
Hybrid Multi-agent Planning

Mohamed Elkawkagy and Susanne Biundo

Dept. of Artificial Intelligence
Ulm University, D-89069 Ulm, Germany
<firstname>.<lastname>@uni-ulm.de

Abstract. Although several approaches have been constructed for multi-agent
planning, solving large planning problems is still quite difficult. In this paper,
we present a new approach that integrates landmark preprocessing technique in
the context of hierarchical planning with multi-agent planning. Our approach uses
Dependent and Independent clustering techniques to break up the planning
problem into smaller clusters. These clusters are solved individually according to
landmark information, then the obtained individual plans are merged according
to the notion of fragments to generate a final solution plan. In hierarchical plan-
ning, landmarks are those tasks that occur in the decomposition refinements on
every plan development path. Hierarchical landmark technique shows how a pre-
processing step that extracts landmarks from a hierarchical planning domain and
problem description can be used to prune the search space that is to be explored
before actual search is performed. The methodologies in this paper have been im-
plemented successfully, and we will present some experimental results that give
evidence for the considerable performance increase gained through our system.

1 Introduction

Multi-agent planning (MAP) has been used to solve large planning problems. It works
by splitting the given planning problem into subproblems. Each subproblem is solved
individually to produce a solution so-called subplan. Then, these subplans have to be
combined to construct the solution plan [14]. Furthermore, MAP has been used to in-
terpret the plan coordination process of a set of independent agents. There are three
different approaches which discuss the plan coordination process. The first one focuses
on the coordination between completed plans such as the work of Tonino et al. [12] that
achieves a less costly merging plan by exploiting positive interactions and resolving the
conflicts between the generated subplans. In the second one, the processes of coordina-
tion and planning are interleaved i.e. the conflicts between subplans are resolved before
each agent generates its subplan [13]. The third one is divided into two categories: im-
plicit coordination that propagates general rules to manage agent behavior [15], and
explicit coordination that allows for the exchange of information between agents before
planning is started and provides additional constraints to the original planning problem
to ensure that the generated solution plan is feasible [10].
Many researchers have used hierarchical structure in the MAP approach to improve
planning efficiency. NOAH [3] is the first system which was built to interleave the hi-
erarchical planning and merging process by exchanging shared resources. It was devel-
oped by focusing on the efficient communication among planner agents [4]. Afterwards,

2 Mohamed Elkawkagy and Susanne Biundo

a new method has been developed to detect the conflicts not only at the primitive lev-
els, but also at abstract levels [2]. Recently, Hisashi [8] presented an HTN planning
agent system working in dynamic environments. The set of agents in his approach are
arranged in stratified form as parent and children agents which work together to achieve
the goal. As opposed to these approaches, integrating MAP with hierarchical prepro-
cessing techniques which prune the search space of a hierarchical planner has not been
considered so far. Recently, we have introduced the hierarchical landmark technique
for the purpose of domain model reduction [5]. In hierarchical planning, landmarks are
mandatory abstract or primitive tasks that have to be performed by any solution plan.
In this paper, we present a novel hybrid approach that combines the landmark prepro-
cessing technique in the context of hierarchical planning with multi-agent planning in
order to enhance planning efficiency. Our architecture consists of a set of agents. The
pre-processing agent analyzes a given planning problem by applying a landmark al-
gorithm in hierarchical planning. It does so by systematically inspecting the methods
that are eligible to decompose the relevant abstract tasks. Beginning with the (land-
mark) tasks of the initial plan, the procedure follows the way down the decomposition
hierarchy until no further abstract tasks qualify as landmarks. The master agent can be
divided into two parts: the first part handles a split process and the second handles a
merging process. Finally, the slave agents are a set of identical agent planners that are
executed concurrently, they do not cooperate among each others and each one of them
uses HTN-style planning to generate its own individual plan.
Before introducing our approach in section 3, we will review the underlying planning
framework in section 2. Section 4 presents the merging technique that combines indi-
vidual plans to generate a solution plan. Section 5 describes the experimental setting
and the evaluation results. The paper ends with some concluding remarks in section 6.

2 Formal Framework

HTN planning relies on the concepts of tasks and methods [7]. Primitive tasks corre-
spond to classical planning operators, while abstract tasks represent complex activities.
For each abstract task, a number of methods are available each of which provides a task
network, i.e., a plan that specifies a pre-defined (abstract) solution of the task. Planning
problems are (initial) task networks. They are solved by incrementally decomposing the
abstract tasks until the network contains only primitive ones in executable order.
Our planning framework relies on a hybrid formalization [1] which combines HTN
planning with partial-order causal-link (POCL) planning. For the purpose of this pa-
per, only the HTN shares of the framework are considered, however. A task schema
t(τ) = 〈prec(t(τ)), add(t(τ)), del(t(τ))〉 specifies the preconditions and effects of a task
via conjunctions of literals over the task parameters τ̄ = τ1 . . . τn. States are sets of lit-
erals. Applicability of tasks and the state transformations caused by their execution are
defined as usual. A plan P = 〈S,≺, V, CL〉 consists of a set S of plan steps – (partially)
instantiated task schemata that carry a unique label to differentiate between multiple
occurrences of the same schema –, a set ≺ of ordering constraints that impose a partial
order on S, a set V of variable constraints, and a set CL of causal links. V consists of
(in)equations that associate variables with other variables or constants; it also reflects

Hybrid Multi-agent Planning 3

the (partial) instantiation of the plan steps in P . We denote by Ground(S, V) the set of
ground tasks obtained by equating all parameters of all tasks in P with constants, in a
way compatible with V . The causal links are adopted from POCL planning: a causal
link si →ϕ sj indicates that ϕ is implied by the precondition of plan step sj and at the
same time is a consequence of the effects of plan step si. Hence, the precondition ϕ
is said to be supported this way. Methods m = 〈t(τ̄), P 〉 relate an abstract task t(τ̄) to
a plan P , which is called an implementation of t(τ̄). In general, multiple methods are
provided for each abstract task. Please also note that no application conditions are as-
sociated with the methods, as opposed to other representatives of HTN-style planning.
An HTN planning problem Π = 〈D, sinit, Pinit〉 is composed of a domain model
D = 〈T,M〉, where T and M denote sets of task schemata and decomposition methods,
an initial state sinit, and an initial plan Pinit. Note, that in our hybrid planning frame-
work, one can specify a goal state. However, since we restrict ourselves in this paper to
pure HTN planning, the goal state is omitted. A plan P = 〈S,≺, V, CL〉 is a solution to
Π if and only if: (1) P is a refinement of Pinit i.e., a successor of the initial plan in the
induced search space (see Def. 1 below), (2) each precondition of a plan step in P is
supported by a causal link in CL and no such link is threatened, i.e., for each causal link
si →ϕ sj the ordering constraints in ≺ ensure that no plan step sk with an effect that
implies ¬ϕ can be placed between plan steps si and sj , (3) the ordering and variable
constraints are consistent, i.e., ≺ does not induce cycles on S and the (in-) equations in
V are not contradictory, and (4) all plan steps in S are primitive ground tasks. Please
note that we encode the initial state via the effects of an artificial primitive task, as it
is usually done in POCL planning. In doing so, the second criterion guarantees that the
solution is executable in the initial state.
In order to refine the initial plan into a solution, there are various refinement steps (or
plan modifications) available; in HTN planning, these are: (1) the decomposition of
abstract tasks using methods, (2) the insertion of causal links to support open precondi-
tions of plan steps, (3) the insertion of ordering constraints, and (4) the insertion of vari-
able constraints. Given an HTN planning problem Π, its initial plan and the available
plan modifications we can define the induced search space as follows.

Definition 1 (Induced Search Space) The directed graph PΠ = 〈VΠ , EΠ〉 with ver-
tices VΠ and edges EΠ is called the induced search space of the planning problem Π iff
(1) Pinit ∈ VΠ , (2) if there is a plan modification refining P ∈ VΠ into a plan P ′, then
P ′ ∈ VΠ and (P, P ′) ∈ EΠ , and (3) PΠ is minimal such that (1) and (2) hold. For PΠ ,
we write P ∈ PΠ instead of P ∈ VΠ . In general, PΠ is neither acyclic nor finite.

In order to search for solutions, the induced search space is explored in a heuristi-
cally guided manner by our refinement planning algorithm (Alg. 1).
The fringe 〈P1 . . . Pn〉 is a sequence containing all unexplored plans that are direct suc-
cessors of visited non-solution plans in PΠ . It is ordered in a way such that a plan Pi is
estimated to lead more quickly to a solution than plan Pj for j > i. The current plan is
always the first plan of the fringe. The planning algorithm iterates on the fringe as long
as no solution is found and there are still plans to refine (line 1). Hence, the flaw detec-
tion function fFlawDet in line 2 calculates all flaws of the current plan. A flaw is a set of
plan components that are involved in the violation of a solution criterion. The presence
of an abstract task raises a flaw that consists of that task, a causal threat consists of a

4 Mohamed Elkawkagy and Susanne Biundo

causal link and the threatening plan step, for example. If no flaws can be found, the plan
is a solution and returned (line 3). In line 4, the modification generating function fModGen

calculates all plan modifications that address the flaws of the current plan. Afterwards,
the modification ordering function fModOrd orders these modifications according to a
given strategy. The fringe is finally updated in two steps. First, the plans resulting from
applying the modifications are computed (line 5) and put at the beginning of the fringe
(line 6). Second, the plan ordering function fPlanOrd orders the updated fringe. This step
can also be used to discard plans, i.e., to delete plans permanently from the fringe. This
is useful for plans that contain unresolvable flaws such as an inconsistent ordering of
tasks. If the fringe becomes empty, no solution exists and fail is returned.

Algorithm 1: Refinement Planning Algorithm
input : The sequence Fringe = 〈Pinit〉.
output: A solution or fail.
while Fringe = 〈P1 . . . Pn〉 6= ε do1
F ← fFlawDet(P1)2
if F = ∅ then return P13

〈m1 . . . m
′
n〉 ← fModOrd(

⋃
f∈F

fModGen(f))
4

succ← 〈apply(m1, P1) . . . apply(m′n, P1)〉5

Fringe← fPlanOrd(succ ◦ 〈P2 . . . Pn〉)6

return fail7

3 Hybrid Multi-agent Planning

Figure 1 depicts the components of our architecture. It consists of the pre-processing
agent and the planning agents. The planning agents encapsulate the master agent and
slave agents as well as a shared constraints set in their context. The shared constraints
set (SC) is a shared memory that includes a set of constraints. Note, that all agents have
complete knowledge about the initial state of the planning problem. In the following
subsections, we will illustrate the key features of our agents.

Fig. 1: Hybrid Multi-agent Planning Architecture

3.1 Pre-processing Agent

The pre-processing agent uses a preprocessing technique in order to perform some prun-
ing of the search space before the actual search is performed in order to reduce the plan-
ning effort. Recently, we introduced a landmark technique which restricts the domain
and problem description of an HTN to a smaller subset, since some parts of the domain

Hybrid Multi-agent Planning 5

description might be irrelevant for the given problem at hand [5, 6]. Therefore, the pre-
processing agent relies on hierarchical landmarks – ground tasks that occur in the plan
sequences leading from an initial plan to its solution. They are defined as follows.

Definition 2 (Solution Sequences) Let 〈VΠ , EΠ〉 be the induced search space of plan-
ning problem Π. Then, SolSeqΠ (P) := {〈P1 . . . Pn〉|P1 = P, (Pi, Pi+1) ∈ EΠ for all
1 ≤ i < n, and Pn ∈ SolΠ , n ≥ 1}.

Definition 3 (Landmark) A ground task t(τ) is called a landmark of planning problem
Π, if and only if for each 〈P1 . . . Pn〉 ∈ SolSeqΠ (Pinit) there is an 1 ≤ i ≤ n, such that
t(τ) ∈ Ground(Si, Vn) for Pi = 〈Si,≺i, Vi, CLi〉 and Pn = 〈Sn,≺n, Vn, CLn〉.

While a landmark occurs in every plan sequence that is rooted in the initial plan and
leads towards a solution, a local landmark occurs merely in each such sequence rooted
in a plan containing a specific abstract ground task t(τ).

Definition 4 (Local Landmark of an Abstract Task) For an abstract ground task t(τ)

let PΠ(t(τ)) := {P ∈ PΠ |P = 〈S,≺, V, CL〉 and t(τ) ∈ Ground(S, V)}.
A ground task t′(τ ′) is a local landmark of t(τ), if and only if for all P ∈ PΠ(t(τ)) and
each 〈P1 . . . Pn〉 ∈ SolSeqΠ (P) there is an 1 ≤ i ≤ n, such that t′(τ ′) ∈ Ground(Si, Vn)

for Pi = 〈Si,≺i, Vi, CLi〉 and Pn = 〈Sn,≺n, Vn, CLn〉.

Since there are only finitely many task schemata and we assume only finitely many con-
stants, there is only a finite number of (local) landmarks. Given a planning problem Π,
the relevant landmark information can be extracted in a pre-processing step. The out-
comes of the extraction procedure that is introduced by Elkawkagy et al. [5] is stored in
a so-called landmark table. Its definition relies on a Task Decomposition Graph (TDG).
A TDG is a representation of all possible ways to decompose the initial plan Pinit of
Π using methods in M . More formally, a TDG of a planning problem Π is a bipartite
graph 〈VT , VM , E〉, where VT is a set of ground tasks (called task vertices), VM is a set
of methods (called method vertices), and E is the set of edges connecting task vertices
with method vertices according to M . Note, that a TDG is finite as there are only finitely
many ground tasks and a finite number of methods. The landmark table is a data struc-
ture that represents the TDG plus some additional information about local landmarks.

Definition 5 (Landmark Table) Let 〈VT , VM , E〉 be a TDG of the planning problem Π.
The landmark table of Π is the set LT = {〈t(τ),M(t(τ)), O(t(τ))〉|t(τ) ∈ VT }, where
M(t(τ)) and O(t(τ)) are defined as follows:
M(t(τ)) = {t′(τ ′) ∈ VT | t′(τ ′) ∈ Ground(S, V) for all 〈t(τ), 〈S,≺, V, CL〉〉 ∈ VM}
O(t(τ))= {Ground(S, V) \M(t(τ)) | 〈t(τ), 〈S,≺, V, CL〉〉 ∈ VM}

Each landmark table entry partitions the tasks introduced by decompositions into two
sets. Mandatory tasks M(t(τ)) are those ground tasks that are contained in all plans
introduced by some method which decomposes t(τ); hence, they are local landmarks
of t(τ). The optional task set O(t(τ)) contains for each method decomposing t(τ) the
set of ground tasks which are not in the mandatory set.
Once the landmark table has been constructed, the pre-processing agent terminates itself
after sending the landmark table to the master agent. Please note that the information

6 Mohamed Elkawkagy and Susanne Biundo

about landmarks can be exploited in two ways. The first way is to reduce the domain
model by ignoring infeasible method decompositions or, more precisely, to transform
a universal domain model into one that includes problem-specific pruning information
[5]. The second application of the landmark table is to serve as a reference for the
planning strategy to deduce heuristic guidance from the knowledge about which tasks
have to be decomposed on refinement paths that lead towards a solution [6]. Each slave
agent will use the former way in order to construct its individual solution plan.

3.2 Planning Agents

Our planning scenario includes a set of planning agents. They integrate to generate a
final solution for the given planning problem. The set of planning agents is divided into
two different types: a master agent and a set of identical agents so-called slave agents.
Master Agent: It takes a hierarchical planning problem Π and the computed landmark
table LT as input and generates the final solution plan. To this end, the master agent
performs two processes: a split process and a merging process.
In the split process, the master agent decomposes a planning problem Π into a set of
clusters according to two different techniques: Dependent (Dep) and Independent

(Ind). The Dep technique relies on the idea of constructing a set of dependent clusters,
while the Ind technique creates a set of independent clusters. A comparison of the re-
spective results will be done in the experimental section (cf. Sec. 5).
In each iteration of the Dep algorithm (Alg. 2), in the current plan, the tasks that are
not preceded by other tasks are separated in one cluster. While the set of constraints
between tasks in different clusters is inserted in the shared constraints set SC.
The Dep algorithm takes the planning problem Π, a landmark table LT (i.e., the LT is
computed by the pre-processing agent), and a set Γ = 〈Πγ , SC〉 as input and computes
the final set Γ . The set Γ consists of the shared constraints set SC and the set of clusters
Πγ =

⋃n
i=0{Πγi}, where n is the number of clusters. Each cluster Πγi will be consid-

ered as a sub-problem. In order to identify different clusters, the Dep algorithm runs
recursively through all tasks in the initial plan Pinit until all tasks have been traversed.
Each cluster Πγ = 〈D, sinit, Pγinit , LTγ〉 includes a domain model D, an initial state
sinit, a partial plan Pγinit which represents an initial plan for the cluster Πγ , and an
LTγ that represents relative landmark information of the tasks in the partial plan Pγinit .
Now, we will have a look at how the set Γ is constructed by our Dep algorithm. First,
the set Γ is initialized (line 1). Afterwards, in the current plan Pinit, the tasks tei that are
pre-request-free are collected (line 3). In lines 4 to 6, a new cluster Πγi is created, and
the tasks in tei are added to the task network of the plan Pγinit . Then, the tasks tei are
removed from the task network TE of the plan Pinit. For the current tasks tei at hand,
lines 7 to 12 illustrate iterative loops to extend the created cluster Πγi by adding dif-
ferent constraints and updating SC by inserting new constraints. For each task t in the
set of tasks tei, the preprocessing information in the LT which is relevant to the current
task t is added to the field LTγi in the cluster Πγi . This information in LTγi will help
the planner (slave) agent to reduce the planning effort necessary to find the individual
plan for the cluster Πγi (line 8). In lines 9 and 10, the plan Pγinit in the cluster Πγi is
extended by adding all variable V , ordering≺ and CL constraints that point to a relation

Hybrid Multi-agent Planning 7

between the current task t and the other tasks in the set tei. After that, these constraints
are removed from the current plan Pinit inΠ. Afterwards, the shared constraints set SC
and the current partial plan Pinit are updated by inserting and removing respectively all
constraints that relate task t to other tasks outside the set of tasks tei (lines 11 and 12).
Finally, the current set Γ is updated by adding the current new cluster Πγi to the set of
cluster Πγ as well as updating the shared constraints set SC (line 13). Note that SC will
play a great role in the merging process. The Dep algorithm is called recursively with
the modified plan and the updated Γ to inspect a new cluster (line 14).
On the other hand, in each iteration of the Ind algorithm, in the current plan, the tasks
that are dependent are collected in one cluster and consequently SC get empty. There-
fore, in order to split the planning problem into a set of clusters according to the Ind

algorithm, we will replace line 3 in Algorithm 2 by the following line ”Select tasks tei
that are dependent”. Due to this replacement, the set of clusters which are produced
are explicitly independent, and the shared constraints set SC will be empty.
Once the set of clusters has been generated either by the Dep or Ind algorithm, the
master agent initiates a number of slave agents based on the number of clusters and
distributes these clusters among slave agents in order to construct individual solution
plans for them. Afterwards, the master agent suspends its activity until all slave agents
respond by returning individual solution plans for all clusters, and then wakes up again
to perform the merging process in order to generate a general solution plan (cf. sec. 4).

Algorithm 2: Dependent (Dep) Algorithm
Input : Π = 〈D, sinit, Pinit〉 : Planning problem,

LT : LandmarkTable, Γ = 〈Πγ , SC〉
Output: Γ
Γ = 〈Πγ , SC〉 ←− null1
if (TE == ∅) then return Γ2
Select tasks tei that are pre-request-free from Pinit.3
Create a new cluster Πγi = 〈D, sinit, Pγinit , LTγi〉.4
Add these tasks tei to the partial plan Pγinit in cluster Πγi .5
Let TE ←− (TE − tei)6
foreach (task t ∈ tei) do7

Attach the relevant information of the task t in the LT to the LTγi in the cluster Πγi8
Add all constraints (≺t, Vt, CLt) that relate task t with the other tasks in tei to Pγinit9
Let V ←− (V − Vt); ≺←− (≺ − ≺t); CL←− (CL− CLt)10
Insert all constraints (≺t̄, Vt̄, CLt̄) that relate task t with another task t̄ /∈ tei into SC.11
Let ≺←− (≺ − ≺t̄); V ←− (V − Vt̄); CL←− (CL− CLt̄)12

Γ = 〈Πγ , SC〉 ←− 〈(Πγ ∪Πγi), SC〉13
return Dependent(Π,LT, Γ)14

Slave Agents: It is a set of identical agents working concurrently in order to solve the
set of clusters which are passed by the master agent. To this end, each slave agent uses
our refinement planning algorithm (cf. Alg. 1) to generate its own individual plan. Our
refinement algorithm takes the initial plan Pγinit of the assigned cluster as an input and
refines it stepwise until the individual solution plan is found.
Since our approach is based on a declarative model of task abstraction, the exploitation
of knowledge about hierarchical landmarks can be done transparently during the gener-

8 Mohamed Elkawkagy and Susanne Biundo

ation of the task expansion modifications: First, the respective modification generation
function fModGen

AbsTask is deployed with a reference to the landmark table LTγi of the cluster
problemΠγi . During planning, each time an abstract task flaw indicates an abstract plan
step t(τ̄) the function fModGen

AbsTask does not need to consider all methods provided in the
domain model for the abstract task t(τ̄). Instead, it operates on a reduced set of applica-
ble methods according to the respective options O(t(τ̄)) in the LTγ .
It is important to see that the overall plan refinement procedure is not affected by this do-
main model reduction, neither in terms of functionality (flaw and modification modules
do not interfere) nor in terms of search control (strategies are defined independently,
and completeness of search is preserved).
Note that if the refinement planning algorithm returns fail , the slave agent works as a
master agent and performs all functions of the master agent. Finally, each slave agent
terminates itself after sending the generated individual solution pγ to the master agent.

4 Merging Methodology

Our merging methodology depends on the notion of Fragments. The merging technique
proceeds in two processes. Firstly, the set of individual plans PΓ = {pγ1 , pγ2 , · · · , pγn}
(i.e., which are produced by slave agents) is divided into a set of Fragments. These
Fragments are constructed according to the ordering constraints in the SC. Each frag-
ment F = 〈Pγ , Oγ〉 consists of a set of individual plans Pγ (Pγ ⊆ PΓ), and a set
of ordering constraints Oγ that impose a partial order on Pγ . For example, suppose
the ordering constraints in SC are {s1 ≺ s2, s2 ≺ s3, s4 ≺ s5}. Let a set of indi-
vidual plans PΓ = {pγ1 , · · · , pγ7} be respectively a solution plan for abstract plan
steps s1, · · · , s7. Then according to the ordering information in SC, these plans in
PΓ constitute three different fragments F1 = 〈{pγ1 , pγ2 , pγ3}, {pγ1 ≺ pγ2 , pγ2 ≺ pγ3}〉,
F2 = 〈{pγ4 , pγ5}, {pγ4 ≺ pγ5}〉, and F0 = 〈{pγ6 , pγ7}, {∅}〉. Note that there are two
types of fragments. Related-Fragment includes those individual plans that are depen-
dent such as F1 and F2, and Zero-Fragment which includes those individual plans that
do not have explicit dependency such as F0.
Secondly, the plans in each fragment are merged to produce a plan so-called Merge-
Fragment-Plan (MFPlan), and then all MFPlans are combined in order to generate a
general final solution plan. To this end, we need to identify the implicit dependency be-
tween individual plans especially in Zero-Fragment. This dependency is identified by
matching preconditions and effects of the tasks in individual plans. This means, certain
postcondition of plan pγi tasks required as preconditions for plan pγj tasks.
There are two reasons for determining the plan dependency: canceling the negative in-
teractions (one task deletes the effect or precondition of another task), and benefit from
the positive interactions (two different tasks need the same precondition and at least one
of them does not remove it, or one task generates precondition of another task).
Intuitively, the set of independent plans can be executed concurrently by integrating
them into one large plan. Otherwise, if the implicit dependency between individual
plans in Zero-Fragment is detected, then the master agent updates it by adding order-
ing constraints between these plans. Despite the order dependency between plans, some
tasks in these plans can be performed concurrently. Note that tasks cannot take place

Hybrid Multi-agent Planning 9

concurrently if the pre- or post-conditions of the tasks in the successor plan are incon-
sistent with the postconditions of the tasks in the predecessor plan [9]. Therefore, in
order to determine the concurrent tasks, we will establish a comparison between pre-
and post-conditions of tasks in the successor plan with the postconditions of the tasks
in the predecessor plan. The comparison process will be started by checking pre- and
post-conditions of the first task in the successor plan pγj with postconditions of differ-
ent tasks in the predecessor plan pγi . If a pre- or post-condition of the first task in pγj
is violated, then this task will execute sequentially with plan pγi and the procedure of
case-1 will be performed. Otherwise, the first task will be executed concurrently with
the plan pγi and the procedure of case-2 will be performed. The comparison process in
case-2 will go further in the successor plan pγj in order to repeat the comparison with
the next task. At this point, we neither need case-2 nor steps number 4 and 5 in case-1.
Case-1: (1) Create ordering constraint

〈
last task in pγi , current task in pγj

〉
, (2) Re-

move ordering constraint 〈last task in pγi , goal() task in pγi〉, (3) Remove goal() task
from pγi , (4) Remove ordering constraint

〈
initial() task in pγj , current task in pγj

〉
,

(5) Remove initial() task from pγj , (6) Stop comparison process.
Case-2: (1) Remove ordering constraint

〈
initial() task in pγj , current task in pγj

〉
, (2)

Remove initial() task in pγj , (3) Create ordering constraint 〈initial() task in pγi , current
task in pγj 〉, (4) Continue comparison with the next task in the successor plan pγj .
On the other hand, in the merging process, we need to detect possible plan steps that
will be merged and to update their constraints. The pair of plan steps in different plans
is merged, if their postconditions are matched and there is no other task that is ordered
after them that could violate these postconditions. More formally,

Definition 6 (Merging Plan Steps merge(si, sj)) ∀ plan steps si ∈ Pγi and sj ∈ Pγj ,
merge(si, sj) iff ((post(si) = post(sj)) ∧(¬∃sk ∈ Pγj violate post(sj) s.t. (sj ≺ sk)))

Once a pair of plan steps has been merged, the related constraints of the removed plan
step should be modified. This means that the replaced plan step will inherit all con-
straints of the merged plan steps as well as adding new constraints.
For all merged plan steps sj ∈ Pγj and si ∈ Pγi : (1) The plan step sj is replaced by plan
step si, (2) ∀ sk, sl ∈ Pγj and ∃ 〈sk, sj〉 , 〈sj , sl〉 ∈≺ of plan Pγj add new order constraint
〈sk, sl〉 to plan Pγj , (3) Remove 〈sk, sj〉 , 〈sj , sl〉 from plan Pγj . These rules ensure that
the whole ordering constraints of the merged plan step are preserved.
On the other hand, the causal link constraints that include the merged plan step in
its components should be updated. For all merged plan steps sj ∈ Pγj and si ∈ Pγi :
∀ sk, sl ∈ Pγj : (1) ∀ causal link sj

Φ→ sl ∈ CL of plan Pγj add new causal link si
Φ→ sl

to CL of plan Pγj , (2) remove causal link sj
Φ→ sl from CL of plan Pγj , (3) remove

causal link sk
Φ→ sj from CL of plan Pγj .

5 Experimental Results

In order to quantify the practical performance gained by our approach, we conducted
a series of experiments with our planning framework. The experiments were run on a
machine with a 3 GHz CPU and 256 MB Heap memory for the Java VM. Note that

10 Mohamed Elkawkagy and Susanne Biundo

this machine has only one single processor unit. We ran our experiments on two well-
established planning domains. The Satellite domain is a benchmark for non-hierarchical
planning. It is inspired by the problem of managing scientific stellar observations by
earth-orbiting instrument platforms. Our encoding of this domain regards the original
primitive operators as implementations of abstract observation tasks, which results in
a domain model with 3 abstract and 5 primitive tasks, related by 8 methods. The UM-
Translog is a hierarchical planning domain that supports transportation and logistics.
We adopted its type and decomposition structure to our representation which yielded
a deep expansion hierarchy in 51 methods for decomposing 21 abstract tasks into 48
different primitive ones. We have chosen these domain models because of the prob-
lem characteristics they induce. On the other hand, Satellite problems typically become
difficult when modeling a repetition of observations, which means that a small num-
ber of methods is used multiple times in different contexts of a plan. UM-Translog
problems, on the other hand, typically differ in terms of the decomposition structure,
because specific transportation goods are treated differently, e.g., toxic liquids in trains
require completely different methods than transporting regular packages in trucks. We
consequently defined our experiments on qualitatively different problems by specifying
various transportation means and goods. The number of tasks in the initial plan of these
planning problems ranges from one to six tasks.

Table 1: Results for the UM-Translog domain.

Problem PANDA PLM HMAP
Dependent Independent

Planning Time Planning Time Planning Time Merging Time Total Planning Time Merging Time Total
Translog-P1 180 104 115 0 115 113 0 113
Translog-P2 155 99 103 0 103 105 0 105
Translog-P3 1450 153 159 0 159 157 0 157
Translog-P4 772 621 630 0 630 625 0 625
Translog-P5 1184 639 358 179 537 512 0 512
Translog-P6 - 3437 476 956 1432 1794 964 2758
Translog-P7 - - 1413 2397 3810 703 1967 2670
Translog-P8 - - 4562 6094 10656 1587 6731 8318
Translog-P9 - - 454 148 602 450 0 450

Translog-P10 1284 583 451 941 1392 627 878 1505
Translog-P11 - 3930 2954 2769 5723 750 2343 3093
Translog-P12 - - 3335 5981 9316 1218 3622 4840
Translog-P13 - - 4370 6327 10697 1463 7250 8713
Translog-P14 - - 770 223 993 673 351 1024
Translog-P15 - - 1705 1440 3145 2109 1345 3454
Translog-P16 - - 547 418 965 4785 578 5363
Translog-P17 - - 3366 5921 9287 1328 4364 5692
Translog-P18 3268 1287 1079 0 1079 698 392 1090
Translog-P19 - 4184 3417 1002 4419 489 835 1324
Translog-P20 - - 3692 2015 5707 1123 1910 3033
Translog-P21 - - 4007 3842 7849 1379 4808 6187
Translog-P22 - - 4705 5841 10546 1777 6370 8147
Translog-P23 5238 1211 832 0 832 383 376 759
Translog-P24 - 10006 3227 1045 4272 537 833 1370
Translog-P25 - - 3445 2614 6059 686 1939 2625
Translog-P26 - - 3874 5637 9511 1040 5481 6521
Translog-P27 - - 4739 6627 11366 1521 5904 7425
Translog-P28 - 2623 1047 0 1047 2045 753 2798
Translog-P29 - - 6008 697 6705 5069 3471 8540
Translog-P30 - - 3237 940 4177 540 1014 1554

Tables 1 and 2 show the runtime behavior of our system in terms of the planning
and merging time (in seconds) consumption for the problems in the UM-Translog and

Hybrid Multi-agent Planning 11

Satellite domains, respectively. The planning time includes the time of breaking up the
planning problem, the time used to solve sub-problems and the preprocessing time.
Dashes indicate that the plan generation process did not find a solution within the al-
lowed maximum number of 10, 000 plans and 18, 000 seconds and has therefore been
canceled. The column PANDA refers to the reference system behavior [11], the PLM to
the version that performs a preprocessing phase and HMAP to the version that performs
our hybrid MAP. The column HMAP considers clustering the planning problem by two
different clustering techniques Dep and Ind. Our experiments in the UM-Translog and
satellite domains show poor performance (cf. Tables 1 and 2) in PANDA and PLM ver-
sions, as it is difficult to solve planning problems which have a large number of abstract
tasks in the initial plan. The experiments show that, dividing the planning problem into
smaller clusters either by Dep or Ind technique are easier to solve than the original
problem. Consequently, we are able to solve the problems for which the competing sys-
tems could not find a solution within the given resource bounds. For example, for the
UM-Translog problems that have a single abstract task in the initial plan (Translog-P1
to P4), the average performance improvement of HMAP is about 59% in comparison
with PANDA planner. In those problems, the PLM improves the results by 2% w. r.
t. HMAP. Therefore, it is not a big disadvantage of using HMAP instead of PLM for
problems which have a single task in the initial plan. Not surprisingly, the performance
improvements will increase dramatically with the number of tasks in the initial plan.
Our experiments proved that when there is a causal interaction between tasks in the
plan, the Ind decomposition technique is more efficient than the Dep decomposition
technique such as in the UM-Translog domain, where the Ind technique achieves an
average improvement of 22% w. r. t. the Dep technique as documented in table 1.
Although, satellite domain does not benefit significantly from the landmark preprocess-

Table 2: Results for the Satellite domain.

Problem PANDA PLM HMAP
Dependent Independent

Planning Time Planning Time Planning Time Merging Time Total Planning Time Merging Time Total
Satellite-P1 62 60 65 0 65 69 0 69
Satellite-P2 788 708 14 3 17 272 5 277
Satellite-P3 2035 2027 29 7 36 327 26 353
Satellite-P4 - - 42 10 52 342 26 369
Satellite-P5 - - 582 26 608 512 26 539
Satellite-P6 - - 483 19 502 557 26 582
Satellite-P7 - - 473 27 501 593 34 627
Satellite-P8 - - 28 7 35 386 23 409
Satellite-P9 1699 1474 247 0 247 15 0 15

Satellite-P10 3053 3062 356 6 362 26 4 31
Satellite-P11 - - 364 12 376 30 6 36
Satellite-P12 - - 529 9 538 37 7 44
Satellite-P13 - - 820 35 855 52 11 63
Satellite-P14 - - 643 50 693 70 23 93

ing technique due to the shallow decomposition hierarchy, it achieves good performance
with decomposition techniques (either Dep or Ind technique) as depicted in table 2.

6 Conclusion

We have presented a new hybrid approach that integrates the hierarchical landmark
preprocessing technique with MAP. Our approach enables us to break up the plan-

12 Mohamed Elkawkagy and Susanne Biundo

ning problem into a set of clusters using two different techniques; Dependent and
Independent. It guarantees that: (1) the set of agents work independently, (2) the in-
dividually constructed plans are merged successfully in order to generate a global plan
without additional refinement in any individual plan, and (3) the problems are solved in
shorter time. We have performed a number of experiments on our representation frame-
work on exemplary problem specifications for two hierarchical domains in which the
HMAP approach competed with a planner “with and without” preprocessing. These
results give evidence for the practical relevance of our approach.

ACKNOWLEDGEMENTS

This work is done within the Transregional Collaborative Research Centre SFB/TRR
62 “Companion-Technology for Cognitive Technical Systems” funded by the German
Research Foundation (DFG).

References

1. Biundo, S., Schattenberg, B.: From abstract crisis to concrete relief (a preliminary report on
combining state abstraction and HTN planning). In: Proc. of ECP. pp. 157–168 (2001)

2. Bradley, J., Edmund, H.: Theory for coordinating concurrent hierarchical planning agents
using summary information. In: Proc. of AAAI. pp. 495–502 (1999)

3. Corkill, D.: Hierarchical planning in a distributed environment. In: Proc. of IJCAI. pp. 168–
175 (1979)

4. desJardins, M., Wolverton, M.: Coordinating a distributed planning system. Journal of AI
Magazine, 20(4). p. 4553 (1999)

5. Elkawkagy, M., Schattenberg, B., Biundo, S.: Landmarks in hierarchical planning. In: Proc.
of ECAI. pp. 229–234 (2010)

6. Elkawkagy, M., Bercher, P., Schattenberg, B., Biundo, S.: Exploiting landmarks for hybrid
planning. In: 25th PuK Workshop Planen, Scheduling und Konfigurieren, Entwerfen (2010)

7. Erol, K., Hendler, J., Nau, D.: UMCP: A sound and complete procedure for hierarchical
task-network planning. Proc. of AIPS pp. 249–254 (1994)

8. Hisashi, H.: Stratified multi-agent HTN planning in dynamic environments. In: Proce. of
KES-AMSTA. pp. 189–198 (2007)

9. Jeffrey, S., Edmund, D.: An efficient algorithm for multiagent plan coordination. In: Proc. of
the AAMAS. pp. 828–835 (2005)

10. Mors, A.W., Valk, J.M., Witteveen, C.: Task coordination and decomposition in multi-actor
planning systems. In: Proc. of the Workshop on Software-Agents in Information Systems
and Industrial Applications (SAISIA). pp. 83–94 (2006)

11. Schattenberg, B.: Hybrid planning and scheduling. PhD thesis, The University of Ulm, Insti-
tute of Artificial Intelligence (2009)

12. Tonino, J., Bos, A., de Weerdt, M., Witteveen, C.: Plan coordination by revision in collective
agent-based systems. Journal of Artificial Intelligence 142, 2 pp. 121–145 (2002)

13. Weerdt, M., Witteveen, C.: A resource logic for multi-agent plan merging. In: Proc. of the
20th Workshop of the UK planning and Scheduling. pp. 244–256 (2003)

14. Wilkins, D., Mayers, K.: A multi-agent planning architecture. In: Proc. of AIPS-98. pp. 154–
162 (1998)

15. Yang, Q., Nau, D.S., Hendler, J.: Merging separately generated plans with restricted interac-
tions. Journal of Computational Intelligence, 8(4): p. 648 676 (1992)

