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Abstract. We prove co-N2ExpTime-hardness for conjunctive query entailment in
the description logicALCOIF , thus improving the previously known 2ExpTime
lower bound. The result transfers to OWL DL and OWL2 DL, of whichALCOIF
is an important fragment. A matching upper bound remains open.

1 Introduction

Due to its importance for ontology-based data access and data integration conjunctive
query (CQ) answering has developed into one of the most widely studied reasoning
tasks in description logic (DL). Nevertheless, the precise complexity (and sometimes
even decidability) of CQ answering in several important expressive DLs is still an open
problem. In particular, this concerns fragments of the W3C-standardized OWL DL on-
tology language that comprise nominals, inverse roles, and number restrictions, a com-
bination of expressive means that is notorious for interacting in intricate ways. In this
paper, we concentrate on the basic such fragment ALCOIF in which number restric-
tions take the form of global functionality constraints.

Decidability of CQ answering inALCOIF and its extensionALCOIQwith qual-
ified number restrictions has been shown only very recently [1]. Since the proof is based
on a mutual enumeration of finite models and theorems of first-order logic, it does
not yield any upper complexity bound. The best known lower bound for CQ answer-
ing in ALCOIF is 2ExpTime, inherited from the fragment ALCI of ALCOIF that
does not include nominals and functionality constraints [2, 3]. The aim of this paper is
to improve upon this lower bound by establishing co-N2ExpTime-hardness. Note that
CQ answering in the fragment ALCIF of ALCOIF that does not include nominals
is in 2ExpTime [4], and the same is true for the fragment ALCQO that does not in-
clude inverse roles [5] andALCOI that does not include functionality restrictions [6].
Thus, our result shows that the combination of nominals, inverse roles, and number
restrictions leads to an increase of complexity of CQ answering from 2ExpTime to (at
least) co-N2ExpTime. This parallels the situation for the subsumption problem, which
is co-NExpTime-complete for ALCOIF , but ExpTime-complete in any of ALCIF ,
ALCQO, andALCOI. SinceALCOIF is a fragment of OWL DL (in both the OWL1
and the OWL2 version), our co-N2ExpTime lower bound obviously also applies to CQ
answering in this language.

We prove our result by a reduction of the tiling problem that requires to tile a torus
of size 22n × 22n

. Our construction combines elements of two existing hardness proofs,
but also requires the development of novel ideas. We follow the general strategy of the



proofs that show N2ExpTime-hardness of satisfiability in SROIQ [7] and in the ex-
tension of SHOIF with role conjunctions [8]. One central part of those proofs is the
realization of a counter that counts up to 22n

. We realize this counter using a (rather sub-
tle!) adaptation of the conjunctive queries that have been developed in [2, 3] to establish
2ExpTime-hardness of CQ-answering inALCI.

An extended technical report including proofs and further details is available [9].

2 Preliminaries

We assume standard notation for the syntax and semantics of ALCOIF knowledge
bases [10]. The presence of nominals allows for only working with TBoxes, which
consist of concept inclusions (CIs) C v D. A knowledge base (KB) is then simply a
TBox. Let NV be a countably infinite set of variables. An atom is an expression C(v) or
r(v, v′), where C is a (potentially compound) ALCOIF -concept, r is an atomic role,
and v, v′ ∈ NV .3 A conjunctive query q is a finite set of atoms. We use Var(q) to denote
the set of variables that occur in the query q. Let K be an ALCOIF KB, I = (·I, ∆I)
a model of K , q a conjunctive query, and π : Var(q) → ∆I a total function. We write
I |=π C(v) if π(v) ∈ CI and I |=π r(v, v′) if 〈π(v), π(v′)〉 ∈ rI. If I |=π at for all at ∈ q,
we write I |=π q and call π a match for I and q. We say that I satisfies q and write
I |= q if there is a match π for I and q. If I |= q for all models I of a KB K , we
write K |= q and say that K entails q. The conjunctive query entailment problem is,
given a knowledge baseK and a query q, to decide whetherK |= q. This is the decision
problem corresponding to query answering, see e.g. [4].

A domino system is a triple D = (T,H,V), where T = {1, . . . , k} is a finite set of
tiles and H,V ⊆ T × T are horizontal and vertical matching relations. A tiling of m×m
for a domino system D with initial condition c0 = 〈t0

1, . . . , t
0
n〉, t0

i ∈ T for 1 ≤ i ≤ n, is a
mapping t : {0, . . . ,m−1} × {0, . . . ,m−1} → T such that 〈t(i, j), t(i + 1 mod m, j)〉 ∈ H,
〈t(i, j), t(i, j + 1 mod m)〉 ∈ V , and t(i, 0) = t0

i−1 (0 ≤ i, j < m). There exists a domino
system D0 for which it is N2ExpTime-complete to decide, given an initial condition c0

of length n, whether D0 admits a tiling of 22n × 22n
with initial condition c0 [11].

3 Conjunctive Query Entailment inALCOIF

Our aim is to construct, for an initial condition c0 of length n, an ALCOIF -KB K0
and conjunctive query q0 such thatK0 6|= q0 iff D0 admits a tiling of 22n ×22n

with initial
condition c0.

Intuitively, the models of K0 that we are interested in have the form depicted in
Figure 1: a torus of dimension 22n × 22n

, where the lower left corner is identified by
the nominal o, the upper right corner by the nominal e, each horizontal dashed arrow
denotes the role h, and each vertical dotted arrow the role v. We will install two counters
that identify the vertical and horizontal position of torus nodes. To store the counter
values, we use binary trees of (roughly) depth n below the torus nodes, where each

3 Complex concepts C in atoms C(x) are used w.l.o.g.; to eliminate them, we can replace C(x)
with AC(x) for a fresh atomic concept AC and add C v AC to the TBox.
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Fig. 1. Schematic depiction of the torus

of the 2n leaves store one bit of each counter (represented via concept names X and
Y). The filled circles in Figure 1 denote true torus nodes, which are labeled by a tile
later on, while the unfilled circles denote auxiliary nodes that will help us in properly
incrementing the counters. This incrementation is the main difficulty of the reduction,
and it is achieved with the help of the query q0. As the details are intricate, we defer a
discussion of the details until later, and first concentrate on the construction of K0.

The following concept inclusions (1) to (9) of K0 lay the foundation for enforcing
the torus structure with attached trees. Successors in trees are connected via the com-
position of the roles r− and r, from now on denoted by r−; r. This is needed in the query
construction later on, similar to the use of symmetric roles in [2, 3]. We call additional
nodes between r− and r the ‘intermediate’ tree nodes. Note that no branching occurs
at intermediate nodes. Also for the query construction, the root of a tree below a true
torus node is the torus node itself while the root of a tree below an auxiliary torus node
is reachable by traveling one step along the role r (see Figure 1). To distinguish these
two kinds of trees, we label trees of the former kind with the concept name B and call
them black trees, and trees of the latter kind with the concept name W and call them
white trees. Later on, we will use white trees that are on the vertical axis to increment
the vertical counter and white trees that are on the horizontal axis to increment the hor-
izontal counter. To support this, we further label white trees of the former kind with V
and white trees of the latter kind with H. The basic idea for constructing the torus itself
is similar to what is done in [12, 7, 8]: the maximum value of both counters (indicated
by the concept names MX and MY ) identifies the upper right corner, which has to sat-
isfy the nominal e and is thus unique. Inverse functionality for h and v then guarantees
uniqueness of elements for all other values of the horizontal and vertical counters, and
that the torus ‘closes’ in the expected way. We use concept names L0, . . . , Ln to mark
the levels of the trees, to deal with the symmetry of the composition r−; r. Thus, the
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Fig. 2. A black and a white tree, for n = 2

concept B u L0 identifies the true torus nodes.

{o} v B u L0 (1)
B u L0 v ∃h.(W u ∃r.(H uW u L0) u ∃h.(B u L0)) (2)
B u L0 v ∃v.(W u ∃r.(V uW u L0) u ∃v.(B u L0)) (3)

B u L0 u MX u MY v {e} (4)
Li v ∃r−.∃r.(Ai+1 u Li+1) u ∃r−.∃r.(¬Ai+1 u Li+1) i<n (5)

Ai u L j v ∀r−.∀r.(L j+1 → Ai) 1≤i≤ j<n (6)
¬Ai u L j v ∀r−.∀r.(L j+1 → ¬Ai) 1≤i≤ j<n (7)

C v ∀r.C u ∀r−.C for all C ∈ {B,W,H,V} (8)
> v 6 1h−.> > v 6 1v−.> (9)

Note that the concept names A1, . . . , An implement a binary counter for the leafs of
the trees, i.e., for counting the bit positions in the horizontal and vertical counters. In
summary, the internal structure of the trees is as shown in Figure 2 where branching
tree nodes have dark background and intermediate nodes have light background.

The next step is to make sure that the horizontal and vertical counter have value 0
at the origin and that MX is true at the root of a tree when the horizontal counter has
reached the maximum value, and similarly for MY . We use ∀(r−; r)n.C to denote the 2n-
quantifier prefixed ∀r−.∀r. · · · ∀r−.∀r.C. Recall that the concept name X represents the
truth value of bits of the horizontal counter, and likewise for Y and the vertical counter.

{o} v ∀(r−; r)n.(¬X u ¬Y) (10)
Ln v (X ↔ MX) u (Y ↔ MY ) (11)

Li−1 u ∃r−.∃r.(Li u MX u Ai) u ∃r−.∃r.(Li u MX u ¬Ai) v MX 0<i≤n (12)
Li−1 u ∃r−.∃r.(Li u MY u Ai) u ∃r−.∃r.(Li u MY u ¬Ai) v MY 0<i≤n (13)

Li−1 u ∃r−.∃r.(Li u ¬MX) v ¬MX 0<i≤n (14)
Li−1 u ∃r−.∃r.(Li u ¬MY ) v ¬MY 0<i≤n (15)

The general strategy for updating the horizontal and vertical counter is as follows. We
introduce additional concept names X′ and Y ′, which represent the truth value of the
bits of two additional binary counters, the ‘primed versions’ of the horizontal and verti-
cal counter. Using K0, we ensure that, in black trees, the X-counter has the same value



as the X′-counter, and likewise for the Y- and Y ′-counter. In white trees, we distinguish
between horizontal incrementation indicated by the concept name H and vertical incre-
mentation indicated by the concept name V: if the tree satisfies H, then the value of
the X′-counter is the value of the X-counter incremented by one, while the values of
the Y- and Y ′-counter coincide; if the tree satisfies V , it is the other way around. The
remaining job to be accomplished by the query q0 is then to

(∗) ensure that the value of the X′-counter (resp. Y ′-counter) in a (black or white) tree
is identical to the value of the X-counter (resp. Y-counter) in its ‘successor trees’, i.e.,
in trees that can be reached by traveling a single step in the torus along the roles h or v.

This behavior of the counters, with the exception of (∗), is implemented by the subse-
quent concept inclusions. To increment a counter, we use a concept name F to mark the
bits that have to be flipped. Another concept name S , which is propagated down from
the root to a single leaf, is used to mark the unique bit of the incremented counter such
that (i) all bits to the right are flipped from 1 to 0, (ii) the bit itself is flipped from 0 to
1, and (iii) all bits to the left remain unchanged. As a special case, all bits flip when the
maximum counter value has been reached. In the following, CIs (16) to (19) implement
the proper marking by F and S , CIs (21) to (23) realize the actual incrementation of
the X-counter to the X′-counter in (white) H-trees, and CI (24) ensures that the Y- and
Y ′-counters have the same value in H-trees and in black trees. We also need CIs (21)
to (24) with H replaced by V , X by Y , X′ by Y ′, Y by X, and Y ′ by X′.

L0 u (¬MX t ¬MY ) v S (16)
L0 u (MX u MY ) v F u ¬S (17)

S u Li−1 v ∀r−.∀r.(Li → [ ((Ai → ¬F u ¬S ) u (¬Ai → S ))
t ((Ai → S ) u (¬Ai → F u ¬S )) ]) 0<i≤n (18)

F u ¬S u Li−1 v ∀r−.∀r.(Li → F u ¬S ) 0<i≤n (19)
¬F u ¬S u Li−1 v ∀r−.∀r.(Li → ¬F u ¬S ) 0<i≤n (20)

H u Ln u F u ¬S v X u ¬X′ (21)
H u Ln u S v ¬X u X′ (22)

H u Ln u ¬F u ¬S v (X u X′) t (¬X u ¬X′) (23)
(B t H) u Ln v (Y u Y ′) t (¬Y u ¬Y ′) (24)

To enable the construction of a query q0 that enforces (∗), we add a further (single) r−; r-
successor to each leaf in each tree. At this extra node, which is marked with the concept
name Ln+1, the truth value of all concept names Ai, X, X′, Y , Y ′ is complemented com-
pared to its predecessor Ln-node. We also introduce a marker concept Q that is true at
the intermediate node between each Ln-node and Ln+1-node. This is similar to what is
done in [2, 3]. We call such intermediate nodes Q-nodes.

Ln v ∃r−.(Q u ∃r.Ln+1) (25)
Ln u C v ∀r−.∀r.(Ln+1 → ¬C) Ln u ¬C v ∀r−.∀r.(Ln+1 → C)

for all C ∈ {A1, . . . , An, X, X′,Y,Y ′} (26)

The construction of K0 is not yet finished. However, it will be more convenient to
construct the remaining part along with the query q0. The query is assembled from
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Fig. 3. A counting component of the query q0 and the two ways to fold it

two types of components: counting components and copying components. We start with
presenting and explaining a simplified version of counting components, which are then
refined in a second step. The final query q0 will contain one counting component for
each bit of the counter A1, . . . , An that counts the leaves of our trees. The simplified
version of the counting component for Ai is shown as the topmost cycle in Figure 3,
where, for the moment, every arrow should be interpreted as a role atom that uses the
role name r. The goal is that matches of this query component should map (i) v to a
Q-node of a black tree and v′ to the Q-node of a white successor tree such that the
two predecessor Ln-nodes agree on the value of Ai or, symmetrically, (ii) v′ to a Q-
node of a white tree and v to the Q-node of a black successor tree such that the two
predecessor Ln-nodes agree on the value of Ai. By taking the union of all counting
queries for A1, . . . , An such that the variables v and v′ are shared, we thus link leaves
of successor trees that represent the same bit position for the horizontal and vertical
counter, which is the first important step towards enforcing (∗).

Due to the Q-concept at v and v′, each variable labeled with Ai or ¬Ai is matched
to an Ln-node or an Ln+1-node. Ignoring the presence of the role names h and v in the
torus and pretending that white trees are rooted directly on the torus, each match of the
counting component gives rise to one of the two ‘foldings’ presented in Figure 3. These
foldings are obtained by identifying variables that are matched to the same domain
element, as indicated by the dotted lines. Intuitively, the two foldings correspond to
the bit Ai being false (upper folding) and true (lower folding). For brevity, we omit the
concept names Q, B,W in the foldings. Since the long sides of the counting component
are of length 2n + 1 (counted in terms of compositions r−; r) and trees are of depth n,
the two trees involved in a match cannot be further away than one step in the torus. Due
to the use of B and W, they cannot be identical.

In the discussion of the simplified counting components above, we have neglected
the presence of the roles h and v in the torus that we need to ‘cross’ when matching
the query in the described way. Refining the counting queries to deal with these roles
is the major challenge in the current reduction, compared to the 2ExpTime lower bound
in [2, 3] where only a single role r is used. Note that we cannot just introduce a single
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h-arrow and v-arrow into the counting components since we want to match either h or v,
but not both; moreover, the position of the h-arrow/v-arrow would shift back and forth
with the different ways to fold the query. To solve the problem, we replace each role
composition r−; r in the query (but not in the trees!) with a composition of 18 roles that
we call a ‘meta role’, see Figure 4 where every solid edge denotes the role name r.

Note that the meta role is symmetric, like the composition r−; r. The aim is that
each meta-role in the refined counting query matches one r−; r-role composition that
connects two successor nodes in a tree. To resolve the mismatch between the role com-
position r−; r of length two and the meta role of length 18, the meta role is designed
such that the remaining parts can be folded away into ‘side chains’ that we will add to
the tree, i.e., chains of roles that start at each tree node. There are five ways to achieve
such a folding, one for each corresponding pair of r−- and r-arrows in the left and right
half of the meta role. For example, we can use the 3rd r−-arrow and the 3rd r-arrow to
match the r−; r-composition in the tree, and then have to fold away the prefix compo-
sition r−; v; r−; v− before the 3rd r−-arrow, the infix composition h; r−; h−; r−; r; h; r; h−

between the 3rd r−-arrow and the 3rd r-arrow, and the postfix composition v; r; v−; r
following the 3rd r-arrow. Observe that the infix composition is symmetric and thus
can be folded into a chain. The postfix composition is the converse of the infix compo-
sition, which will allow us to leave a side chain that we have entered with the postfix
composition using the prefix composition of the subsequent meta role. Similar foldings
allow us to match the r−; r; h; r-compositions required to move up one level in a black
tree and then cross via an h-edge to the root of a white successor tree, the r−; h; r−; r-
compositions that allows us to cross from the root of a white tree to a black tree and
then move down one level, and to perform the two analogous crossing with h replaced
by v.

The scheme for adding side chains is shown in Figure 5, where intermediate tree
nodes (lower node on the center line) receive different chains than branching tree nodes
(upper node on the center line). These chains are added to every node in the tree with
the exception of the roots of black trees, as those are directly on the torus and adding
side chains would violate inverse functionality of h and v. Note that the side chains
attached to branching tree nodes are precisely the possible postfix compositions men-
tioned above, while the side chains attached to intermediate tree nodes are foldings of
what we called infix compositions above. The chains are generated by the following
CIs, to be added to K0. We use the concept NB = (L0 u W) t ⊔1≤i≤n+1 Li to identify
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branching tree nodes and NI = ∃r.
⊔

1≤i≤n+1 Li to identify intermediate tree nodes.

NB v ∃h.∃r.∃h−.∃r.∃v.∃r.∃v−.∃r.> u ∃v.∃r.∃v−.∃r.> u
∃h−.∃r.∃v.∃r.∃v−.∃r.> u ∃v−.∃r.> (27)

NI v ∃v.∃r−.∃v−.∃r−.∃h.∃r−.∃h−.∃r−.> u ∃h.∃r−.∃h−.∃r−.> u
∃v−.∃r−.∃h.∃r−.∃h−.∃r−.> u ∃h−.∃r−.> (28)

In matches of the refined query, the endpoints of the two foldings shown in Figure 3 will
match at the end of (possibly empty) side chains at the level n+1, v and v′ will match at
the end of the side chains between the levels n and n + 1, and the adjacent inner nodes
labeled with ¬Ai resp. Ai will match at the end of the side chains at the level n. For this
reason, we propagate all relevant concept names to the end of those chains. For C ∈
{A1, . . . , An,¬A1, . . . ,¬An, X,¬X, Y,¬Y}, C′ ∈ {Q, B,W}, add the concept inclusions

(Ln t Ln+1) u C v ∀h.∀r.∀h−.∀r.∀v.∀r.∀v−.∀r.C u ∀v.∀r.∀v−.∀r.C u
∀h−.∀r.∀v.∀r.∀v−.∀r.C u ∀v−.∀r.C (29)

Q u C′ v ∀v.∀r−.∀v−.∀r−.∀h.∀r−.∀h−.∀r−.C′ u ∀h.∀r−.∀h−.∀r−.C′ u
∀v−.∀r−.∀h.∀r−.∀h−.∀r−.C′ u ∀h−.∀r−.C′ (30)

Figure 6 shows, for n = 2, how to fold the refined counting query such that v is mapped
to a Q-node of a black tree and v′ to a Q-node of a white successor tree that can be
reached via crossing an h-edge in the torus, and likewise for the case where v′ is mapped
to a white tree, and v to a black successor tree reachable via h. We display only those
side chains that are needed for accommodating the query match. To get started, note
that in the left part of Figure 6, the h-edge in the right half of a meta role as shown in
Figure 3 is matched onto the crossing h-edge in the model. The square and diamond
nodes indicate where the middle and end parts of each meta role in the query match.
Crossings of v-edges are similar.

We now define counting query parts in a more precise way. Note that each counting
query consists of 4n + 4 meta roles. In the subsequent definition, qi, j

m is a meta role used
in the counting query for Ai, where j ranges over 0, . . . , 4n + 3.



Definition 1. For all i, j with 1 ≤ i ≤ n and 0 ≤ j < 4n + 4, put
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with vi,4n+4
0 = vi,0

0 . For each i with 1 ≤ i ≤ n, the counting query for Ai is

qi
c := { Ai(vi,0

0 ),¬Ai(vi,1
0 ), Ai(vi,2n+2

0 ),¬Ai(vi,2n+3
0 )} ∪

⋃
0≤ j<4n+4

qi, j
m

with vi,0
9 = v, vi,2n+2

9 = v′. The counting query qc for the whole counter is

qc := {B(v),Q(v),W(v′),Q(v′)} ∪
⋃

1≤i≤n

qi
c

Note that each counting query qi
c is a cycle as intended since vi,4n+4

0 = vi,0
0 .

As explained above, the overall counting query qc links a Q-node x1 of a tree to the
Q-nodes x2 of its successor trees that represent the same bit position for the horizontal
and vertical counters. To establish the central property (∗) in models of K0 that do not
match the query q0 to be constructed, it thus remains to modify q0 such that it matches
only if the Ln-predecessor x′1 of x1 has the same truth assignment of X′ and Y ′ as the
Ln-predecessor x′2 of x2 for X and Y . This is achieved by the second type of component
queries in q0, the copying components.

To prepare for these components, we introduce additional concept names Q0, . . . ,Q3
that realize a unary counter of trees, counting modulo 4. These concept names will be
used to identify the successor relation between the trees in query matches. The counter
value is incremented when moving from a tree to a successor tree and propagated to all
Ln- and Ln+1-nodes inside each tree and the ends of their side chains. This is achieved
by adding to K0 the following concept inclusions:

{o} v Q0 (31)
Qi u B u L0 v ∀h.∀r.Qi+1 mod 4 u ∀h.Qi+2 mod 4 u

∀v.∀r.Qi+1 mod 4 u ∀v.Qi+2 mod 4 i=0, 2 (32)
Qi u L0 v ∀(r−; r)n.(Ln → Qi) 0≤i≤3 (33)

Qi v ¬Q j 0≤i< j≤3 (34)
Qi u (Ln t Ln+1) v ∀h.∀r.∀h−.∀r.∀v.∀r.∀v−.∀r.Qi u ∀v.∀r.∀v−.∀r.Qi u

∀h−.∀r.∀v.∀r.∀v−.∀r.Qi u ∀v−.∀r.Qi 0≤i≤3 (35)

The copying components take the form displayed in Figure 7, i.e., there are 16 such
components in total. Each component is like the upper half of a counting component,
except that the concept labels have changed to negated conjunctions. In Figure 7, the
four copying components in each row take care of one possible truth assignment to X′

and Y ′ and the corresponding assignment to X and Y . We need four queries per truth
assignment to deal with the four possible ways in which a counting query can match, as
induced by the concept names Q0, . . . ,Q3:



v v′

¬(Q0u¬X′u¬Y′) ¬(Q1u¬Xu¬Y)

v v′

¬(Q0u¬X′uY′) ¬(Q1u¬XuY)

v v′

¬(Q0uX′u¬Y′) ¬(Q1uXu¬Y)

v v′

¬(Q0uX′uY′) ¬(Q1uXuY)

v′ v

¬(Q1u¬X′u¬Y′) ¬(Q2u¬Xu¬Y)

v′ v

¬(Q1u¬X′uY′) ¬(Q2u¬XuY)

v′ v

¬(Q1uX′u¬Y′) ¬(Q2uXu¬Y)

v′ v

¬(Q1uX′uY′) ¬(Q2uXuY)

v v′

¬(Q2u¬X′u¬Y′) ¬(Q3u¬Xu¬Y)

v v′

¬(Q2u¬X′uY′) ¬(Q3u¬XuY)

v v′

¬(Q2uX′u¬Y′) ¬(Q3uXu¬Y)

v v′

¬(Q2uX′uY′) ¬(Q3uXuY)

v′ v

¬(Q3u¬X′u¬Y′) ¬(Q0u¬Xu¬Y)

v′ v

¬(Q3u¬X′uY′) ¬(Q0u¬XuY)

v′ v

¬(Q3uX′u¬Y′) ¬(Q0uXu¬Y)

v′ v

¬(Q3uX′uY′) ¬(Q0uXuY)

Fig. 7. The 16 query copying components

(a) v matches into a tree that satisfies B and Q0, and v′ into a successor tree that satisfies
W and Q1;

(b) v′ matches into a tree that satisfies W and Q1, and v into a successor tree that
satisfies B and Q2;

(c) v matches into a tree that satisfies B and Q2, and v′ into a successor tree that satisfies
W and Q3;

(d) v′ matches into a tree that satisfies W and Q3, and v into a successor tree that
satisfies B and Q0.

To explain in detail how the copying queries work, consider case (a). For simplicity, in
the explanation we largely ignore side chains and pretend that meta roles are composi-
tions r; r−, as in our initial, simplified view on counting components. Take the Q-node
x1 of a tree that satisfies B and Q0 and the Q-node x2 of a successor tree that satisfies W
and Q1. The relevant queries are those from the leftmost column in Figure 7. Let x′i be
the predecessor Ln-node of xi, and x′′i the successor Ln+1-node of xi. Due to the Q-label
in the counting queries, the variable v can only be matched to x1 and the variable v′ can
only be matched to x2. Let u be the neighboring variable of v in the copying compo-
nents, and u′ the neighboring variable of v′. Then u can only be matched to either x′1 or
x′′1 while u′ can only be matched to either x′2 or x′′2 . The match u 7→ x′′1 and u′ 7→ x′′2 is
excluded because the path from u to u′ is not long enough. So a component has a match
iff either x′1 satisfies the label of u or x′2 satisfies the label of u′ (since x′1 and x′′2 have
complementary truth values for X′ and Y ′, one of them always satisfy the label of u and
similarly for x′′1 , x′′2 and u′). The four copying components in the first column exclude
exactly four situations when x′1 has the same truth assignment of X′ and Y ′ as x′2 for X
and Y . It remains to note that the copying components in the other columns always have
a match in this situation due to our use of the concept names Q0, . . . ,Q3 in the labels,
and thus do not interfere with the matches of the queries in the leftmost components.

We remark that, without the use of the concept names Q0, . . . ,Q3, it does not seem
possible to ensure proper directionality of copying. For example, copying components
that copy the X/Y-assignment from a black tree to the X′/Y ′-assignment in white suc-
cessor trees would also copy this assignment to the the X′/Y ′-assignment in white pre-
decessor trees. A formal definition of copying queries can be found in [9].



This finishes the construction of the query q0 and of the part ofK0 that enforces the
torus structure. It remains to encode tilings of the domino system D0.

> v T1 t · · · t Tk Ti u T j v ⊥ 1 ≤ i < j ≤ k (36)
Ti u ∃h.T j v ⊥ Tk u ∃v.T` v ⊥ 〈i, j〉 < H, 〈k, `〉 < V (37)

Finally, we enforce the initial condition c0 = 〈t0
1, . . . , t

0
n〉 of the torus.

{o} v Tt0
1
u ∀h.(Tt0

2
u ∀h.(Tt0

3
u ∀h.(Tt0

4
u . . .∀h.Tt0

n
. . .))) (38)

More details regarding the correctness of the reduction can be found in [9]. The most
challenging issue is to show that when D0 admits a tiling with initial condition c0 and
we build a model I of K that has the intended torus shape, then I 6|= q0: we need to
prove that there are no unintended foldings and matchings of the query q0.

Theorem 1. Conjunctive query entailment byALCOIF knowledge bases is co-N2Exp-
Time-hard.
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