Algorithm

We need to integrate the repair mechanism into the general hybrid planning
framework of Section 3 so that it can solve plan repair problems. To achieve
that, we extend the flaw detection function fFlawDet and modification generation
function fModGen such that they detect and address unsatisfied obligations. This
enables the hybrid planning Algorithm 1 to treat obligations transparently, i. e.,
no modification to Algorithm 1 is necessary.

Our repair procedure presented in Algorithm 2 starts at the failed original
solution plan Pfail. This plan is extended with appropriate obligations as stated
in the repair problem definition (line 1). To obtain a new solution, we make use
of the previously explored plan space. This is in contrast to local search ap-
proaches that take the failed plan as-is and try to repair it by locally adding and
removing tasks compensating for the failure [27, 30]. We examine the sequence
of modifications ModSeq our planning system applied to obtain Pfail from the
initial plan Pinit. Plan elements are introduced by modifications, so we can
determine modifications related to failure-affected plan elements. This yields
a partition of ModSeq into two subsequences: ModSeqfail, the modifications re-
lated to failure-affected plan elements, and ModSeqgood = ModSeq\ModSeqfail
(line 2), the modifications unrelated to failure-affected plan elements. Note
that sometimes, the application of a modification depends on the prior appli-
cation of a modification related to failure-affected plan elements. While such

21



Algorithm 2: The repair algorithm for hybrid planning.

Input : Repair problem πr = 〈Dr, P r
init〉, the failed solution plan Pfail,

and the modification sequence ModSeq leading from Pinit to Pfail.
Output: A repaired plan or fail

1P r
fail ← addObligations(Pfail, π

r)
2ModSeqgood,ModSeqfail ← partition(ModSeq)

3P r
retr ← retract(P r

fail,ModSeq)
4P r

safe ← reapply(P r
retr,ModSeqgood)

5P r
current ← P r

safe

6repeat
7P r

new ← generatePlan(P r
current, π

r) // call Algorithm 1

8if P r
new 6= fail then

9return P r
new

10else
// retract last modification

11P r
current ← retractOne(P r

current,popLast(ModSeqgood))

12until popLast was applied to the empty sequence ModSeqgood
13return fail

modifications are not directly related to failure-affected plan elements, we in-
clude them in ModSeqfail. In our example, the modification that introduced the
causal link establishing the precondition HasReception for the task PressSend

is therefore included in ModSeqfail, while the modification that added the task
InputSubject to the plan is contained in ModSeqgood, because the execution of
InputSubject does not depend on having reception. We proceed by retracting
modifications in reverse order of application until we encounter P r

retr, the first
plan without failure-affected elements (line 3). In doing so, we have retracted
all modifications in ModSeqfail and possibly some in ModSeqgood. The retracted
modifications which are contained in ModSeqgood are reapplied in line 4, yielding
P r
safe without involving combinatorial search. Thus, reapply does not have to

reapply all modifications in ModSeqgood, but only those below P r
retr. Our basic

search procedure (Algorithm 1) is then started on P r
current, which is initially

P r
safe (line 5), and attempts to refine it into a solution (line 7). If a solution
P r
new is found, it is returned by the algorithm. If generatePlan returns fail,

the last modification is retracted from P r
current in line 11, because there might be

a solution for the new initial plan P r
current to which the retracted modification

was not applied. If there are no more modifications to retract (line 12), the
main loop terminates and the plan repair returns fail in line 11, stating that no
solution exists. Figure 8 visualizes the plan space traversed during this process.

Our algorithm preserves all modifications unaffected by the failure, thereby
producing a plan close to the original solution. To further improve the similarity
to the original solution, a least-discrepancy heuristic can be used to guide the
actual planning in line 7. These measures accomplish minimal invasiveness.

22



m7

...

m9
m10

m11

m8

m8

m11

P r
init

P r
retr

P r
safe

P r
fail P r

new

f FlawDet

f ModGen

flaws

appplan 
modifications

f PlanSel

P r
current

Figure 8: The left hand side sketches the hybrid planning procedure (Algorithm 1). First, a
plan is selected from the fringe. For this plan, all flaws are detected, for which in turn all
possible modifications are generated. These modifications are applied and the resulting plans
are finally inserted into the search space depicted on the right side: It shows a visualization
of the plan space traversed during the plan repair process. Modifications mi are denoted as
arrows. Dashed arrows (m7, m9, m10) represent modifications related to failure-affected plan
elements, continuous arrows (m8, m11) are unaffected modifications. Unaffected modifications
are reapplied to obtain P r

safe. Triangles below a plan represent the plan space reachable from
that plan.

Init

EnterCameraMode

TakePicture

PressHomeButton

EnterAlbum

SelectPicture

EnterSendMenu

ChooseSendByMMS

pHasReception

PressHomeButton

EnterAlbum

SelectPicture

EnterSendMenu

PressEmailSetup

InputServerInfo InputCredentials

Confirm

ChooseSendByEmail

InputSubject ChooseRecipient

PressSend

Goal

Figure 9: The result of the repair process in our example: James is instructed to set up an
email account and send his picture via email using W-LAN. Nodes with a gray background
denote executed tasks. pHasReception is the inserted process, representing the anomaly of the
environment. Arrows denote ordering constraints. Obligations and causal links are omitted
for the sake of readability.

23



The assistance component of the cell phone tells James that the initially gen-
erated plan cannot be carried out due to fading reception. Instead, the assistant
proposes an alternative course of action: as the phone has W-LAN functional-
ity and there is a wireless network in range (the conference offers free W-LAN
access for participants), James is instructed to send his picture via email. Be-
cause he has never sent an email before from his new cell phone, he is also
guided through the process of setting up an email account on the device first.

The originally generated solution (cf. Figure 6) failed due to the fading re-
ception (cf. Figure 7). It is hence extended with obligations for the executed
parts including the task ChooseSendByMMS and the process pHasReception. The
algorithm then retracts the modifications that introduced failure-affected ele-
ments. Afterwards, the resulting plan is refined to a new solution by adding
tasks implementing an alternative method to send the picture. Figure 9 shows
the result of the repair process in our example. It is apparent that the new
solution is also a solution to the original planning problem, though it contains
the process pHasReception to reflect the anomaly of the environment. Plan repair
thus enables James to reach his goals despite the changing conditions.

4.3. Properties of the Algorithm

Because the main plan generation algorithm is called within the plan repair
procedure (line 7), the repair algorithm’s properties are basically inherited from
the plan generation algorithm (cf. Section 3.2). We will thus not discuss the
properties in detail but summarize them by the following statement:

Property 4 (Correctness, Completeness, and Termination). The properties
Correctness, Completeness and Termination of the repair algorithm are the same
as the corresponding properties of the planning algorithm as long as it terminates
eventually for each problem P r

current it is called with except for the root plan P r
init.

Property 3 states that the main planning procedure does not necessarily ter-
minate in the general case, neither in cases where there is a solution, nor in cases
where there is none. For our procedure, this is a problem because Algorithm 1
is called with another repair problem as soon as the previous run terminated.
Pragmatically, this problem can be avoided by simply forcing termination, for
instance by returning fail if no solution could be found within a predefined time
limit. Termination may not be forced for the root plan P r

init, as correctness and
completeness would be sacrificed.

5. Plan Explanation

This section addresses the challenge of communicating an automatically gen-
erated plan to the user. This is not restricted to the way in which a solution is
presented, e. g., graphically or via natural speech. More important and funda-
mental is the problem of getting the user to accept and understand a produced
solution. We want to provide as much information as is needed for the user
to trust the system and be convinced that the generated plan is appropriate

24



to solve the given problem. Our formalism offers the hierarchical and causal
structuring of planning problems and their solutions. In our opinion, this con-
stitutes a fundamental part when aiming to reflect how humans view and think
about plans, and as such is essential for conveying not only the generated plans
themselves but also making the reasoning behind them transparent. While this
might very well help a user to better grasp the problem and its structure, we
do not focus on the didactic effect of explanation, i. e., on learning to solve the
problem without technical assistance.

The issue of explaining plans that were produced by AI planning systems
has not yet been addressed by the planning community. In the following para-
graphs, we present our view of what some important aspects of plan explana-
tion might be, and point out how our formalism can be used to address them.
They encompass the problems of presenting plans, providing abstract views on
plans, giving detailed operating instructions to perform primitive tasks, answer-
ing queries about intermediate states, justifying plan elements, and reasoning
about alternative solutions.

Presenting Plans. After the planning phase is finished and a solution plan has
been generated, the found solution must be presented to the user. In general
there exist many ways of achieving this. We discuss the employment of the two
main modalities vision and speech.

Let us go back to the moment right after James has told the assistance appli-
cation that he wants to take a photo and send it to his colleague. The integrated
planner has worked out a solution and now needs to present it to James. Be-
cause he will need to operate the touch screen it cannot be used for graphical
output. Thus, the system uses the speaker of the phone to instruct James for
his task: “Touch the camera symbol at the bottom of the screen.”

Of the two modalities mentioned, the graphical option seems to be the more
powerful version in general. By presenting a plan as a directed graph of plan
steps that are connected by ordering constraints, it is possible to convey an
impression of the complete solution at once. Figure 6 depicts the first solution
of our example in such a way. By looking at a graphical presentation, one
is able to assess the extent of the plan and the temporal orderings as well as
possible concurrences of actions. But the expressiveness of imagery can also lead
to overburdening a user with information. Especially in everyday applications,
this is not a desired property.

Modalities that are less prone to the danger of providing too much infor-
mation at once are text and speech. Using them to communicate a linearized
version of a plan to the user results in something that resembles an ordinary
manual and enables the user to execute the generated plan one step at a time.
Depending on the situation, this might be the preferred mode of presentation.
Additionally, the environment might prohibit the usage of a certain modality
(e. g., vision when driving a car, audio in loud places).

The presentation of plans, which we consider as the most basic form of
plan explanation, is also the one that has been researched the most. A recent

25



Primitive View Abstract View

EnterCameraMode

TakePicture

PressHomeButton PressHomeButton

EnterAlbum

SelectPicture

ObtainPicture

DisplayPicture

Figure 10: Primitive plan steps are summarized by the abstract tasks they were decomposed
from. This results in an easier to understand representation.

publication of our group presents a working prototype system that uses a text-
to-speech server and an annotated domain model to verbally present and explain
plans that stem from our hybrid planning formalism [31]. A three-dimensional
presentation of hierarchical plans has been investigated by Kundu et al. [32].
Another interesting approach using an ontology to describe output modalities
and planning concepts to generate a visualization has been pursued by Lino
et al. [33].

Operating Instructions. We are claiming that our planning formalism is well-
suited to generate instructions for human users. However, the result of the
planning process is a partially ordered network of plan steps, and instructions
of the form InputCredentials(ACC2) are not easy to interpret. Additionally,
the primitive tasks in a plan do not necessarily correspond to the basic actions
in a one-to-one way. For example entering a subject for a message might re-
quire operating the virtual touch keyboard of the smart phone which in turn
is a non-trivial series of actions. Nevertheless, the planning model abstracts
from this fact and models this sequence of actions as the single primitive task
InputSubject.

Therefore, the provision of detailed instructions for tasks is an important
aspect. In order to enable non-expert users to execute the automatically gener-
ated plans, the system must be able to provide actual operating instructions. To
this end, Bidot et al. [31] developed an extension of the domain model syntax of
our planning formalism that enables the annotation of utterances for describing
tasks via natural speech. An example in our domain could be the linking of the
task InputSubject to the instruction “Use the virtual keyboard to enter a sub-
ject for the message into the box labeled Subject.”. This approach could also be
extended to cover multimodal communication by providing more sophisticated
markups.

Abstract Views on Plans. A plan can become rather large and conveying a
comprehensive view of it is difficult. It is thus reasonable to look for ways to

26



reduce the information contained in the presentation. One way of achieving this
can be the abstraction of parts of the plan.

James is a bit annoyed because the assistance application seems to think he
does not know how to take a picture. He feels very able to achieve this without
help, so he demands that he is given an overview of the upcoming instructions.
The screen switches to a graphical high-level presentation of the remaining plan.
James can extract that he is intended to take the picture, open it again by using
the album function and then transmit it by MMS. He decides to try the first two
steps on his own and tells the system to turn off the instructions for a moment.

The plans generated by our planning system possess an intrinsic hierarchical
structure; some plan steps have been inserted as a decomposition of an abstract
task. Thus, replacing the result of a decomposition by its corresponding abstract
task when presenting the plan is an obvious step. Figure 10 gives an example
for an abstract view on a fragment of the solution to our example problem.
The presented fragment deals with taking a picture and then displaying it in
order to open the menu for sending it. Focusing on the upper half of the
figure, the solution to taking a photo consists of two sub tasks: entering the
camera mode of the smart phone (EnterCameraMode) and then triggering the
camera (TakePicture). These two plan steps together constitute a method
to implement the abstract task ObtainPicture. By using abstractions, the
understandability of a hierarchical plan can be improved.

When reducing information in such a way, it is important to regulate the
degree of abstraction applied. In more complex settings, a solution will contain
deeper hierarchies of decomposition. It is an open question how a reasonable
level of abstraction can be automatically determined.

When presenting abstract views on plans in an assistance application like the
one in our example, information about the user should be exploited extensively.
For example, an expert user might be able to execute a common task without
further instructions. Thus, a task like this can be presented in an abstract way
for such a user while being presented on a primitive level for novices. By using
information about the level of complexity of tasks, a system can decide which
abstraction to choose depending on the involved task, taking into account the
general level of expertise of the user. When using a more fine-grained user
model that provides an estimate of the user’s abilities concerning particular
tasks, it becomes possible to provide a level of abstraction that varies for each
task depending on the confidence of the particular user with that task. This
would be an improvement over the use of mere user classes like expert or novice.

We can summarize that the adaptation of the level of abstraction is an
important tool when communicating plans, but the exact details of an ergonomic
and intuitive regulation remain subject to further research.

Queries About Intermediate States. It is very important to have information
about the state of the domain while executing a plan. Especially when applying
planning technology to real world domains, focusing only on reaching the goal

27



is questionable. The execution of a plan may have undesirable side-effects and
it is important that those can be inspected.

Using the camera on his new phone has proven to be much easier than James
had expected. The manufacturer seems to be on the right track concerning us-
ability. However, the last step of sending the picture as an MMS remains to be
undertaken. And both because he is of a very cautious nature (some people might
call him paranoid) and because he wants to test the boundaries of the assistance
application he asks whether the picture will still be available on the phone after
having been transmitted by MMS.

In the case of totally ordered operator-based planning, obtaining the state of
the domain during or after the execution of a plan can be achieved in a canonical
way. Applying the plan steps one after another to the initial state, one obtains
the states during the plan execution. But since we are dealing with partially
ordered plans, we cannot completely determine the exact way in which the
plan will be executed unless it is linearized before execution. For our example
application, having the solution linearized by the system is a valid option and
by doing so we can take advantage of the easier access to intermediate states.
But in general, a plan produced by a hybrid planning system retains its partially
ordered nature. And thus when asking questions about an intermediate or a
final state of such a plan, we have to consider every linearization. This can be n!
linearizations for a plan consisting of n plan steps and no ordering constraints
between them.

Dean and Boddy [34] have shown that the computational complexity of rea-
soning about states for a constellation of partially ordered events can range from
polynomial time to NP-hardness; but their partially ordered events are merely
conditionally executable. In contrast, all plan steps that exist in a solution
to a hybrid planning problem will have their preconditions satisfied, and thus
will be executable unconditionally. Therefore, we expect that the reasoning task
about final and intermediate states during the execution of solutions of partially
ordered plans is feasible.

The fact that we are dealing with partially ordered plans is also reflected
in questions and their answers. A question like “Does property X hold after
performing task T?” translates into “Does property X hold after performing
task T in every linearization?”. Accordingly, answers to questions about the
state of partially ordered plans reflect this as well. The response “Sometimes.”
might occur very often if the question is not specific enough.

Justifying Plan Elements. Another category of questions that can be addressed
are those that aim at the justification of certain plan elements. A user may
be puzzled when confronted with a solution to a complex problem and may be
inclined to ask why a certain plan step is necessary.

Before James was ready to hit the final send button the reception waned
and the assistance application suggested a fixed solution to his problem. Since
the system created the impression of a mature and well-thought-out piece of
software, James simply followed the instructions guiding him along the way of

28



sending the picture by using the available W-LAN. At the point where he is
instructed to enter the user name and password of his email account, doubts
begin to emerge again and he asks why this action is a necessary step.

Before providing an answer to such a question we have to think about what
can be considered a justification. The only commitment by the user is the
stipulation of the initial planning problem. We assume that this problem cor-
rectly reflects the goals that the user wants to achieve. Thus, every justification
ultimately has to root there.

Taking our example, the system could respond to James’ question with the
immediate reason “Entering a user name and password is necessary for setting
up an email account.”. But the user might not be satisfied with this answer and
think “Why do I have to set up an email account? I just want to send a picture
to my colleague.”. To close the chain of justification, the system might have
better answered “Entering a user name and password is necessary for setting up
an email account, which in turn is needed to send the picture by email to your
colleague.”.

The refinement-based hybrid planning formalism provides us exactly with
this chain of justification. Every deviation away from the initial task network
is conducted by a modification that addresses a particular flaw, and therefore
can be justified by the necessity of resolving that flaw. For example, a plan step
consisting of the task InputCredentials may have been introduced to address
a flaw of type FAbstractTask that was associated with a plan step SetUpEmail-

Account. So by keeping the modification sequence that led to a solution, we can
extract from it the chains of justifications that explain the necessity of certain
plan elements.

To further improve on these justification chains, the system might skip cer-
tain elements inside the chain if it can be assumed that the user is able to fill
the gap by using his or her own reasoning capabilities. It is also imaginable
that the user model is keeping track of given explanations and this information
can be used to determine which parts of a justification chain can be simplified
or skipped completely. For example, if the user was already given the reason
of the existence of the plan step SetUpEmailAccount, the chain of justification
of the plan step InputCredentials can end there, assuming that the user has
accepted the necessity of SetUpEmailAccount.

Reasoning about Alternative Solutions. The last paragraph has dealt with jus-
tifying the existence of plan components that constitute a found solution. This
means we can substantiate the contribution of a certain element of the plan to
solving the problem. This does not mean that this element must be present in
every possible solution.

James does now understand that he has to set up his email account in order
to send the picture by email. But he is not very willing to do so because he’s
slow with the touch keyboard. To make matters worse, the next talk has already
begun and he doesn’t want to spend any time on unnecessary things. Therefore,

29



he queries the assistance component for an alternative way to get his problem
solved.

During the plan generation process, the system makes decisions about how
to resolve certain flaws that are present at an intermediate planning step. These
decisions have to be supported by a user that is supposed to execute the resulting
plan. A reasonable question is thus one about the reasons behind those decisions.

The hybrid planning formalism we are promoting can potentially lead to
an infinite number of solutions. Depending on the domain model, there might
exist a task that can be inserted arbitrarily many times without breaking the
solution. For our example this might be using the home button, which resets the
device to a defined state. The problem the planning system faces is to find and
pick one or more of these plans for presentation to the user. If the plan space is
finite and can be completely explored by the search process, answering questions
about the existence of alternative solutions is trivial, giving either a positive or
negative answer. Asking for a justification of why a particular solution has been
preferred by the system might be more difficult and is depending on the exact
way user preferences are handled. It then boils down to justifying the choice of
the preference system. In the case of infinitely many solutions or a search space
that cannot be completely explored because of its size, the issue becomes more
and more problematic. Absolute answers are not obtainable and the system
must decide how and where to spend additional computational power in order
to answer questions to the best extent possible.

Of all presented aspects of the explanation of plans, the question about
alternatives is the most complicated one. This is simply because it has to deal
with the largest space that contributes to the answers, the complete search
space. Justifying plan elements, as we are interpreting it, has to deal only with
one given path through the search space – the one going from the initial problem
to the solution plan. Questions about plan state are concerned only with the
solution plan itself and instructions for actions only address one single plan step
and maybe its parameters.

6. Conclusion

We have shown that our approach of hybrid planning enables the realization
of complex cognitive capabilities of technical systems.

Automated reasoning techniques including the generation, repair, and expla-
nation of plans can serve as core components of systems that provide advanced
user assistance. In our example, such a system supports a user while he operates
a mobile communication device.

User instructions are provided based on plans of action that are synthesized
by the hybrid planning system. If the execution of a certain action fails due to
some unexpected change of the environment, for example, the system is able
to help the user out of that situation by initiating a plan repair process. The
resulting plan overcomes the failure situation and is stable by exhibiting only
those deviations from the original plan that are indispensable. Finally, plan

30



explanation can be provided based on an analysis of the knowledge-rich plan
structures generated by the planner as well as of the planning process itself.

Future work is devoted to developing such an explanation generator and
provide it as an additional reasoning component to the envisaged assistance
system. Furthermore, the question of how the system actually becomes aware of
a user’s intentions will be addressed. Besides the option to consult an underlying
user model and compute the most likely next goal based on deposited typical
user plans and the observed operation history, like it is done in plan recognition,
also a speech dialogue with the user may be initiated. While in our setting,
assistance is provided only in case of need when operating the device, additional
modes like those where the user can explicitly ask for support or the system
acts as a tutor, i. e., a proactive electronic instruction manual, would be useful
enhancements of the portfolio of assistance functionalities.

Plan-based assistance is however not restricted to the support of users set-
ting up or operating technical devices. There is a broad spectrum of prospective
applications including personal organizers to support (elderly) people in their
everyday decision making and medical assistance systems that accompany pa-
tients in rehabilitation processes, for example. For these kinds of applications,
two additional features of our hybrid planning approach are essential and will
have to be exploited: the generation of individualized user plans and the gener-
ation of (partially) abstract solutions to a given planning problem.

Acknowledgement

This work was partly accomplished within the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for Cognitive Technical
Systems”, funded by the German Research Foundation (DFG).

References

[1] D. S. Nau, M. Ghallab, P. Traverso, Automated Planning: Theory & Prac-
tice, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[2] R. E. Fikes, N. J. Nilsson, STRIPS: a new approach to the application of
theorem proving to problem solving, Artificial Intelligence 2 (1971) 189–
208.

[3] A. L. Blum, M. L. Furst, Fast planning through planning graph analysis,
Artificial Intelligence 90 (1-2) (1997) 281–300.

[4] D. McDermott, The 1998 AI planning systems competition, AI Magazine
21 (2) (2000) 35–55.

[5] B. Bonet, H. Geffner, Planning as heuristic search, Artificial Intelligence
129 (2001) 5–33.

31



[6] J. Hoffmann, B. Nebel, The FF planning system: Fast plan generation
through heuristic search, Journal of Artificial Intelligence Research 14
(2001) 253–302.

[7] M. Helmert, The fast downward planning system, Journal of Artificial In-
telligence Research 26 (2006) 191–246.

[8] D. McAllester, D. Rosenblitt, Systematic nonlinear planning, in: Proceed-
ings of the Ninth National Conference on Artificial Intelligence, 1991, pp.
634–639.

[9] J. S. Penberthy, D. S. Weld, UCPOP: A sound, complete, partial order
planner for ADL, in: Proceedings of the third International Conference on
Knowledge Representation and Reasoning, 1992, pp. 103–114.

[10] K. Erol, J. Hendler, D. S. Nau, UMCP: A sound and complete procedure
for hierarchical task-network planning, in: Proceedings of the 2nd Interna-
tional Conference on Artificial Intelligence Planning Systems (AIPS 1994),
1994, pp. 249–254.

[11] Q. Yang, Intelligent Planning. A Decomposition and Abstraction Based
Approach, Springer, 1998.

[12] S. Kambhampati, A. Mali, B. Srivastava, Hybrid planning for partially hi-
erarchical domains, in: Proceedings of the 15th National Conference on Ar-
tificial Intelligence, American Association for Artificial Intelligence (AAAI
Press), 1998, pp. 882–888.

[13] L. A. Castillo, J. Fernández-Olivares, A. González, A hybrid
hierarchical/operator-based planning approach for the design of control
programs, in: ECAI Workshop on Planning and Configuration: New re-
sults in planning, scheduling and design, 2000, pp. 1–10.

[14] S. Biundo, B. Schattenberg, From abstract crisis to concrete relief (a pre-
liminary report on combining state abstraction and HTN planning), in:
Proceedings of the 6th European Conference on Planning (ECP 2001),
Springer-Verlag, 2001, pp. 157–168.

[15] B. Schattenberg, Hybrid planning & scheduling, Ph.D. thesis, Ulm Univer-
sity, Germany (2009).

[16] S. Andrews, B. Kettler, K. Erol, J. A. Hendler, UM Translog: A planning
domain for the development and benchmarking of planning systems, Tech.
Rep. CS-TR-3487, University of Maryland (1995).

[17] T. A. Estlin, S. A. Chien, X. Wang, An argument for a hybrid
HTN/operator-based approach to planning, in: Proceedings of the 4th Eu-
ropean Conference on Planning: Recent Advances in AI Planning, 1997,
pp. 182–194.

32



[18] L. A. Castillo, J. Fernández-Olivares, A. González, On the adequacy of hi-
erarchical planning characteristics for real-world problem solving, in: Pro-
ceedings of VI European Conference of Planning, 2001.

[19] S. Kambhampati, Refinement planning as a unifying framework for plan
synthesis, AI Magazine 18 (2) (1997) 67–98.

[20] B. Schattenberg, J. Bidot, S. Biundo, On the construction and evaluation
of flexible plan-refinement strategies, in: J. Hertzberg, M. Beetz, R. Englert
(Eds.), Advances in Artificial Intelligence, Proceedings of the 30th German
Conference on Artificial Intelligence (KI 2007), Vol. 4667 of Lecture Notes
in Artificial Intelligence, Springer-Verlag, 2007, pp. 367–381.

[21] B. Schattenberg, S. Balzer, S. Biundo, Knowledge-based middleware as
an architecture for planning and scheduling systems, in: D. Long, S. F.
Smith, D. Borrajo, L. McCluskey (Eds.), Proceedings of the 16th Interna-
tional Conference on Automated Planning and Scheduling (ICAPS 2006),
American Association for Artificial Intelligence (AAAI Press), Ambleside,
The English Lake District, UK, 2006, pp. 422–425.

[22] B. Schattenberg, A. Weigl, S. Biundo, Hybrid planning using flexible strate-
gies, in: U. Furbach (Ed.), Advances in Artificial Intelligence, Proceedings
of the 28th German Conference on Artificial Intelligence (KI 2005), Vol.
3698, Springer-Verlag, 2005, pp. 249–263.

[23] K. Erol, J. Hendler, D. S. Nau, HTN planning: Complexity and expres-
sivity, in: Proceedings of the Twelfth National Conference on Artificial
Intelligence (AAAI 1994), 1994, pp. 1123–1128.

[24] S. Kambhampati, Admissible pruning strategies based on plan minimality
for plan-space planning, in: Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI 1995), 1995, pp. 1627–1633.

[25] D. E. Smith, M. A. Peot, Suspending recursion in causal-link planning,
in: Proceedings of the 3rd International Conference on Artificial Intelli-
gence Planning Systems (AIPS 1996), American Association for Artificial
Intelligence (AAAI Press), 1996, pp. 182–190.

[26] B. Nebel, J. Köhler, Plan reuse versus plan generation: a theoretical and
empirical analysis, Artificial Intelligence 76 (1-2) (1995) 427–454.

[27] M. Fox, A. Gerevini, D. Long, I. Serina, Plan stability: Replanning versus
plan repair, in: Proceedings of the Sixteenth International Conference on
Automated Planning and Scheduling (ICAPS 2006), American Association
for Artificial Intelligence (AAAI Press), 2006, pp. 212–221.

[28] I. Warfield, C. Hogg, S. Lee-Urban, H. Muñoz-Avila, Adaptation of hier-
archical task network plans, in: Proceedings of the Twentieth Flairs Inter-
national Conference (FLAIRS 2007), American Association for Artificial
Intelligence (AAAI Press), 2007, pp. 429–434.

33



[29] J. Bidot, B. Schattenberg, S. Biundo, Plan repair in hybrid planning, in:
A. Dengel, K. Berns, T. Breuel, F. Bomarius, T. R. Roth-Berghofer (Eds.),
Advances in Artificial Intelligence, Proceedings of the 31st German Con-
ference on Artificial Intelligence (KI 2008), Vol. 5243 of Lecture Notes in
Artificial Intelligence, Springer-Verlag, 2008, pp. 169–176.

[30] A. Gerevini, A. Saetti, I. Serina, Planning through stochastic local search
and temporal action graphs in LPG, Journal of Artificial Intelligence Re-
search 20 (1) (2003) 239–290.

[31] J. Bidot, S. Biundo, T. Heinroth, W. Minker, F. Nothdurft, B. Schatten-
berg, Verbal plan explanations for hybrid planning, in: 24th MKWI re-
lated PuK-Workshop: Planung/Scheduling und Konfigurieren/Entwerfen,
2010, pp. 455–456, full article available at http://webdoc.sub.gwdg.

de/univerlag/2010/mkwi/03_anwendungen/planen_scheduling/06_

verbal_plan_explanations_for_hybrid_plannings.pdf.

[32] K. Kundu, C. Sessions, M. des Jardins, P. Rheingans, Three-dimensional
visualization of hierarchical task network plans, in: Proceedings of the 3rd
International NASA Workshop on Planning and Scheduling for Space, 2002.

[33] N. Q. Lino, A. Tate, Y.-H. J. Chen-Burger, Semantic support for visual-
isation in collaborative AI planning, in: The International Conference on
Automated Planning and Scheduling (ICAPS 2005), workshop on The Role
of Ontologies in AI Planning and Scheduling, Montery, California, USA,
2005, pp. 37–43.

[34] T. Dean, M. Boddy, Reasoning about partially ordered events, Artificial
Intelligence 36 (3) (1988) 375–399.

34

http://webdoc.sub.gwdg.de/univerlag/2010/mkwi/03_anwendungen/planen_scheduling/06_verbal_plan_explanations_for_hybrid_plannings.pdf
http://webdoc.sub.gwdg.de/univerlag/2010/mkwi/03_anwendungen/planen_scheduling/06_verbal_plan_explanations_for_hybrid_plannings.pdf
http://webdoc.sub.gwdg.de/univerlag/2010/mkwi/03_anwendungen/planen_scheduling/06_verbal_plan_explanations_for_hybrid_plannings.pdf

	Introduction
	The Hybrid Planning Framework
	Logical Language
	Tasks and Plans
	Domain Model
	Problems and Solutions

	Plan Generation
	Algorithm
	Properties of the Algorithm
	Example

	Plan Repair
	Problems and Solutions
	Algorithm
	Properties of the Algorithm

	Plan Explanation
	Conclusion

