
Landmark-Aware Strategies for Hierarchical Planning

Mohamed Elkawkagy and Pascal Bercher and Bernd Schattenberg and Susanne Biundo
Institute of Artificial Intelligence,

Ulm University, D-89069 Ulm, Germany,
email: forename.surname@uni-ulm.de

Abstract

In hierarchical planning, landmarks are abstract tasks the de-
composition of which are mandatory when trying to find a
solution to a given problem. In this paper, we present novel
domain-independent strategies that exploit landmark infor-
mation to speed up the planning process. The empirical eval-
uation shows that the landmark-aware strategies outperform
established search strategies for hierarchical planning.

1 Introduction
While landmarks are widely used to improve the perfor-
mance of classical planners, a different notion of land-
marks has recently been developed for HTN-based ap-
proaches (Elkawkagy, Schattenberg, and Biundo 2010). Un-
like the classical case where landmarks are facts that must
hold in some intermediate state of any solution plan, hierar-
chical landmarks are mandatory tasks – tasks that have to be
decomposed on any search path leading from the initial plan
to a solution of the planning problem.

Hierarchical task network (HTN) planning relies on the
concepts of tasks and methods (Erol, Hendler, and Nau
1994). While primitive tasks correspond to classical plan-
ning operators, abstract tasks are a means to represent com-
plex activities. For each abstract task, a number of methods
are available each of which provides a task network, i.e.,
a plan that specifies a predefined (abstract) solution of the
task. Planning problems are (initial) task networks. They
are solved by incrementally decomposing the abstract tasks
until the network contains only primitive ones in executable
order.

Strategies of HTN-based planners differ in the ways they
select appropriate methods and interleave the decomposi-
tion of tasks with measures to resolve causal interactions
between tasks. Systems of the SHOP family, like SHOP2,
expand tasks in the order in which they are to be executed
and consider causality only on primitive levels (Nau et al.
2003). Other strategies alternate task decomposition and
causal conflict resolution (McCluskey 2000) or comply with
the current state of the task network (Schattenberg, Bidot,
and Biundo 2007).

In this paper, we describe how the exploitation of land-
mark information leads to novel domain-independent search
strategies for HTN-based planning. A so-called landmark

table is extracted from the current planning problem in a
pre-processing step. It lists the landmark tasks and reveals
the various options at hand. Options are tasks that are not
mandatory, but may have to be decomposed depending on
the method that is selected to implement the respective land-
mark. This information is used to compute the expansion
effort of the problem – a heuristic to guide the selection of
methods and with that reduce the effective branching factor
of the search space. We implemented the landmark-aware
planning strategies in our experimental setting and evaluated
their performance on the well-established Satellite and UM-
Translog benchmarks. It turned out that the novel strategies
outperform their conventional counterparts on practically all
problems, if the decomposition hierarchy of the underlying
domain is of non-trivial depth.

The use of landmarks in hierarchical planning is quite
novel. In classical state-based planning the concept of land-
marks (Porteous, Sebastia, and Hoffmann 2001) enabled the
development of strong heuristics (Helmert and Domshlak
2009; Bonet and Helmert 2010). LAMA, the currently best
performing classical planner uses such a landmark heuris-
tic (Richter and Westphal 2010). The work of Zhu and Givan
(2004) generalized landmarks to so-called action landmarks.
As for HTN-based planning, Marthi, Russell, and Wolfe
(2008) introduce abstract landmark facts that are gained
from effects of basic actions via incremental abstraction.

In the remainder of the paper, we give a brief introduction
into the underlying planning framework and the concept of
hierarchical landmarks. We then define the landmark-aware
strategies and describe the experimental setting as well as
the evaluation results.

2 Planning Framework
The planning framework is based on a hybrid formalization
(Biundo and Schattenberg 2001) which fuses HTN planning
with partial-order causal-link (POCL) planning. For the pur-
pose of this paper, only the HTN shares of the framework
are considered, however. A task schema t(τ) = 〈prec, eff〉
specifies the preconditions and effects of a task via con-
junctions of literals over the task parameters τ̄ = τ1 . . . τn.
States are sets of literals. Applicability of tasks and the
state transformations caused by their execution are defined
as usual. A plan P = 〈S,≺, V, C〉 consists of a set S
of plan steps, i.e., uniquely labeled, (partially) instantiated

tasks, a set ≺ of ordering constraints that impose a partial
order on S, a set V of variable constraints, and a set C of
causal links. V consists of (in)equations that associate vari-
ables with other variables or constants; it also reflects the
(partial) instantiation of the plan steps in P. We denote by
Ground(S, V) the set of ground tasks obtained by equat-
ing all parameters of all tasks in P with constants, in a way
compatible with V. The causal links are adopted from POCL
planning: a causal link l:t(τ̄) →ϕ l

′:t′(τ̄ ′) indicates that ϕ
is implied by the precondition of plan step l′:t′(τ̄ ′) and at
the same time is a consequence of the effects of plan step
l:t(τ̄). Hence, ϕ is said to be supported this way. Meth-
ods m = 〈t(τ), P 〉 relate an abstract task t(τ) to a plan P,
which is called an implementation of t(τ). Multiple meth-
ods may be provided for each abstract task.

An HTN planning problem Π = 〈D, sinit, Pinit〉 is com-
posed of a domain model D = 〈T,M〉, where T and
M denote sets of task schemata and decomposition meth-
ods, an initial state sinit, and an initial plan Pinit. A plan
P = 〈S,≺, V, C〉 is a solution to Π if and only if:

1. P is a refinement of Pinit, i.e., a successor of the initial
plan in the induced search space (see Def. 1 below);

2. each precondition of a plan step in S is supported by a
causal link in C and no such link is threatened, i.e., for
each causal link l:t(τ̄) →ϕ l′:t′(τ̄ ′) the ordering con-
straints in ≺ ensure that no plan step l′′:t′′(τ̄ ′′) with an
effect that implies ¬ϕ can be placed between plan steps
l:t(τ̄) and l′:t′(τ̄ ′);

3. the ordering and variable constraints are consistent, i.e.,
≺ does not induce cycles on S and the (in)equations in V
are not contradictory; and

4. all plan steps in S are primitive ground tasks.

SolΠ denotes the set of all solutions of Π.
Please note that we encode the initial state via the effects

of an artificial primitive “start” task, as it is usually done in
POCL planning. In doing so, the second criterion guarantees
that the solution is executable in the initial state.

In order to refine the initial plan into a solution, there are
various refinement steps (or plan modifications) available; in
HTN planning, these are: (1) the decomposition of abstract
tasks using methods, (2) the insertion of causal links to sup-
port open preconditions of plan steps, (3) the insertion of
ordering constraints, and (4) the insertion of variable con-
straints. Given an HTN planning problem we can define the
induced search space as follows.

Definition 1 (Induced Search Space) The directed graph
PΠ = 〈VΠ , EΠ〉 with vertices VΠ and edges EΠ is called
the induced search space of planning problem Π if and only
if (1) Pinit ∈ VΠ , (2) if there is a plan modification refining
P ∈ VΠ into a plan P ′, then P ′ ∈ VΠ and (P, P ′) ∈ EΠ ,
and (3) PΠ is minimal such that (1) and (2) hold.

For PΠ = 〈VΠ , EΠ〉, we write P ∈ PΠ instead of P ∈ VΠ .
Note that PΠ is in general neither acyclic nor finite. For

the former, consider a planning problem in which there are
the abstract tasks t(τ), t′(τ ′) as well as two methods, each
of which transforms one task into the other. For the latter,

consider a planning problem containing an abstract task t(τ)
and a primitive task t′(τ ′) as well as two methods for t(τ):
one maps t(τ) to a plan containing only t′(τ ′), the other
maps t(τ) to a plan containing t′(τ ′) and t(τ) thus enabling
the construction of arbitrary long plans.

In order to search for solutions the induced search space is
explored in a heuristically guided manner by the following
standard refinement planning algorithm:

Algorithm 1: Refinement Planning Algorithm
Input : The sequence Fringe = 〈Pinit〉.
Output : A solution or fail.

1 while Fringe = 〈P1 . . . Pn〉 6= ε do
2 F ← fFlawDet(P1)
3 if F = ∅ then return P1

4 〈m1 . . . mk〉 ← fModOrd(
⋃
f∈F

fModGen(f))

5 succ← 〈app(m1, P1) . . . app(mk, P1)〉
6 Fringe← fPlanOrd(succ ◦ 〈P2 . . . Pn〉)
7 return fail

The fringe 〈P1 . . . Pn〉 is a sequence containing all un-
explored plans that are direct successors of visited non-
solution plans in PΠ . It is ordered in a way such that a plan
Pi is estimated to lead more quickly to a solution than plans
Pj for j > i. The current plan is always the first plan of
the fringe. The planning algorithm iterates on the fringe as
long as no solution is found and there are still plans to refine
(line 1). Hence, the flaw detection function fFlawDet in line 2
calculates all flaws of the current plan. A flaw is a set of
plan components that are involved in the violation of a solu-
tion criterion. The presence of an abstract task raises a flaw
that consists of that task, a causal threat consists of a causal
link and the threatening plan step, for example. If no flaws
can be found, the plan is a solution and returned (line 3).
In line 4, the modification generating function fModGen cal-
culates all plan modifications that address the flaws of the
current plan. Afterwards, the modification ordering func-
tion fModOrd orders these modifications according to a given
strategy. The fringe is finally updated in two steps: first,
the plans resulting from applying the modifications are com-
puted (line 5) and put at the beginning of the fringe (line 6).
Second, the plan ordering function fPlanOrd orders the up-
dated fringe. This step can also be used to discard plans, i.e.,
to delete plans permanently from the fringe. This is useful
for plans that contain unresolvable flaws like an inconsistent
ordering of tasks. If the fringe becomes empty, no solution
exists and fail is returned.

In this setting, the search strategy appears as a combina-
tion of the plan modification and plan ordering functions. In
order to perform a depth first search, for example, the plan
ordering is the identity function (fPlanOrd(P) = P for any
sequence P), whereas the modification ordering fModOrd de-
termines, which branch of the search space to visit first.

3 Landmarks
The landmark-aware planning strategies rely on hierarchical
and local landmarks – ground tasks that occur in the plan se-
quences leading from a problem’s initial plan to its solution.

Definition 2 (Solution Sequences) Let 〈VΠ , EΠ〉 be the in-
duced search space of planning problem Π. Then, for any
plan P ∈ VΠ , SolSeqΠ(P) := {〈P1 . . . Pn〉 | P1 =
P, (Pi, Pi+1) ∈ EΠ for all 1 ≤ i < n, and Pn ∈
SolΠ for n ≥ 1}.
Definition 3 (Landmark) A ground task t(τ) is called a
landmark of planning problem Π, if and only if for each
〈P1 . . . Pn〉 ∈ SolSeqΠ

(Pinit) there is an 1 ≤ i ≤ n, such
that t(τ) ∈ Ground(Si, Vn) for Pi = 〈Si,≺i, Vi, Ci〉 and
Pn = 〈Sn,≺n, Vn, Cn〉.

While a landmark occurs in every plan sequence that is
rooted in the initial plan and leads towards a solution, a local
landmark occurs merely in each such sequence rooted in a
plan containing a specific abstract ground task t(τ).

Definition 4 (Local Landmark of an Abstract Task) For
an abstract ground task t(τ) let PΠ(t(τ)) := {P ∈ PΠ |
P = 〈S,≺, V, C〉 and t(τ) ∈ Ground(S, V)}.
A ground task t′(τ ′) is a local landmark of t(τ), if and only if
for all P ∈ PΠ(t(τ)) and each 〈P1 . . . Pn〉 ∈ SolSeqΠ

(P)
there is an 1 ≤ i ≤ n, such that t′(τ ′) ∈ Ground(Si, Vn)
for Pi = 〈Si,≺i, Vi, Ci〉 and Pn = 〈Sn,≺n, Vn, Cn〉.

Since there are only finitely many task schemata and we
assume only finitely many constants, there is only a finite
number of (local) landmarks.

Given a planning problem Π, the relevant landmark in-
formation can be extracted in a pre-processing step. We use
the extraction procedure introduced in previous work of the
authors (Elkawkagy, Schattenberg, and Biundo 2010) and
assume that the landmark information is already stored in a
so-called landmark table. Its definition relies on a task de-
composition graph, which is a relaxed representation of how
the initial plan of a planning problem can be decomposed.

Definition 5 (Task Decomposition Graph) The directed
bipartite graph 〈VT , VM , E〉 with task vertices VT , method
vertices VM , and edges E is called the task decomposition
graph (TDG) of planning problem Π if and only if

1. t(τ) ∈ VT for all t(τ) ∈ Ground(S, V), for
Pinit = 〈S,≺, V, C〉,

2. if t(τ) ∈ VT and if there is a method
〈t(τ ′), 〈S,≺, V, C〉 〉 ∈M , then

(a) 〈t(τ), 〈S,≺, V ′, C〉〉 ∈ VM such that V ′ ⊇ V binds all
variables in S to a constant and

(b) (t(τ), 〈t(τ), 〈S,≺, V ′, C〉〉) ∈ E,
3. if 〈t(τ), 〈S,≺, V, C〉 〉 ∈ VM , then

(a) t′(τ ′) ∈ VT for all t′(τ ′) ∈ Ground(S, V) and
(b) (〈t(τ), 〈S,≺, V, C〉 〉, t′(τ ′)) ∈ E, and

4. 〈VT , VM , E〉 is minimal such that (1), (2), and (3) hold.

Note that the TDG of a planning problem is always finite
as there are only finitely many ground tasks.

Please also note that, due to the uninformed instantiation
of unbound variables in a decomposition step in criterion
2.(a), the TDG of a planning problem becomes in general in-
tractably large. We hence prune parts of the TDG which can
provably be ignored due to a relaxed reachability analysis of
primitive tasks. This pruning technique is described in our
earlier work (Elkawkagy, Schattenberg, and Biundo 2010).

The landmark table is a data structure that represents a
(possibly pruned) TDG plus additional information about lo-
cal landmarks.
Definition 6 (Landmark Table) Let 〈VT , VM , E〉 be a
(possibly pruned) TDG of the planning problem Π. The land-
mark table of Π is the setLT = {〈t(τ),M(t(τ)), O(t(τ))〉|
t(τ) ∈ VT abstract ground task}, where M(t(τ)) and
O(t(τ)) are defined as follows:
M(t(τ)) := {t′(τ ′) ∈ VT | t′(τ ′) ∈ Ground(S, V) for all

〈t(τ), 〈S,≺, V, C〉 〉 ∈ VM}
O(t(τ)) := {Ground(S, V) \M(t(τ)) |

〈t(τ), 〈S,≺, V, C〉 〉 ∈ VM}
Each landmark table entry partitions the tasks introduced

by decompositions into two sets: mandatory tasks M(t(τ))
are those ground tasks that are contained in all plans in-
troduced by some method which decomposes t(τ); hence,
they are local landmarks of t(τ). The optional task set
O(t(τ)) contains for each method decomposing t(τ) the set
of ground tasks which are not in the mandatory set; it is
hence a set of sets of tasks.

Please note that the landmark table encodes a possibly
pruned TDG and is thus not unique. In fact, various local
landmarks might only be detected after pruning. For in-
stance, suppose an abstract task has three available methods,
two of which have some tasks in their referenced plans in
common. However, the plan referenced by the third method
is disjunctive to the other two. Hence, the mandatory sets
are empty. If the third method can be proven to be infea-
sible and is hence pruned from the TDG, the mandatory set
will contain those tasks the plans referenced by the first two
methods have in common.

Example
The following example will demonstrate how the TDG and a
landmark table of a planning problem looks like.

Thus, let Π = 〈D, sinit, Pinit〉 an HTN planning problem
with Pinit = 〈{l1:t1(τ1)}, {τ1 = c1}〉1, D = 〈T,M〉, T =
{t1(τ1), . . . , t5(τ5)}, and M = {ma,m

′
a,mb,m

′
b} with:

ma := 〈t1(τ1), 〈{l1:t3(τ1), l2:t3(τ2), l3:t2(τ1)}, {τ1 6= τ2}〉〉
m′a := 〈t1(τ1), 〈{l1:t2(τ1), l2:t1(τ1)}, ∅〉〉
mb := 〈t3(τ1), 〈{l1:t4(τ1), l2:t5(τ1)}, ∅〉〉
m′b := 〈t3(τ1), 〈{l1:t4(τ1)}, ∅〉〉

The TDG for Π is given in Figure 1; the according land-
mark table is depicted in Table 1.

1As our example comes without ordering constraints and causal
links, we give plans as 2-tuples P = 〈S, V 〉

t1(c1)

m′t1mt1

t3(c2)

mt3 m′t3

t4(c2) t5(c2) t2(c2)

t2(c1)t3(c1)

mt′3
m′t′3

t4(c1) t5(c1)

Figure 1: The TDG for the planning problem Π. The method
vertices are given as follows:
mt1 = 〈t1(c1),ma|τ1=c1,τ2=c2

〉, m′t1 = 〈t1(c1),m′a|τ1=c1
〉,

mt3 = 〈t3(c2),mb|τ1=c2
〉, m′t3 = 〈t3(c2),m′b|τ1=c2

〉,
mt′3

= 〈t3(c1),mb|τ1=c1
〉, m′t′3 = 〈t3(c1),m′b|τ1=c2

〉

Table 1: The landmark table for the TDG of Figure 1.

Abs. Task Mandatory Optional
t1(c1) {t2(c1)} {{t3(c2), t3(c1)}, {t1(c1)}}
t3(c2) {t4(c2)} {∅, {t5(c2), t2(c2)}}
t3(c1) {t4(c1)} {∅, {t5(c1), t2(c1)}}

4 Landmark-Aware Strategies
Exploiting landmarks during planning is based on the idea
that identifying such landmarks along the refinement paths
perfectly guides the search process because they are “in-
evitable” elements on the way to any solution. The manda-
tory sets in the landmark table do not contribute directly to
the identification of a solution path. They do, however, allow
to estimate upper and lower bounds for the number of expan-
sions an abstract task requires before a solution is found. A
landmark table entry 〈t(τ),M(t(τ)), O(t(τ))〉 carries the
following information: if the planning system decomposes
the task t(τ), all tasks in the mandatory set M(t(τ)) are in-
troduced into the refinement plan, no matter which method
is used. With the optional tasks at hand we can now in-
fer that in the most optimistic case a solution can be devel-
oped straight from the implementation of the method with
the “smallest” remains according to O(t(τ)). Following a
similar argument, the upper bound for the “expansion effort”
can be obtained by adding the efforts for all implementations
that are stored in the optional set.

From the above considerations, two essential properties of
our landmark-aware strategies emerge: first, since the land-
mark exploitation will be defined in terms of measuring ex-

pansion alternatives, the resulting strategy component has to
be a modification ordering function. Second, if we base the
modification preference on the optional sets in the landmark
table entries, we implement an abstract view on the method
definition that realizes the least-commitment principle.

Concerning the first two strategies below, we interpret the
term “expansion effort” literally and therefore define “small-
est” method to be the one with the fewest abstract tasks in
the implementing plan. To this end, we define the cardinal-
ity of a set of tasks in terms of the number of corresponding
entries that a given landmark table does contain.

Definition 7 (Landmark Cardinality) Given a landmark
table LT , we define the landmark cardinality of a set of tasks
o = {t1(τ1), . . . , tn(τn)} to be

|o|LT := |{t(τ) ∈ o | 〈t(τ),M(t(τ)), O(t(τ))〉 ∈ LT}|

A heuristic based on this information is obviously a rough
over-estimation of the search effort because the landmark ta-
ble typically contains a number of tasks that turn out to be
unachievable in the given problem. The strategy also does
not take into account the refinement effort it takes to make an
implementation operational on the primitive level by estab-
lishing causal links, resolving causal threats, and grounding
tasks. For the time being, we assume that all methods devi-
ate from a perfect heuristic estimate more or less to the same
amount. We will see that this simplification actually yields
a heuristic with good performance.

Definition 8 (Landmark-aware strategy lm1) Given a
plan P = 〈S,≺, V, C〉, let ti(τ i) and tj(τ j) be ground
instances of two abstract tasks in S that are compatible
with the (in)equations in V and that are referenced by
two abstract task flaws fi and fj , respectively, that are
found in P. Let a given landmark table LT contain the
corresponding entries 〈ti(τ i),M(ti(τ i)), O(ti(τ i))〉 and
〈tj(τ j),M(tj(τ j)), O(tj(τ j))〉.

The modification ordering function lm1 orders a plan
modification mi before mj if and only if mi addresses fi, mj
addresses fj , and∑

o∈O(ti(τ i))

|o|LT <
∑

o∈O(tj(τj))

|o|LT

This strategy implements the least commitment principle,
as it favors those decomposition plan refinements that im-
pose less successor plans. It reduces the effective branching
factor of the search space (cf. fewest alternatives first heuris-
tic in HTN planning (Tsuneto, Nau, and Hendler 1997)). The
proper choice of the ground task instances ti(τ i) and tj(τ j)
in the above definition is crucial for the actual performance,
however, because the plan modifications typically operate
on the lifted abstract tasks and method definitions.

While the above heuristic focuses on the very next level
of refinement, a strategy should also take estimates for sub-
sequent refinement levels into account, thus minimizing the
number of refinement choices until no more decompositions
are necessary. To this end, for a given landmark table LT ,
let O∗(t(τ)) be the transitive closure of the optional sets on
a recursive traversal of the table entries, beginning in t(τ).

Definition 9 (Closure of the Optional Set) The closure of
the optional set for a given ground task t(τ) and a land-
mark table LT is the smallest set O∗(t(τ)), such that
O∗(t(τ)) = ∅ for primitive t(τ), and otherwise:

O∗(t(τ)) = O(t(τ)) ∪
⋃

o∈O(t(τ))

(⋃
t′(τ ′)∈o

O∗(t′(τ ′))
)

with 〈t(τ),M(t(τ)), O(t(τ))〉 ∈ LT
Note that O∗(t(τ)) is always finite due to the finiteness

of the landmark table, even for cyclic method definitions.
Considering the the previous example (cf. Figure 1 and

Table 1), the closures for the three abstract tasks of the plan-
ning problem Π are as follows: O∗(t1(c1)) = O(t1(c1)) ∪
O(t3(c2)) ∪ O(t3(c1)), O∗(t3(c2)) = O(t3(c2)), and
O∗(t3(c1)) = O(t3(c1)).

Definition 10 (Landmark-aware strategy lm∗1) Given the
prerequisites from Def. 8, the modification ordering function
lm∗1 orders a plan modification mi before mj if and only if mi
addresses fi, mj addresses fj , and∑

o∈O∗(ti(τ i))

|o|LT <
∑

o∈O∗(tj(τj))

|o|LT

So far, the “expansion effort” has been measured in terms
of decompositions that have to be applied until a solution is
obtained. The following strategies take into account that also
primitive tasks in a decomposition contribute to the costs for
developing the current plan into a solution. The cost mea-
sure is thereby a uniform one: solving the flaws affecting a
primitive task is regarded as expensive as the expansion of
an abstract task.

Definition 11 (Landmark-aware strategy lm2) Given the
prerequisites from Def. 8, the modification ordering function
lm2 orders a plan modification mi before mj if and only if mi
addresses fi, mj addresses fj , and∑

o∈O(ti(τ i))

|o| <
∑

o∈O(tj(τj))

|o|

Like we did for the landmark-aware strategy lm1, we de-
fine a variant for strategy lm2 that examines the transitive
closure of the optional sets.

Definition 12 (Landmark-aware strategy lm∗2) Given the
prerequisites from Def. 8, the modification ordering function
lm∗2 orders a plan modification mi before mj if and only if mi
addresses fi, mj addresses fj , and∑

o∈O∗(ti(τ i))

|o| <
∑

o∈O∗(tj(τj))

|o|

Since the landmark information can be extracted from any
domain model and problem in an automated pre-processing
step, the above strategies are conceptually domain- and
problem-independent heuristics. In addition, they are inde-
pendent from the actual plan generation procedure, hence
their principles can be incorporated into any refinement-
based hierarchical planning system.

5 Evaluation
We evaluated the performance of the landmark-aware strate-
gies in a series of experiments in comparison to conventional
hierarchical search strategies.

We base our evaluation on the same benchmark problems
as in our previous work (Elkawkagy, Schattenberg, and Bi-
undo 2010) including the domain reduction technique. In
the new experiments, we compare our novel landmark-aware
strategies with conventional ones and thereby show that even
on the reduced domain models the landmark information can
be used to improve the search efficiency.

Conventional Hierarchical Search Strategies
For the strategies SHOP and UMCP, we used plan and mod-
ification ordering functions that induce the search strate-
gies of these planning systems: in the UMCP system (Erol,
Hendler, and Nau 1994), plans are primarily developed into
completely primitive plans in which causal interactions are
dealt with afterwards. The SHOP strategy (Nau et al. 2003)
prefers task expansion for the abstract tasks in the order in
which they are to be executed.

In all other strategies the plan ordering function Fewer
Modifications First (fmf) was used. It prefers plans for which
a smaller number of refinement options is found, thereby
implementing the least commitment principle on the plan
ordering level. For the comparison to our landmark-aware
modification ordering functions, we also conducted experi-
ments with the following modification ordering functions:

The Expand-Then-Make-Sound (ems) procedure (Mc-
Cluskey 2000) alternates task expansion with other modifi-
cations, which results in a “level-wise” concretion of all plan
steps. We also included the well-established Least Commit-
ting First (lcf) paradigm, a generalization of POCL strate-
gies, which prefers those modifications that address flaws
for which the smallest number of alternative solutions is
available. From more recent work (Schattenberg, Bidot,
and Biundo 2007), two HotSpot-based strategies were de-
ployed. HotSpots denote plan components that are affected
by multiple flaws, thereby quantifying to which extent solv-
ing one deficiency may interfere with the solution options
for coupled components. The Direct Uniform HotSpot (du-
HotSpot) strategy strictly avoids to address flaws that refer
to HotSpot plan components. While the du-HotSpot heuris-
tic treats all flaws uniformly when calculating their inter-
ference potential, the Direct Adaptive HotSpot (da) strat-
egy puts problem-specific weights on binary combinations
of flaw types that occur in the plan. It adapts to a re-
peated occurrence of flaw type combinations by increasing
their weights: if abstract task flaws happen to coincide with
causal threats, their combined occurrence becomes more im-
portant for the current plan generation episode. As a gener-
alization of singular HotSpots to commonly affected areas of
plan components, the HotZone modification ordering func-
tion takes connections between HotSpots into account and
tries to evade modifications that deal with these clusters.

Experimental Results
We conducted our experiments on two well-established
planning domains (cf. Table 2). Satellite is a benchmark

for non-hierarchical planning. The hierarchical encoding of
this domain regards the original primitive operators as im-
plementations of abstract observation tasks. The domain
model consists of 3 abstract and 5 primitive tasks, and in-
cludes 8 methods. UM-Translog is a hierarchical planning
domain that supports transportation and logistics. It shows
21 abstract and 48 primitive tasks as well as 51 methods.

Please note that we performed our experiments on the re-
duced domain models. For the satellite domain, the domain
model reduction did not have any effect on the number of
tasks and/or methods; for the UM-Translog domain, the size
of the reduced domain models depends on the given problem
instance and is on average 63% as large as the unreduced do-
main model (Elkawkagy, Schattenberg, and Biundo 2010).

The strategies lm1, lm∗1, lm2, and lm∗2 do outperform
the other strategies on practically all problems in the UM-
Translog domain (cf. Table 2a) in terms of both size of
the explored search space and computation time. This is
quite surprising because the landmark table does not reveal
any information about causal dependencies on the primitive
task level and the strategies hence cannot provide a focused
guidance. An adequate selection of the decomposition re-
finements obviously pays off well enough to compensate
for random choice on the causality issues. Another inter-
esting facet is that the strategies lm∗1/lm∗2 being the better
informed heuristic while repeatedly performing worse than
lm1/lm2. Furthermore, the same anomaly occurs when com-
paring lm2/lm∗2 with the more abstract but also more suc-
cessful lm1/lm∗1. We suppose these phenomena result from
two sources: First, the random choice of ground candidates
for the lifted task instances is relatively unreliable and this
effect gets amplified by traversing along the landmark clo-
sures and into the primitive task level. Second, the most
important choice points are on the early decomposition lev-
els, i.e., once a method has been chosen for implementing
the transport, this refinement puts more constraints on the
remaining decisions than the strategy can infer from the fea-
sibility analysis underlying the landmark table.

On the Satellite domain our landmark-aware strategies do
not clearly dominate any other strategy (cf. Table 2b). This
meets our expectations as there is hardly any landmark in-
formation available due to the shallow decomposition hier-
archy of this domain and any landmark-centered strategy is
bound to loose its strength given limited landmark informa-
tion. However, none of the other strategies in this domain
dominated any landmark-aware strategy; thus, all evaluated
strategies can be regarded as equally good.

6 Conclusion
In this paper, we introduced four novel landmark-aware
search strategies to improve hierarchical planning. In a num-
ber of experiments these strategies competed with a set of
representative search procedures from the literature. The re-
sults showed that the new strategies outperformed the estab-
lished ones on all relevant problems, i.e., problems with a
deep task hierarchy. Further work will be devoted to the con-
struction and evaluation of other types of landmark-aware
strategies and to the investigation of those domain model
and problem features that suggest their deployment.

ACKNOWLEDGEMENTS
This work is done within the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems” funded by the German Re-
search Foundation (DFG).

References
Biundo, S., and Schattenberg, B. 2001. From abstract crisis
to concrete relief – a preliminary report on combining state
abstraction and HTN planning. In Proc. of the 6th European
Conference on Planning (ECP 2001), 157–168. Springer.
Bonet, B., and Helmert, M. 2010. Strengthening landmark
heuristics via hitting sets. In Proc. of ECAI 2010, volume
215 of Frontiers in Artificial Intelligence and Applications,
329–334. IOS Press.
Elkawkagy, M.; Schattenberg, B.; and Biundo, S. 2010.
Landmarks in hierarchical planning. In Proc. of ECAI 2010,
volume 215 of Frontiers in Artificial Intelligence and Appli-
cations, 229–234. IOS Press.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. UMCP: A sound
and complete procedure for hierarchical task-network plan-
ning. In Proc. of the 2nd Int. Conf. on Artificial Intelligence
Planning Systems (AIPS 1994), 249–254.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. of ICAPS 2009, 162–169.
Marthi, B.; Russell, S. J.; and Wolfe, J. 2008. Angelic
hierarchical planning: Optimal and online algorithms. In
Proc. of ICAPS 2008, 222–231.
McCluskey, T. L. 2000. Object transition sequences: A new
form of abstraction for HTN planners. In Proc. of the 5th
Int. Conf. on Artificial Intelligence Planning Systems (AIPS
2000), 216–225. AAAI Press.
Nau, D. S.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning
system. JAIR 20:379–404.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
extraction, ordering, and usage of landmarks in planning. In
Proc. of the 6th European Conf. on Planning (ECP 2001),
37–48.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. JAIR
39:127–177.
Schattenberg, B.; Bidot, J.; and Biundo, S. 2007. On
the construction and evaluation of flexible plan-refinement
strategies. In Proc. of the 30th German Conf. on Artificial
Intelligence (KI 2007), LNAI 4667, 367–381. Springer.
Tsuneto, R.; Nau, D. S.; and Hendler, J. A. 1997. Plan-
refinement strategies and search-space size. In Proc. of the
4th European Conf. on Planning (ECP 1997), volume 1348
of LNCS, 414–426. Springer.
Zhu, L., and Givan, R. 2004. Heuristic planning via
roadmap deduction. In IPC-4, 64–66.

Table 2: This table shows the impact of the deployed modification ordering functions on the planning process. While SHOP and
UMCP denote strategy function combinations that simulate the respective search procedures, all other strategy implementations
use fmf as the plan ordering function. The tests were run on a machine with a 3 GHz CPU and 256 MB Heap memory for the
Java VM. Space refers to the number of created plans and Time refers to the used time in seconds including pre-processing,
which takes only a few seconds even for large problem specifications. Values are the arithmetic means over three runs. Dashes
indicate that no solution was found within a limit of 5,000 created nodes and a run-time of 150 minutes. The best result for a
given problem is emphasized bold, the second best bold and italic.

(a) Results for the UM-Translog domain. Problems with different versions differ in the number and kind of available locations and/or
the number of parcels to transport.

Mod. ordering Hopper Truck Auto Truck Reg. Truck (a) Reg. Truck (b) Reg. Truck (c) Reg. Truck (d) Flatbed Truck
function fModOrd Space Time SpaceTime Space Time Space Time Space Time Space Time Space Time

da-HotSpot 144 352 644 2077 239 562 114 257 148 352 723 2560 99 237
du-HotSpot 101 224 459 1304 1508 4097 160 460 117 258 – – 1047 2601

HotZone 55 121 197 527 191 473 55 117 55 137 – – 159 399
lm1 52 111 133 329 145 374 62 135 53 122 291 1172 63 155
lm∗

1 51 109 135 462 154 430 52 112 65 142 266 1162 61 144
lm2 62 162 135 464 141 469 53 123 55 151 339 1128 109 315
lm∗

2 124 340 146 489 137 413 57 148 51 122 305 1318 110 308
lcf 55 118 155 470 162 463 78 173 127 222 327 1278 62 179

ems 147 295 405 976 211 507 127 262 114 235 – – 1571 3797
SHOP 89 212 164 433 146 406 106 241 83 190 926 4005 98 257
UMCP 58 122 156 474 177 506 55 113 57 127 308 1263 63 149

Mod. ordering Armored R-Truck Auto Traincar (a) Auto Traincar (b) Mail Traincar Refr. Reg. Traincar Airplane
function fModOrd Space Time Space Time Space Time Space Time Space Time Space Time

da-HotSpot 120 359 – – 184 705 641 2031 588 1958 172 620
du–HotSpot 75 201 – – 1390 4018 424 1090 307 775 643 2134

HotZone 122 355 – – 701 1616 81 224 76 196 345 1323
lm1 71 177 158 596 183 608 75 184 72 180 142 441
lm∗

1 61 155 304 1473 158 543 78 205 89 212 189 676
lm2 73 199 420 1519 211 888 84 248 91 256 104 320
lm∗

2 81 228 367 1446 142 511 87 238 84 226 114 436
lcf 86 198 – – 227 926 79 209 90 225 247 798

ems 113 269 – – 2558 6447 879 1806 500 1048 784 2517
SHOP 95 227 – – 247 963 121 274 173 353 150 450
UMCP 75 172 220 739 161 546 92 229 90 244 70 215

(b) Results for the Satellite domain. The description “x — y — z” stands for a Satellite problem with x observations,
y satellites, and z modi.

Mod. ordering
function fModOrd

1 — 1 — 1 1 — 2 — 1 2 — 1 — 1 2 — 1 — 2 2 — 2 — 1 2 — 2 — 2
Space Time Space Time Space Time Space Time Space Time Space Time

da-HotSpot 56 60 68 78 782 1131 832 1301 2186 6841 142 175
du-HotSpot 100 107 139 150 – – – – – – – –

HotZone 61 60 57 62 1281 4764 – – 1094 1338 871 1114
lm1 73 80 194 208 560 652 352 400 693 785 295 362
lm∗

1 78 85 34 37 847 969 1803 2569 739 813 619 1228
lm2 78 86 128 140 4890 5804 200 251 – – 483 965
lm∗

2 73 80 91 99 – – 1905 2553 – – 146 161
lcf 86 93 71 77 1120 1338 3022 4069 407 701 – –

ems 65 64 47 53 1586 2608 – – 1219 1579 – –
SHOP 62 66 105 111 138 155 – – 1406 1780 – –
UMCP 83 91 36 41 883 1035 1558 1894 278 1097 1062 1270

