
On the Decidability of HTN Planning with Task Insertion

Thomas Geier and Pascal Bercher
Ulm University, Institute of Artificial Intelligence, Ulm, Germany

forename.surname@uni-ulm.de

Abstract
The field of deterministic AI planning can roughly
be divided into two approaches — classical state-
based planning and hierarchical task network
(HTN) planning. The plan existence problem of
the former is known to be decidable while it has
been proved undecidable for the latter. When ex-
tending HTN planning by allowing the unrestricted
insertion of tasks and ordering constraints, one ob-
tains a form of planning which is often referred to
as “hybrid planning”.
We present a simplified formalization of HTN plan-
ning with and without task insertion. We show that
the plan existence problem is undecidable for the
HTN setting without task insertion and that it be-
comes decidable when allowing task insertion. In
the course of the proof, we obtain an upper com-
plexity bound of EXPSPACE for the plan exis-
tence problem for propositional HTN planning with
task insertion.

1 Introduction
Planning is known to be intractable in general. This
holds both for classical state-based planning and for hier-
archical planning. For the former, the complexity of the
plan existence problem (“Is there a plan that solves the
given planning problem?”) reaches from constant time
over EXPSPACE−complete to undecidable [Erol et al.,
1995] depending on various restrictions. The most expressive
“configuration” of classical planning that is still decidable1 is
thus intractable. Hierarchical task network (HTN) planning
was created to mitigate this complexity problem by introduc-
ing a hierarchy over operators and thereby including search
control knowledge into the planning process. Contrary to the
intuition that the introduced hierarchy makes planning easier,
it introduced undecidability even for the case in which clas-
sical planning is “only” PSPACE−complete2; this result

1Datalog (no function symbols and finitely many constant sym-
bols); operators are given in the input; allow delete lists and negated
preconditions [Erol et al., 1995].

2Propositional; operators are given in the input; allow delete lists
and negated preconditions [Erol et al., 1995].

was proved by Erol et al. [1996] for their formalization of
HTN planning [Erol et al., 1994].

The hierarchical aspect in HTN planning is achieved by
introducing the concept of compound tasks in addition to the
operators known from classical planning, which we call prim-
itive tasks in this context. Compound tasks can be decom-
posed into predefined partial plans using so-called decompo-
sition methods. The goal is to find an executable plan that was
obtained by decomposing compound tasks in the initial plan
until all tasks are primitive. Although the provision of de-
composition methods can speed up the search process, they
introduced undecidability. However, several restrictions can
be imposed on methods which make the plan existence prob-
lem decidable: for instance if the initial task network and all
methods are totally ordered or if all methods are acyclic [Erol
et al., 1996]. In this work, we show how decidability can be
achieved without restricting methods by altering the solution
criterion of HTN planning problems.

We investigate the decidability of the plan existence prob-
lem for HTN planning with task insertion, a planning for-
malism that lies between classical and HTN planning and is
therefore often referred to as hybrid planning: the idea is to
have an initial task network that needs to be decomposed, but
to allow the insertion of tasks without requiring them to be
inserted by the decomposition of compound tasks. This par-
ticular variant of fusing classical with HTN planning has been
addressed before by Estlin et al. [1997], Schattenberg and Bi-
undo [2006], and Gerevini et al. [2008]. The most important
argument for this planning paradigm is that it overcomes a
main criticism of HTN planning: “HTN planning reduces the
flexibility of an agent to respond to situations that are not an-
ticipated by the writer of the task reduction schemas” [Kamb-
hampati et al., 1998]. This argument is also the main moti-
vation for Kambhampati et al.’s formalization of hybrid plan-
ning. There, compound tasks also show preconditions and
effects like primitive ones and they can be inserted like oper-
ators in classical planning (which is also true for the work of
Schattenberg and Biundo [2006]). However, Kambhampati
et al. do not specify an initial task network. Hence, there is
no need to insert and decompose compound tasks and there-
fore, they are only an efficiency boost for solving classical
planning problems.

In the following sections we will first introduce our for-
malization of HTN planning with task insertion. We explain



why our formalism, although stripped of many technical as-
pects, is still susceptible to the original proof of undecidabil-
ity for HTN planning when disallowing insertion of tasks. We
then present a result that yields an upper bound on the length
of shortest solutions and derive from it an upper complexity
bound for the plan existence decision problem. In the end we
conclude our paper with a discussion of the presented results.

2 Formalism
In this section, we introduce our notion of HTN planning with
task insertion (or hybrid planning, for short). For the sake
of simplicity, we base our formalism on a ground state rep-
resentation. That is, there exist only boolean propositions.
The choice effects only the final complexity class but not the
decidability, as long as a potential first-order representation
does not introduce undecidability on its own, e.g., by the use
of functions.

During the rest of the paper, we consider relations and
functions as sets of tuples. We use the bar notation for re-
stricting relations and functions. Given a set of tuples Q ⊆
R×R, we define Q|X := {(q1, q2) ∈ Q | q1, q2 ∈ X} and for
a function f : R→ S, we define f |X :={(r, s) ∈ f |r ∈ X}.

We begin by describing a task network, which represents
a generalization of a task sequence in that it is only partially
ordered.

Definition 1 (Task Network). A task network tn = (T,≺, α)
over a set of task names X is a tuple, where

• T is a finite and non-empty set of tasks

• ≺ ⊆ T × T is a strict partial order on T (irreflexive,
asymmetric, and transitive)

• α : T → X labels every task with a task name

We write TNX for the set of all task networks over the task
names inX . Given a task network tn = (T,≺, α) and a set of
tasks T ′, we define its restriction tn|T ′ :=(T∩T ′,≺|T ′ , α|T ′).
Also we write T (tn) to refer to the tasks of tn.

Tasks serve the purpose of unique identifiers because task
names (like “move” or “open door”) may occur multiple
times in the same task network. This leads us to the next
definition: two task networks are isomorphic if they describe
the same arrangement of task names despite using different
identifiers.

We define two task networks tn = (T,≺, α) and tn′ =
(T ′,≺′, α′) as being isomorphic, written tn ∼= tn′, if and
only if there exists a bijection σ : T → T ′, such that for all
t, t′ ∈ T it holds that (t, t′) ∈ ≺ if and only if (σ(t), σ(t′)) ∈
≺′ and α(t) = α′(σ(t)).

Definition 2 (Planning Problem). A planning problem is a
6-tuple P = (L,C,O,M, cI , sI) and

• L, a finite set of proposition symbols

• C, a finite set of compound task names

• O, a finite set of primitive task names with C ∩O = ∅
• M ⊆ C×TNC∪O, a finite set of decomposition methods

• cI ∈ C, the initial task name

• sI ∈ 2L, the initial state

For each o ∈ O, (prec(o), add(o), del(o)) ∈ 2L × 2L × 2L

is called the operator of o and consists of a precondition, an
add-, and a delete list. By tnI := ({tI}, ∅, {(tI , cI)}) we de-
note a fixed initial task network which consists only of the
initial task tI mapping to the initial task name cI .

HTN planning formalizations usually feature an initial task
network instead of only a single initial task name. We would
like to note that our choice does not reduce the class of prob-
lems that can be expressed.

Both compound and primitive task names will be used to
label the elements of task networks. We refer to tasks that are
labeled with elements from C and O as compound tasks and
primitive tasks, respectively. We refer to a task network over
O as a primitive task network.

As during the rest of this paper there is always exactly one
planning problem under consideration, we do not write out
“P = (L,C,O,M, cI , sI)” each time. Thus, whenever any
of the symbols L, C, O, M , cI , and sI are used, then they are
part of the planning problem P .

After we have defined the basic components of a planning
problem, we continue by describing how an initial task net-
work can be transformed into a solution by decomposition
and task insertion.

The decomposition of a compound task results in its re-
moval from the task network, followed by an insertion of a
copy of the method’s task network. The ordering constraints
on the removed task are inherited by its replacement tasks (cf.
the set ≺X in the next definition).
Definition 3 (Decomposition). A method m = (c, tnm) de-
composes a task network tn1 = (T1,≺1, α1) into a new task
network tn2 by replacing task t, written tn1

−−→
t,m tn2, if and

only if t ∈ T1, α1(t) = c, and there exists a task network
tn′ = (T ′,≺′, α′) with tn′ ∼= tnm and T ′ ∩ T = ∅, and3

tn2 := ((T1 \ {t}) ∪ T ′,≺1 ∪ ≺′ ∪ ≺X , α1 ∪ α′) with

≺X := {(t1, t2) ∈ T1 × T ′ | (t1, t) ∈ ≺1} ∪
{(t1, t2) ∈ T ′ × T1 | (t, t2) ∈ ≺1}

Given a planning problem P , we write tn1 →∗D tn2, if tn2

can be decomposed from tn1 by an arbitrary number of de-
compositions using methods from M .

Note that→∗D is reflexive and transitive. Also note that the
constructed set of ordering constraints≺1∪≺′∪≺X is again
a strict partial order.

Other formalizations of hybrid planning complement de-
composition with the insertion of both primitive and com-
pound tasks, where compound tasks also show preconditions
and effects [Kambhampati et al., 1998; Schattenberg and Bi-
undo, 2006]. Since the result of inserting a compound task
can be simulated by inserting a decomposed version directly,
we only allow the insertion of primitive tasks.
Definition 4 (Task Insertion). Given a task network tn1 =
(T1,≺1, α1) and a primitive task name o, then a task network
tn2 can be obtained from tn1 by insertion of o, if and only if
tn2 = (T1 ∪ {t},≺1, α1 ∪ {(t, o)}) for some t /∈ T1.

3For correctness, ordering and labeling of tn2 must be restricted
to (T1 \ {t}) ∪ T ′; omitted for better readability.



A task network tn2 = (T1,≺2, α1) can be obtained from
tn1 by insertion of an ordering constraint (t, t′), if and only
if t, t′ ∈ T1 and ≺2 is minimal and a strict partial order such
that ≺1 ∪ {(t, t′)} ⊆ ≺2.

Given a planning problem P , we say that tn2 can be ob-
tained from tn1 via task insertion, written tn1 →∗I tn2, if tn2

can be obtained from tn1 by an arbitrary number of insertions
of orderings and primitive task names from O.

Note that→∗I is reflexive and transitive.

Definition 5 (Executable Task Network). Given a planning
problem P , then a task network tn = (T,≺, α) is executable
in state s ∈ 2L, if and only if it is primitive and there exists
a linearization of its tasks t1, . . . , tn that is compatible with
≺ and a sequence of states s0, . . . sn such that s0 = s and
prec(α(ti)) ⊆ si−1 and si = (si−1\del(α(ti)))∪add(α(ti))
for all 1 ≤ i ≤ n. We call sn the state generated by tn.

Definition 6 (Solution). A task network tnS is a solution to
a planning problem P , if and only if (1) tnS is executable
in sI and (2) tnI →∗D tnS for tnS being an HTN solu-
tion to P or (2’) there exists a task network tnB such that
tnI →∗D tnB →∗I tnS for tnS being a hybrid solution to P .
SolHTN(P) and SolHYBRID(P) denote the set of all HTN and
hybrid solutions of P , respectively.

For the purpose of this paper, we refer to hybrid solutions
as solutions and use the term HTN solutions if necessary.

Note that the presented hybrid formalism is capable of cap-
turing ground classical planning. The only missing piece in
comparison to classical planning is the goal condition. This
can be simulated by having an initial task network that forces
an artificial final task, carrying the goal condition in its pre-
condition as the last task in every solution.

3 On the (Un-)Decidability of HTN Planning
When using the HTN solution criterion, we talk about HTN
planning, rather than hybrid planning. Although our formal-
ization of HTN planning is inspired by Erol et al.’s formal-
ization [1994], it is still a simplification of the latter. As we
are going to show the decidability of our hybrid planning for-
malism, the question arises whether this is due to these sim-
plifications or due to the addition of task insertion. To address
this question we reproduce Erol et al.’s proof of the undecid-
ability of the plan existence problem for HTN planning [Erol
et al., 1996] using our formalization, which requires only mi-
nor adaptations. In particular, their proof relies on the usage
of truth constraints, which are not available in our formaliza-
tion. And it turns out that they are not necessary for the proof.

We begin by defining the plan existence problem for
HTN planning as the set of planning problems that pos-
sess an HTN solution, i.e., PLAN-EXISTENCEHTN := {P |
P is a planning problem and SolHTN(P) 6= ∅}.
Theorem 1. PLAN-EXISTENCEHTN is undecidable

The proof bases on the fact that one can imitate the pro-
duction rules of context-free grammars (CFGs) by using de-
composition methods. We reduce the undecidable question of
whether the languages of two CFGs have a non-empty inter-
section [Hopcroft et al., 2000, page 407] to the plan existence

problem. The idea is to start with a task network that con-
tains the start symbols from both grammars in parallel. These
are decomposed into words from the respective grammar’s
language. The pre- and postconditions of the primitive tasks
enforce a final plan in which the symbols of both words are
mixed together like the teeth of a zipper. This allows us to
ensure that the decomposed task network is executable if and
only if the produced words are equal.

Proof. Let G1, G2 be two CFGs in Chomsky normal form
(each rule has either the formX→Y Z orX→a, whereX , Y ,
and Z are non-terminals and a is a terminal) defined over the
same set of terminal symbols Σ. For i ∈ {1, 2}, we denote
by Γi the non-terminal symbols of Gi with Si ∈ Γi being
the start symbol of Gi. We assume Γ1 ∩ Γ2 = ∅ and define
Γ := Γ1 ∪ Γ2. By L(Gi) we denote the language generated
by Gi and assume ε /∈ L(G1) ∪ L(G2). We refer to the
grammar rules ofGi by Ri and set R:=R1∪R2. We construct
P = (L,C,O,M, cI , sI) with cI /∈ Γ as follows:

• L := {turnG1 , turnG2} ∪ Σ

• C := Γ ∪ {cI}, O := {Gai | a ∈ Σ, i ∈ {1, 2}} ∪ {F}
• M := {(cI , tn)} ∪

{(X, tnX→Y Z) |X→Y Z ∈ R} ∪
{(X, tnX→a) |X→a ∈ Ri, i ∈ {1, 2}}, where

tn := ({s1, s2, f}, {(s1, f), (s2, f)},
{(s1, S1), (s2, S2), (f,F)})

tnX→Y Z := ({t, t′}, {(t, t′)}, {(t, Y ), (t′, Z)})
tnX→a := ({t}, ∅, {(t, Gai )})

• sI := {turnG1
}

The operator of Ga1 ∈ O is defined as
({turnG1

}, {turnG2
, a}, {turnG1

}) and that of Ga2 ∈ O
as ({turnG2

, a}, {turnG1
}, {turnG2

, a}), respectively. This
construction ensures strict turn-taking and a matching
of the produced words. The operator of F is defined as
({turnG1}, ∅, ∅); it ensures that the plan finishes with an
operator of the second grammar. By construction, there is a
word ω ∈ L(G1)∩L(G2) if and only if P has a solution.

We have shown that one can express the CFG intersec-
tion problem within our HTN formalization, thus proving the
undecidability of our planning formalism without insertion.
Please note that a solution to the same planning problem us-
ing the hybrid solution criterion can produce solutions which
do not correspond to words in the intersection of L(G1) and
L(G2) due to the the arbitrary insertion of tasks.

4 On the Decidability of HTN Planning with
Task Insertion

We now present our proof that yields an upper bound on the
length of shortest solutions to a given planning problem. The
following paragraph summarizes its main idea.

Suppose there exists a solution tnS . This solution features
a decomposition tnB of the initial task network. In analogy
to the pumping lemma for CFGs [Hopcroft et al., 2000, page
274 ff.], we show that there exists also a “short” decomposi-
tion tn′B . It is obtained by “pumping-down” tnB , removing
all parts that were produced by cycles in the decomposition



process. We show that tn′B can be developed into tnB by task
insertion, which in turn can be developed into tnS .

Further we provide an upper bound on the number of tasks
that must be inserted in order to turn a given task network
into a solution, if possible. Applying this result to the short
decomposition tn′B , we can prove the existence of a short
solution tn′S . So in order to decide whether a solution to a
planning problem exists, it suffices to check all task networks
of a certain size.

4.1 Representing Task Decomposition
This section transfers the idea of a parse tree from formal
grammars to the area of task network decompositions, where
we call it a decomposition tree. It is a representation of how
the initial compound task can be decomposed into a primitive
task network.

Definition 7 (Decomposition Tree). Given a planning prob-
lem P , then a decomposition tree g = (T,E,≺, α, β) is a
five-tuple with the following properties. (T,E) is a tree with
nodes T and directed edges E pointing towards the leafs.
There is a strict partial order defined over the nodes, given by
≺. The nodes are labeled with task names by α : T → C∪O.
Additionally β : T →M labels inner nodes with methods.

We write T (g) to refer to the tasks of g and ch(g, t) to refer
to the direct children of t ∈ T (g) in g.

The following definition states under which circumstances
a decomposition tree encodes a decomposition of the initial
compound task. Note that a task network resulting from such
a decomposition is not necessarily executable.

Definition 8 (Validity of Decomposition Tree). A decompo-
sition tree g = (T,E,≺, α, β) is valid with respect to a plan-
ning problem P , if and only if the root node of g is labeled
with the initial task name cI and for any inner node t, where
(c, tnm) := β(t), the following holds:

1. α(t) = c

2. the task network induced in g by ch(g, t) and tnm are
isomorphic, i.e., (ch(g, t),≺|ch(g,t), α|ch(g,t)) ∼= tnm

3. for all t′ ∈ T and all c′ ∈ ch(g, t) it holds that

(a) if (t, t′) ∈ ≺ then (c′, t′) ∈ ≺
(b) if (t′, t) ∈ ≺ then (t′, c′) ∈ ≺

4. there are no ordering constraints in ≺ other than those
demanded by either 2. or 3.

The first criterion ensures the applicability of the meth-
ods, the inner nodes are labeled with; the second criterion
ensures that the method’s task networks are correctly repre-
sented within the decomposition tree; and the third criterion
ensures the inheritance of ordering constraints as demanded
by Definition 3. Please note that every task is uniquely used
by g, as we require (T,E) to be a tree.

Definition 9 (Yield of Decomposition Tree). The yield of a
decomposition tree g = (T,E,≺, α, β), written yield(g), is
a task network defined as follows. Let T ′ ⊆ T be the set of
all leaf nodes of g. Then, yield(g) := (T ′, α|T ′ ,≺|T ′).

Proposition 1. Given a planning problem P , then for any
task network tn ∈ TNC∪O the following holds. There exists
a valid decomposition tree g with yield(g) = tn, if and only
if tnI →∗D tn.

Proof Sketch. For the forward implication, make an induc-
tion over the number of inner nodes of g. Note that each inner
node corresponds to one method application. As base case,
we have the valid decomposition tree without inner nodes,
that must consist of only one task that is labeled with cI and
hence its yield is the initial task network tnI . For the induc-
tive step, fix a valid decomposition tree g with n + 1 inner
nodes. Let t be an inner node, for which all children ch(g, t)
are leafs. Then consider the tree g′ which has all children of
t removed. Show that g′ is valid based on the validity of g.
Then show that yield(g′)−−−→t,β(t) yield(g).

For the backward implication, make an induction over the
length of the decomposition sequence. The base case holds
due to the reflexivity of→∗D. In the inductive step, construct
the tree by adding newly inserted tasks as children of the re-
placed task.

Given a decomposition tree g = (T,E,≺, α, β) and a node
t ∈ T , we define the subtree of g induced by t, written g[t], as
g[t] := (T ′, E′,≺|T ′ , α|T ′ , β|T ′), where (T ′, E′) is the sub-
tree in (T,E) that is rooted at t. We now define the operation
of replacing a subtree by another subtree.

The result of this operation as defined by us is only reason-
able for our particular use-case. A general subtree substitu-
tion operation would have to create an isomorphic copy of the
inserted subtrees, which we have omitted for simplicity.

Definition 10 (Subtree Substitution). Let g = (T,E,≺,
α, β) be a decomposition tree and ti, tj ∈ T be two nodes
of g. If ti is the root node of g, then we define the re-
sult of the subtree substitution on g that substitutes ti by
tj , written g[ti ← tj ], as g[ti ← tj ] := g[tj ]; otherwise,
g[ti← tj ] := (T ′, E′,≺|T ′ , α|T ′ , β|T ′) with

• T ′ := (T \ T (g[ti])) ∪ T (g[tj ])

• E′ := E|T ′ ∪ {(p, tj)}, where p is the parent node of ti
The following proposition states that the result of a subtree

substitution still describes decompositions if applied under
the right circumstances. Also refer to Figure 1 for an illustra-
tion of the operation.

Proposition 2. Given a valid decomposition tree g = (T,E,
≺, α, β) with respect to a planning problem P and two nodes
ti ∈ T , tj ∈ T (g[ti]) with α(ti) = α(tj), then g[ti← tj ] is
also a valid decomposition tree with respect to P .

Proof Sketch. We have to show that g′ := g[ti ← tj ] =
(T ′, E′,≺′, α′, β′) is still a tree, its root node is labeled with
cI , and that ≺ is minimal such that the first three criteria of
Definition 8 hold for all inner nodes of g′. For the remainder,
let p ∈ T be such that (p, ti) ∈ E.

For the special case of the subtree substitution, in which ti
is the root node of g, there is nothing to show, since g′ = g[tj ]
is clearly a valid decomposition tree with respect to P . Thus,
let ti be different from the root node. It is also easy to see that
g′ is a tree and its root node is labeled with cI .



tI

ti

tj
g:



yield(g)

tI

tj

g[ti← tj ]:



yield(g[ti← tj ])

Figure 1: On the left, a decomposition tree g is depicted. The
result of the subtree substitution that replaces the subtree be-
low ti with the subtree below tj is shown on the right. The
gray area inside g corresponds to the tasks that get removed
during the substitution. Note how the subtree substitution af-
fects the yield of the tree by removing the contribution of the
gray area.

Criterion 1 holds for all inner nodes of g′ as both α′ and β′
are defined on the same nodes and α′ ⊆ α and β′ ⊆ β.

For criterion 2, we fix some inner node t ∈ T ′ and consider
the two cases that either t 6= p or t = p. The case in which t 6=
p is straight forward as the task network induced by ch(g, t)
in g is the same as the one induced by ch(g′, t) in g′. If t = p,
the induced task network in g′ is still isomorphic to the one
in g, because we substituted ti by tj and α(ti) = α(tj).

To show criterion 3 (considering only 3a, as 3b is analo-
gous), take some ordering constraint (t, t′) in≺′. It must also
occur in ≺ and thus (c′, t′) ∈ ≺ for all children c′ of t. Show
(c′, t′) ∈ ≺′ if c′ 6= ti and (tj , t

′) ∈ ≺′, otherwise.
Proving the minimality of ≺′ is the most difficult part. We

have to show for each (t1, t2) ∈ ≺′ that it is required by crite-
rion 2 or 3. Consider the cases that (t1, t2) ∈ ≺ is originally
produced by criterion 2 (case I) or 3 (case II).

For case I, show that as a consequence (t1, t2) is required
in≺′ because of criterion 2 with special treatment for t1, t2 ∈
ch(g′, p). Intuitively all decompositions in g′ have counter-
parts in g and they produce the same ordering in both trees.

For proving case II (again, we consider only 3a), let
(c′, t′) := (t1, t2). We know that there exists a node t ∈ T
with (t, c′) ∈ E and (t, t′) ∈ ≺, as this is the antecedent of
criterion 3a. Now consider the cases of t ∈ T ′ (case IIa) and
t 6∈ T ′ (case IIb). The proof for case IIa is straight forward.
For case IIb, we can conclude that c′ = tj since tj is the only
node in g′ that has lost its parent in g. Show that (p, t′) ∈ ≺′
and use this as premise to apply criterion 3a in order to show
that (c′, t′) must be in ≺′.

4.2 Bounding Solution Sizes by Eliminating Cycles
In order to prove our main theorem, which establishes a size
limit on the smallest solution of a planning problem, we first
need to prove three lemmas. The first one allows us to shorten

a decomposition sequence that contains a cycle over com-
pound task names. When doing so, we remain able to recre-
ate via task insertion what has been removed. This result is
used by the second lemma to give an upper bound on the size
of shortest task networks originated from decomposition that
can possibly be developed to a solution. Then the third lemma
allows us to find a limit to the number of tasks that have to be
inserted in order to turn a given task network into a solution.

The proof of the first lemma uses the idea of the proof
of the pumping lemma for CFGs to claim the existence of
a shorter version of a given decomposition.

Lemma 1. Given a planning problem P and a primitive task
network tn with valid decomposition tree g, for which there
exists a path t1, . . . , tn in g with α(ti) = α(tj) for some i
and j with i < j ≤ n (the path contains a cycle). Then it
holds that tnI →∗D yield(g[ti← tj ])→∗I tn.

Proof. Fix the premises from the lemma. We notice that the
conditions for applying Proposition 2 are given. Thus, we
can state that g[ti ← tj ] is valid. Therefore it generates a
task network, name it tn′ = (T ′,≺′, α′), that can be obtained
from tnI by decomposition. It remains to show that tn′ →∗I
tn. Since tn′ consists of the leafs of g[ti ← tj ] and tn =
(T,≺, α) is induced by the leafs of g, and the substitution
only takes away nodes and ordering constraints from g and
does not create new leaf nodes, clearly T ′ ⊆ T and ≺′ ⊆ ≺
and also α|T ′ = α′. We can thus obtain tn from tn′ by adding
additional tasks and ordering constraints.

By using this result repeatedly, we are now able to remove
all cycles from a decomposition tree. This makes it possible
to formulate an upper bound on the size of the tree and thus
of the generated task network.

Lemma 2. Given a planning problem P , then for every task
network tn with tnI →∗D tn, there exists a task network tn′

with tnI →∗D tn′ →∗I tn and |T (tn′)| ≤ b|C|, where b is the
number of tasks inside the largest task network of the methods
from M .

Proof. Fix a planning problem P and a task network tn with
tnI →∗D tn. Fix a decomposition tree g of tn. If g contains a
cycle on one of its paths (i.e., two nodes labeled with the same
compound task symbol), then Lemma 1 allows us to remove
it, obtaining a new decomposition tree g1 and corresponding
task network tn1 = yield(g1) with tnI →∗D tn1 →∗I tn.

As long as the new decomposition tree still contains a cy-
cle, we can repeat the procedure. By doing so, we obtain a
sequence of decomposition trees g1, . . . , gn and correspond-
ing task networks tn1, . . . , tnn. The last decomposition tree
gn does not contain a cycle on any of its paths. The se-
quence is finite, since every subtree substitution removes at
least one task, thus n ≤ |T (g)|. For the sequence of task
networks, it holds that tnI →∗D tnn →∗I tnn−1 →∗I . . . →∗I
tn1 →∗I tn and by the transitivity of task insertion we get
tnI →∗D tnn →∗I tn. We choose tnn as the tn′ from the
lemma. It remains to show the size bound |T (tnn)| ≤ b|C|.

The size of tnn is limited because its decomposition tree
gn contains no cycle on any of its paths and is thus bounded
in depth by |C|. Taking the maximal branching factor b of g,



we get an upper bound of b|C| of the number of leaf nodes of
tnn and thus on the number of tasks of tnn = yield(g).

While the first two lemmas have somehow tamed the de-
composition aspect of the solution criteria, we still need to
care for executability. The idea is to take the tasks that have
been introduced by decomposition and connect them in an
executable way by using task insertion. Thus we obtain one
classical planning problem for each task inside the decom-
posed task network.
Proposition 3. Let P be a planning problem and s, s′ ∈ 2L.
If there exists a task network tn which is executable in s and
generates s′, then there is also a task network tn′ which is
executable in s, generates s′, and |T (tn′)| ≤ 2|L|.

Proof. As the size of the state space induced by P is 2|L|,
each task network longer than this value must traverse at least
one state twice and hence must contain a cycle in the task
sequence which can simply be omitted.

Lemma 3. Given a planning problem P and a task network
tn, that can be developed into a solution tnS ∈ SolHYBRID(P)
via task insertion tn →∗I tnS , then there exists a solution
tn′S ∈ SolHYBRID(P) with |T (tn′S)| ≤ |T (tn)| (2|L| + 1).

Proof. Since tnS is a solution toP , there exists an executable
linearization LinS of its tasks. Let Lin := t1, t2, . . . , tn be
the tasks of tn ordered as they appear inside LinS . Let si
and s′i be the states before and after the execution of ti when
applying LinS to the initial state sI .

In order to develop Lin into an executable task sequence,
we need to find the n− 1 task networks tni that transform s′i
into si+1 for 0 < i < n − 1 and the task network tn0 that
transforms sI into s1. Proposition 3 tells us that we can find
such task networks containing at most 2|L| many tasks each,
if these problems are solvable at all. And we can use LinS as
a witness, that they are solvable.

Putting it all together, we can construct a solution task
network illustrated by the sequence tn0t1tn1t2 . . . tnn−1tn.
This task network contains at most n2|L| + n many tasks and
can be constructed from tn via task insertion.

Theorem 2. Given a planning problem P with
SolHYBRID(P) 6= ∅, then there exists a solution
tn∗S ∈ SolHYBRID(P) with |T (tn∗S)| ≤ b|C|(2|L| + 1),
where b is the number of tasks inside the largest task network
of the methods from M .

Proof. A graphical presentation of this proof is given in Fig-
ure 2. Fix a solution tnS ∈ SolHYBRID(P). There exists a task
network tnB with tnI →∗D tnB and tnB →∗I tnS because of
the solution criteria. This task network marks the boundary
between the decomposition part and the insertion part of the
planning process. By Lemma 2 there exists a (not necessarily
different) task network tn′B with tnI →∗D tn′B →∗I tnB and
|T (tn′B)| ≤ b|C|. Because of transitivity of task insertion,
from tn′B →∗I tnB →∗I tnS , it follows that tn′B →∗I tnS .

Using Lemma 3, from tn′B →∗I tnS , it follows that there
exists a solution tn∗S with |T (tn∗S)| ≤ |T (tn′B)| (2|L| + 1)

and thus |T (tn∗S)| ≤ b|C|(2|L| + 1).

tnI tnB tnS

tnI tn′B tnB tnS

tnI tn′B tn∗S

L
em

m
a

2
L

em
m

a
3 decomposition

task insertion

Figure 2: This figure shows how the proof of Theorem 2 con-
structs a small solution tn∗S from a large solution tnS . The
task network tnB marks the boundary between task decom-
position and task insertion. The length of the arrows corre-
sponds to the number of applied modifications, and thus cor-
relates to the size of the resulting task network.

4.3 Complexity Results
In this section we will put the previous results to use in order
to obtain an upper complexity bound of EXPSPACE for
the plan existence problem for propositional, hybrid planning.

First we are going to define two decision problems. As
usual, these are represented by subsets of words over a given
alphabet Σ. We do not deal with the problem of encoding
the syntactical structures, such as task networks or problems,
into words over Σ. It is assumed that this process and the
rejection of malformed inputs is feasible and does not add to
the complexity of the problem. We denote the length of the
description of an object X in Σ by |X|Σ. As a remark about
task networks, note that the description of a task network tn

is bounded by O(|T (tn)|2) because of the possible number
of ordering constraints.

We define the decision problem SOLUTIONHYBRID as
all tuples of a planning problem and a correspond-
ing hybrid solution, i.e., SOLUTIONHYBRID := {(P, tn) |
P is a planning problem and tn ∈ SolHYBRID(P)}. Then we
can state the following proposition.

Proposition 4. SOLUTIONHYBRID ∈ PSPACE.

Proof. Take as input the tuple (P, tn). Since we demand
that a task network may not be empty, the application of a
decomposition to a task network never decreases its num-
ber of tasks |T (tn)|. This means that during a decompo-
sition tn1 →∗D tn2, the intermediate task networks never
exceed pol(|tn2|Σ). Obviously the same holds for a se-
quence of insertions. We can thus state the following non-
deterministic algorithm, that runs in polynomial space in the
size of |(P, tn)|Σ and thus in PSPACE. (1) Check if tn
is executable in sI ; reject if not. (2) The following works
in-place: non-deterministically decompose tnI into a prim-
itive task network tn′ with size of at most pol(|tn|Σ); then,
non-deterministically insert tasks and ordering constraints not
violating this size bound; check if tn was produced; accept if
so, otherwise reject.

We define the plan existence problem for hybrid plan-
ning as the set of planning problems that possess a



hybrid solution, i.e., PLAN-EXISTENCEHYBRID := {P |
P is a planning problem and SolHYBRID(P) 6= ∅}.
Corollary 1. PLAN-EXISTENCEHYBRID ∈ EXPSPACE.

Proof. Let the input be P and let n = |P|Σ be the length
of this input. Theorem 2 states that there exists a solu-
tion tn∗S with |T (tn∗S)| ≤ b|C|(2|L| + 1), if and only if
P has a solution at all. From the bound on the number
of tasks and by substituting b, |C|, and |L| by n, we can
estimate |tn∗S |Σ ≤ pol(nn(2n + 1)) . Thus, |tn∗S |Σ ≤
2pol(n) and the following non-deterministic algorithm runs
in exponential space. (1) Non-deterministically guess a task
network tn with |T (tn)| ≤ b|C|(2|L| + 1). (2) Check
whether (P, tn) ∈ SOLUTIONHYBRID using only space poly-
nomial in |(P, tn)|Σ ≤ n + 2pol(n); accept if the check
returns true, otherwise reject. The given algorithm decides
PLAN-EXISTENCEHYBRID using only space exponential in
the input length.

And as a direct consequence, we conclude:

Corollary 2. PLAN-EXISTENCEHYBRID is decidable.

5 Conclusion and Discussion
We have formalized a simplified, propositional version of
HTN planning with task insertion (or hybrid planning) that
allows for the insertion of tasks and ordering constraints.
We have established EXPSPACE as an upper complexity
bound of the corresponding plan existence problem. We have
also shown that plan existence is undecidable given our for-
malization without insertion. We conclude that the possibility
to insert tasks as an addition to task decomposition greatly re-
duces the computational complexity of HTN planning.

A direct application of the result to the established HTN
formalism by Erol et al. [1994] might not be possible, since
undecidability could have been “reintroduced” by a feature
that is not captured by us, like the formulation of truth con-
straints. But even then we would have eliminated at least one
source of undecidability.

Schattenberg and Biundo [2006] solve hybrid planning
problems close to the ones defined in this paper. However,
the initial task network and the decomposition methods may
contain causal links, thereby further restricting the set of pos-
sible solutions. Thus, it is not clear, whether our decidability
result also applies to their formalization.

However, our result seems to apply to the problems solved
by the Duet planning system [Gerevini et al., 2008]. It pro-
cesses problems as defined in this paper, but uses a lifted state
representation and features preconditions for decomposition
methods. Duet could be extended to prune plans that exceed
a certain size and achieve guaranteed termination without sac-
rificing completeness. Note that the complexity result is not
directly transferable, since the step from a propositional state
representation to a lifted one will most likely result in an ex-
ponential increase in complexity.

Since the focus of the paper lies on showing decidability,
we did not attempt to provide tight complexity bounds for
the plan existence problem. We have shown EXPSPACE
membership and can state PSPACE−hard as a trivial

lower bound. This is the case, because our formalization
captures ground, classical planning with negative effects and
operators given in the input, which has been proved to be
PSPACE−complete.

Acknowledgements
We want to thank our reviewers for their insightful questions
and suggestions that helped us improving this paper.

This work is done within the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems” funded by the German Re-
search Foundation (DFG).

References
[Erol et al., 1994] Kutluhan Erol, James Hendler, and

Dana S. Nau. UMCP: A sound and complete procedure
for hierarchical task-network planning. In Proceedings of
the 2nd International Conference on Artificial Intelligence
Planning Systems (AIPS 1994), pages 249–254, 1994.

[Erol et al., 1995] Kutluhan Erol, Dana S. Nau, and V. S.
Subrahmanian. Complexity, decidability and undecidabil-
ity results for domain-independent planning. Artificial In-
telligence, 76:75–88, 1995.

[Erol et al., 1996] Kutluhan Erol, James Hendler, and
Dana S. Nau. Complexity results for HTN planning. An-
nals of Mathematics and Artificial Intelligence, 18(1):69–
93, 1996.

[Estlin et al., 1997] Tara A. Estlin, Steve A. Chien, and Xue-
mei Wang. An argument for a hybrid HTN/operator-based
approach to planning. In Proceedings of the 4th European
Conference on Planning: Recent Advances in AI Planning,
pages 182–194, 1997.

[Gerevini et al., 2008] Alfonso Gerevini, Ugur Kuter,
Dana S. Nau, Alessandro Saetti, and Nathaniel Waisbrot.
Combining domain-independent planning and HTN
planning: The duet planner. In Proceedings of the 18th
European Conference on Artificial Intelligence (ECAI
2008), pages 573–577. IOS Press, 2008.

[Hopcroft et al., 2000] John E. Hopcroft, Rajeev Motwani,
and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation, volume 3. Addison-Wesley
Reading, MA, second edition, 2000.

[Kambhampati et al., 1998] Subbarao Kambhampati, Amol
Mali, and Biplav Srivastava. Hybrid planning for partially
hierarchical domains. In Proceedings of the 15th National
Conference on Artificial Intelligence (AAAI 1998), pages
882–888. AAAI Press, 1998.

[Schattenberg and Biundo, 2006] Bernd Schattenberg and
Susanne Biundo. A unifying framework for hybrid plan-
ning and scheduling. In Advances in Artificial Intelligence,
Proceedings of the 29th German Conference on Artificial
Intelligence (KI 2006), pages 361–373. Springer, 2006.


