
Status QIO: An Update

Birte Glimm1, Yevgeny Kazakov1, and Carsten Lutz2

1 Oxford University Computing Laboratory, UK
2 Universität Bremen, Germany

Abstract. We prove co-N2ExpTime-hardness for conjunctive query entailment in
the description logicALCOIF , thus improving the previously known 2ExpTime
lower bound. The result transfers to OWL DL and OWL2 DL, of whichALCOIF
is an important fragment. A matching upper bound remains open.

1 Introduction

Due to its importance for ontology-based data access and data integration conjunctive
query (CQ) answering has developed into one of the most widely studied reasoning
tasks in description logic (DL). Nevertheless, the precise complexity (and sometimes
even decidability) of CQ answering in several important expressive DLs is still an open
problem. In particular, this concerns fragments of the W3C-standardized OWL DL on-
tology language that comprise nominals, inverse roles, and number restrictions, a com-
bination of expressive means that is notorious for interacting in intricate ways. In this
paper, we concentrate on the basic such fragment ALCOIF in which number restric-
tions take the form of global functionality constraints.

Decidability of CQ answering inALCOIF and its extensionALCOIQwith qual-
ified number restrictions has been shown only very recently [1]. Since the proof is based
on a mutual enumeration of finite models and theorems of first-order logic, it does
not yield any upper complexity bound. The best known lower bound for CQ answer-
ing in ALCOIF is 2ExpTime, inherited from the fragment ALCI of ALCOIF that
does not include nominals and functionality constraints [2, 3]. The aim of this paper is
to improve upon this lower bound by establishing co-N2ExpTime-hardness. Note that
CQ answering in the fragment ALCIF of ALCOIF that does not include nominals
is in 2ExpTime [4], and the same is true for the fragment ALCQO that does not in-
clude inverse roles [5] andALCOI that does not include functionality restrictions [6].
Thus, our result shows that the combination of nominals, inverse roles, and number
restrictions leads to an increase of complexity of CQ answering from 2ExpTime to (at
least) co-N2ExpTime. This parallels the situation for the subsumption problem, which
is co-NExpTime-complete for ALCOIF , but ExpTime-complete in any of ALCIF ,
ALCQO, andALCOI. SinceALCOIF is a fragment of OWL DL (in both the OWL1
and the OWL2 version), our co-N2ExpTime lower bound obviously also applies to CQ
answering in this language.

We prove our result by a reduction of the tiling problem that requires to tile a torus
of size 22n

× 22n
. Our construction combines elements of two existing hardness proofs,

but also requires the development of novel ideas. We follow the general strategy of the



proofs that show N2ExpTime-hardness of satisfiability in SROIQ [7] and in the ex-
tension of SHOIF with role conjunctions [8]. One central part of those proofs is the
realization of a counter that counts up to 22n

. We realize this counter using a (rather sub-
tle!) adaptation of the conjunctive queries that have been developed in [2, 3] to establish
2ExpTime-hardness of CQ-answering inALCI.

An extended technical report including proofs and further details is available [9].

2 Preliminaries

We assume standard notation for the syntax and semantics of ALCOIF knowledge
bases [10]. The presence of nominals allows for only working with TBoxes, which
consist of concept inclusions (CIs) C v D. A knowledge base (KB) is then simply a
TBox. Let NV be a countably infinite set of variables. An atom is an expression C(v) or
r(v, v′), where C is a (potentially compound) ALCOIF -concept, r is an atomic role,
and v, v′ ∈ NV .3 A conjunctive query q is a finite set of atoms. We use Var(q) to denote
the set of variables that occur in the query q. Let K be an ALCOIF KB, I = (·I, ∆I)
a model of K , q a conjunctive query, and π : Var(q) → ∆I a total function. We write
I |=π C(v) if π(v) ∈ CI and I |=π r(v, v′) if 〈π(v), π(v′)〉 ∈ rI. If I |=π at for all at ∈ q,
we write I |=π q and call π a match for I and q. We say that I satisfies q and write
I |= q if there is a match π for I and q. If I |= q for all models I of a KB K , we
write K |= q and say that K entails q. The conjunctive query entailment problem is,
given a knowledge baseK and a query q, to decide whetherK |= q. This is the decision
problem corresponding to query answering, see e.g. [4].

A domino system is a triple D = (T,H,V), where T = {1, . . . , k} is a finite set of
tiles and H,V ⊆ T × T are horizontal and vertical matching relations. A tiling of m×m
for a domino system D with initial condition c0 = 〈t0

1, . . . , t
0
n〉, t0

i ∈ T for 1 ≤ i ≤ n, is a
mapping t : {0, . . . ,m−1} × {0, . . . ,m−1} → T such that 〈t(i, j), t(i + 1 mod m, j)〉 ∈ H,
〈t(i, j), t(i, j + 1 mod m)〉 ∈ V , and t(i, 0) = t0

i−1 (0 ≤ i, j < m). There exists a domino
system D0 for which it is N2ExpTime-complete to decide, given an initial condition c0

of length n, whether D0 admits a tiling of 22n
× 22n

with initial condition c0 [11].

3 Conjunctive Query Entailment inALCOIF

Our aim is to construct, for an initial condition c0 of length n, an ALCOIF -KB K0
and conjunctive query q0 such thatK0 6|= q0 iff D0 admits a tiling of 22n

×22n
with initial

condition c0.
Intuitively, the models of K0 that we are interested in have the form depicted in

Figure 1: a torus of dimension 22n
× 22n

, where the lower left corner is identified by
the nominal o, the upper right corner by the nominal e, each horizontal dashed arrow
denotes the role h, and each vertical dotted arrow the role v. We will install two counters
that identify the vertical and horizontal position of torus nodes. To store the counter
values, we use binary trees of (roughly) depth n below the torus nodes, where each

3 Complex concepts C in atoms C(x) are used w.l.o.g.; to eliminate them, we can replace C(x)
with AC(x) for a fresh atomic concept AC and add C v AC to the TBox.
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Fig. 1. Schematic depiction of the torus

of the 2n leaves store one bit of each counter (represented via concept names X and
Y). The filled circles in Figure 1 denote true torus nodes, which are labeled by a tile
later on, while the unfilled circles denote auxiliary nodes that will help us in properly
incrementing the counters. This incrementation is the main difficulty of the reduction,
and it is achieved with the help of the query q0. As the details are intricate, we defer a
discussion of the details until later, and first concentrate on the construction of K0.

The following concept inclusions (1) to (9) of K0 lay the foundation for enforcing
the torus structure with attached trees. Successors in trees are connected via the com-
position of the roles r− and r, from now on denoted by r−; r. This is needed in the query
construction later on, similar to the use of symmetric roles in [2, 3]. We call additional
nodes between r− and r the ‘intermediate’ tree nodes. Note that no branching occurs
at intermediate nodes. Also for the query construction, the root of a tree below a true
torus node is the torus node itself while the root of a tree below an auxiliary torus node
is reachable by traveling one step along the role r (see Figure 1). To distinguish these
two kinds of trees, we label trees of the former kind with the concept name B and call
them black trees, and trees of the latter kind with the concept name W and call them
white trees. Later on, we will use white trees that are on the vertical axis to increment
the vertical counter and white trees that are on the horizontal axis to increment the hor-
izontal counter. To support this, we further label white trees of the former kind with V
and white trees of the latter kind with H. The basic idea for constructing the torus itself
is similar to what is done in [12, 7, 8]: the maximum value of both counters (indicated
by the concept names MX and MY ) identifies the upper right corner, which has to sat-
isfy the nominal e and is thus unique. Inverse functionality for h and v then guarantees
uniqueness of elements for all other values of the horizontal and vertical counters, and
that the torus ‘closes’ in the expected way. We use concept names L0, . . . , Ln to mark
the levels of the trees, to deal with the symmetry of the composition r−; r. Thus, the



B
L0

L1

L2

W,H

L0

L1

L2

A1 ¬A1

A1
A2

A1
¬A2

¬A1
A2

¬A1
¬A2

A1 ¬A1

A1
A2

A1
¬A2

¬A1
A2

¬A1
¬A2

Fig. 2. A black and a white tree, for n = 2

concept B u L0 identifies the true torus nodes.

{o} v B u L0 (1)
B u L0 v ∃h.(W u ∃r.(H uW u L0) u ∃h.(B u L0)) (2)
B u L0 v ∃v.(W u ∃r.(V uW u L0) u ∃v.(B u L0)) (3)

B u L0 u MX u MY v {e} (4)
Li v ∃r−.∃r.(Ai+1 u Li+1) u ∃r−.∃r.(¬Ai+1 u Li+1) i<n (5)

Ai u L j v ∀r−.∀r.(L j+1 → Ai) 1≤i≤ j<n (6)
¬Ai u L j v ∀r−.∀r.(L j+1 → ¬Ai) 1≤i≤ j<n (7)

C v ∀r.C u ∀r−.C for all C ∈ {B,W,H,V} (8)
> v 6 1h−.> > v 6 1v−.> (9)

Note that the concept names A1, . . . , An implement a binary counter for the leafs of
the trees, i.e., for counting the bit positions in the horizontal and vertical counters. In
summary, the internal structure of the trees is as shown in Figure 2 where branching
tree nodes have dark background and intermediate nodes have light background.

The next step is to make sure that the horizontal and vertical counter have value 0
at the origin and that MX is true at the root of a tree when the horizontal counter has
reached the maximum value, and similarly for MY . We use ∀(r−; r)n.C to denote the 2n-
quantifier prefixed ∀r−.∀r. · · · ∀r−.∀r.C. Recall that the concept name X represents the
truth value of bits of the horizontal counter, and likewise for Y and the vertical counter.

{o} v ∀(r−; r)n.(¬X u ¬Y) (10)
Ln v (X ↔ MX) u (Y ↔ MY ) (11)

Li−1 u ∃r−.∃r.(Li u MX u Ai) u ∃r−.∃r.(Li u MX u ¬Ai) v MX 0<i≤n (12)
Li−1 u ∃r−.∃r.(Li u MY u Ai) u ∃r−.∃r.(Li u MY u ¬Ai) v MY 0<i≤n (13)

Li−1 u ∃r−.∃r.(Li u ¬MX) v ¬MX 0<i≤n (14)
Li−1 u ∃r−.∃r.(Li u ¬MY ) v ¬MY 0<i≤n (15)

The general strategy for updating the horizontal and vertical counter is as follows. We
introduce additional concept names X′ and Y ′, which represent the truth value of the
bits of two additional binary counters, the ‘primed versions’ of the horizontal and verti-
cal counter. Using K0, we ensure that, in black trees, the X-counter has the same value



as the X′-counter, and likewise for the Y- and Y ′-counter. In white trees, we distinguish
between horizontal incrementation indicated by the concept name H and vertical incre-
mentation indicated by the concept name V: if the tree satisfies H, then the value of
the X′-counter is the value of the X-counter incremented by one, while the values of
the Y- and Y ′-counter coincide; if the tree satisfies V , it is the other way around. The
remaining job to be accomplished by the query q0 is then to

(∗) ensure that the value of the X′-counter (resp. Y ′-counter) in a (black or white) tree
is identical to the value of the X-counter (resp. Y-counter) in its ‘successor trees’, i.e.,
in trees that can be reached by traveling a single step in the torus along the roles h or v.

This behavior of the counters, with the exception of (∗), is implemented by the subse-
quent concept inclusions. To increment a counter, we use a concept name F to mark the
bits that have to be flipped. Another concept name S , which is propagated down from
the root to a single leaf, is used to mark the unique bit of the incremented counter such
that (i) all bits to the right are flipped from 1 to 0, (ii) the bit itself is flipped from 0 to
1, and (iii) all bits to the left remain unchanged. As a special case, all bits flip when the
maximum counter value has been reached. In the following, CIs (16) to (19) implement
the proper marking by F and S , CIs (21) to (23) realize the actual incrementation of
the X-counter to the X′-counter in (white) H-trees, and CI (24) ensures that the Y- and
Y ′-counters have the same value in H-trees and in black trees. We also need CIs (21)
to (24) with H replaced by V , X by Y , X′ by Y ′, Y by X, and Y ′ by X′.

L0 u (¬MX t ¬MY ) v S (16)
L0 u (MX u MY ) v F u ¬S (17)

S u Li−1 v ∀r−.∀r.(Li → [ ((Ai → ¬F u ¬S ) u (¬Ai → S ))
t ((Ai → S ) u (¬Ai → F u ¬S )) ]) 0<i≤n (18)

F u ¬S u Li−1 v ∀r−.∀r.(Li → F u ¬S ) 0<i≤n (19)
¬F u ¬S u Li−1 v ∀r−.∀r.(Li → ¬F u ¬S ) 0<i≤n (20)

H u Ln u F u ¬S v X u ¬X′ (21)
H u Ln u S v ¬X u X′ (22)

H u Ln u ¬F u ¬S v (X u X′) t (¬X u ¬X′) (23)
(B t H) u Ln v (Y u Y ′) t (¬Y u ¬Y ′) (24)

To enable the construction of a query q0 that enforces (∗), we add a further (single) r−; r-
successor to each leaf in each tree. At this extra node, which is marked with the concept
name Ln+1, the truth value of all concept names Ai, X, X′, Y , Y ′ is complemented com-
pared to its predecessor Ln-node. We also introduce a marker concept Q that is true at
the intermediate node between each Ln-node and Ln+1-node. This is similar to what is
done in [2, 3]. We call such intermediate nodes Q-nodes.

Ln v ∃r−.(Q u ∃r.Ln+1) (25)
Ln u C v ∀r−.∀r.(Ln+1 → ¬C) Ln u ¬C v ∀r−.∀r.(Ln+1 → C)

for all C ∈ {A1, . . . , An, X, X′,Y,Y ′} (26)

The construction of K0 is not yet finished. However, it will be more convenient to
construct the remaining part along with the query q0. The query is assembled from
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Fig. 3. A counting component of the query q0 and the two ways to fold it

two types of components: counting components and copying components. We start with
presenting and explaining a simplified version of counting components, which are then
refined in a second step. The final query q0 will contain one counting component for
each bit of the counter A1, . . . , An that counts the leaves of our trees. The simplified
version of the counting component for Ai is shown as the topmost cycle in Figure 3,
where, for the moment, every arrow should be interpreted as a role atom that uses the
role name r. The goal is that matches of this query component should map (i) v to a
Q-node of a black tree and v′ to the Q-node of a white successor tree such that the
two predecessor Ln-nodes agree on the value of Ai or, symmetrically, (ii) v′ to a Q-
node of a white tree and v to the Q-node of a black successor tree such that the two
predecessor Ln-nodes agree on the value of Ai. By taking the union of all counting
queries for A1, . . . , An such that the variables v and v′ are shared, we thus link leaves
of successor trees that represent the same bit position for the horizontal and vertical
counter, which is the first important step towards enforcing (∗).

Due to the Q-concept at v and v′, each variable labeled with Ai or ¬Ai is matched
to an Ln-node or an Ln+1-node. Ignoring the presence of the role names h and v in the
torus and pretending that white trees are rooted directly on the torus, each match of the
counting component gives rise to one of the two ‘foldings’ presented in Figure 3. These
foldings are obtained by identifying variables that are matched to the same domain
element, as indicated by the dotted lines. Intuitively, the two foldings correspond to
the bit Ai being false (upper folding) and true (lower folding). For brevity, we omit the
concept names Q, B,W in the foldings. Since the long sides of the counting component
are of length 2n + 1 (counted in terms of compositions r−; r) and trees are of depth n,
the two trees involved in a match cannot be further away than one step in the torus. Due
to the use of B and W, they cannot be identical.

In the discussion of the simplified counting components above, we have neglected
the presence of the roles h and v in the torus that we need to ‘cross’ when matching
the query in the described way. Refining the counting queries to deal with these roles
is the major challenge in the current reduction, compared to the 2ExpTime lower bound
in [2, 3] where only a single role r is used. Note that we cannot just introduce a single
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h-arrow and v-arrow into the counting components since we want to match either h or v,
but not both; moreover, the position of the h-arrow/v-arrow would shift back and forth
with the different ways to fold the query. To solve the problem, we replace each role
composition r−; r in the query (but not in the trees!) with a composition of 18 roles that
we call a ‘meta role’, see Figure 4 where every solid edge denotes the role name r.

Note that the meta role is symmetric, like the composition r−; r. The aim is that
each meta-role in the refined counting query matches one r−; r-role composition that
connects two successor nodes in a tree. To resolve the mismatch between the role com-
position r−; r of length two and the meta role of length 18, the meta role is designed
such that the remaining parts can be folded away into ‘side chains’ that we will add to
the tree, i.e., chains of roles that start at each tree node. There are five ways to achieve
such a folding, one for each corresponding pair of r−- and r-arrows in the left and right
half of the meta role. For example, we can use the 3rd r−-arrow and the 3rd r-arrow to
match the r−; r-composition in the tree, and then have to fold away the prefix compo-
sition r−; v; r−; v− before the 3rd r−-arrow, the infix composition h; r−; h−; r−; r; h; r; h−

between the 3rd r−-arrow and the 3rd r-arrow, and the postfix composition v; r; v−; r
following the 3rd r-arrow. Observe that the infix composition is symmetric and thus
can be folded into a chain. The postfix composition is the converse of the infix compo-
sition, which will allow us to leave a side chain that we have entered with the postfix
composition using the prefix composition of the subsequent meta role. Similar foldings
allow us to match the r−; r; h; r-compositions required to move up one level in a black
tree and then cross via an h-edge to the root of a white successor tree, the r−; h; r−; r-
compositions that allows us to cross from the root of a white tree to a black tree and
then move down one level, and to perform the two analogous crossing with h replaced
by v.

The scheme for adding side chains is shown in Figure 5, where intermediate tree
nodes (lower node on the center line) receive different chains than branching tree nodes
(upper node on the center line). These chains are added to every node in the tree with
the exception of the roots of black trees, as those are directly on the torus and adding
side chains would violate inverse functionality of h and v. Note that the side chains
attached to branching tree nodes are precisely the possible postfix compositions men-
tioned above, while the side chains attached to intermediate tree nodes are foldings of
what we called infix compositions above. The chains are generated by the following
CIs, to be added to K0. We use the concept NB = (L0 u W) t

⊔
1≤i≤n+1 Li to identify
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Fig. 6. From black to white trees via h (left) and from white to black trees via h (right)

branching tree nodes and NI = ∃r.
⊔

1≤i≤n+1 Li to identify intermediate tree nodes.

NB v ∃h.∃r.∃h−.∃r.∃v.∃r.∃v−.∃r.> u ∃v.∃r.∃v−.∃r.> u

∃h−.∃r.∃v.∃r.∃v−.∃r.> u ∃v−.∃r.> (27)
NI v ∃v.∃r−.∃v−.∃r−.∃h.∃r−.∃h−.∃r−.> u ∃h.∃r−.∃h−.∃r−.> u

∃v−.∃r−.∃h.∃r−.∃h−.∃r−.> u ∃h−.∃r−.> (28)

In matches of the refined query, the endpoints of the two foldings shown in Figure 3 will
match at the end of (possibly empty) side chains at the level n+1, v and v′ will match at
the end of the side chains between the levels n and n + 1, and the adjacent inner nodes
labeled with ¬Ai resp. Ai will match at the end of the side chains at the level n. For this
reason, we propagate all relevant concept names to the end of those chains. For C ∈
{A1, . . . , An,¬A1, . . . ,¬An, X,¬X, Y,¬Y}, C′ ∈ {Q, B,W}, add the concept inclusions

(Ln t Ln+1) u C v ∀h.∀r.∀h−.∀r.∀v.∀r.∀v−.∀r.C u ∀v.∀r.∀v−.∀r.C u

∀h−.∀r.∀v.∀r.∀v−.∀r.C u ∀v−.∀r.C (29)
Q u C′ v ∀v.∀r−.∀v−.∀r−.∀h.∀r−.∀h−.∀r−.C′ u ∀h.∀r−.∀h−.∀r−.C′ u

∀v−.∀r−.∀h.∀r−.∀h−.∀r−.C′ u ∀h−.∀r−.C′ (30)

Figure 6 shows, for n = 2, how to fold the refined counting query such that v is mapped
to a Q-node of a black tree and v′ to a Q-node of a white successor tree that can be
reached via crossing an h-edge in the torus, and likewise for the case where v′ is mapped
to a white tree, and v to a black successor tree reachable via h. We display only those
side chains that are needed for accommodating the query match. To get started, note
that in the left part of Figure 6, the h-edge in the right half of a meta role as shown in
Figure 3 is matched onto the crossing h-edge in the model. The square and diamond
nodes indicate where the middle and end parts of each meta role in the query match.
Crossings of v-edges are similar.

We now define counting query parts in a more precise way. Note that each counting
query consists of 4n + 4 meta roles. In the subsequent definition, qi, j

m is a meta role used
in the counting query for Ai, where j ranges over 0, . . . , 4n + 3.



Definition 1. For all i, j with 1 ≤ i ≤ n and 0 ≤ j < 4n + 4, put

qi, j
m := { r(vi, j

1 , v
i, j
0 ), v(vi, j

1 , v
i, j
2 ), r(vi, j

3 , v
i, j
2 ), v(vi, j

4 , v
i, j
3 ), r(vi, j

5 , v
i, j
4 ), h(vi, j

5 , v
i, j
6 ),

r(vi, j
7 , v

i, j
6 ), h(vi, j

8 , v
i, j
7 ), r(vi, j

9 , v
i, j
8 ), r(vi, j

9 , v
i, j
10), h(vi, j

10, v
i, j
11), r(vi, j

11, v
i, j
12),

h(vi, j
12, v

i, j
13), r(vi, j

13, v
i, j
14), v(vi, j

14, v
i, j
15), r(vi, j

15, v
i, j
16), v(vi, j

17, v
i, j
16), r(vi, j

17, v
i, j+1
0 )}

with vi,4n+4
0 = vi,0

0 . For each i with 1 ≤ i ≤ n, the counting query for Ai is

qi
c := { Ai(vi,0

0 ),¬Ai(vi,1
0 ), Ai(vi,2n+2

0 ),¬Ai(vi,2n+3
0 )} ∪

⋃
0≤ j<4n+4

qi, j
m

with vi,0
9 = v, vi,2n+2

9 = v′. The counting query qc for the whole counter is

qc := {B(v),Q(v),W(v′),Q(v′)} ∪
⋃

1≤i≤n

qi
c

Note that each counting query qi
c is a cycle as intended since vi,4n+4

0 = vi,0
0 .

As explained above, the overall counting query qc links a Q-node x1 of a tree to the
Q-nodes x2 of its successor trees that represent the same bit position for the horizontal
and vertical counters. To establish the central property (∗) in models of K0 that do not
match the query q0 to be constructed, it thus remains to modify q0 such that it matches
only if the Ln-predecessor x′1 of x1 has the same truth assignment of X′ and Y ′ as the
Ln-predecessor x′2 of x2 for X and Y . This is achieved by the second type of component
queries in q0, the copying components.

Before we define the copying components, we prove that any match π for the query
qc is indeed such that the match connects nodes in neighboring trees that have the same
counter value for the exponential counter.

To show this, we first define an n-torus model Tn = (∆Tn , ·Tn ) for our axioms. This
n-torus model is the “canonical torus model” for a torus of size 22n

× 22n
that reflects

exactly the conditions we have so far defined and illustrated in the figures. The domain
elements have the form (c, x, y, t), where c = b for elements in black trees and c = h
(c = v) for elements in a horizontal (vertical) white trees, x and y indicate the horizontal
and vertical counter value (starting from 0, 0 for black trees and 1, 0 (0, 1) for horizontal
(vertical) white trees), t is an empty string for elements that belong to the torus; for
tree elements, t is non-empty. The real tree elements (as opposed to elements of a side
chain) are strings from {0, 1, 2, 2−}∗. Furthermore, if the size |t| of t is m and t ends in 2,
then the element is on level m/2, when t ends in 0 or 1, the element is between levels,
and an element ending in 02 (12) is in the extension of ¬Am/2 (Am/2). The extra level
is formed by appending 2− and 2− · 2 to elements of level n, where · denotes string
concatenation. For brevity, we will simple write 2−2 or t1t2 to denote the concatenation
of t1 and t2. Finally, for the side chains, we form a string that represents the roles in
the chain, e.g., for the outgoing h-chain for a tree element that has only outgoing edges
(c.f. Figure 5), t ends in a prefix of vr−v−r−. Thus, for each torus element (c, x, y, ε),
the set {t | (c, x, y, t) ∈ ∆Tn } is a tree, where we understand a tree to be a non-empty,
prefix-closed subset of {0, 1, 2, 2−, r, r−, h, h−, v, v−}∗.

Definition 2. Let T1 = {0, 1, 2, 2−}, T2 = {r, r−, h, h−, v, v−}, T = T1 ∪ T2. The n-torus
interpretation for n ∈ IN and Axioms (1) to (30) is an interpretation Tn = (∆Tn , ·Tn ) with



∆Tn ⊆ {b, h, v} × {0, . . . , 22n
− 1} × {0, . . . , 22n

− 1} × T ∗ such that

(b, x, y, ε) ∈ ∆Tn for each 0 ≤ x < 22n
, 0 ≤ y < 22n

(31)

(h, x, y, ε), (h, x, y, 2) ∈ ∆Tn for each 0 < x < 22n
, 0 ≤ y < 22n

(32)

(v, x, y, ε), (v, x, y, 2) ∈ ∆Tn for each 0 ≤ x < 22n
, 0 < y < 22n

(33)

(b, x, y, 0), (b, x, y, 1) ∈ ∆Tn for each 0 ≤ x < 22n
, 0 ≤ y < 22n

(34)

(c, x, y, t2) ∈ ∆Tn if (c, x, y, t) ∈ ∆Tn , t = t′0 or t = t′1 and either

(i) c = b and |t| < 2n or (ii) c ∈ {h, v} and |t| ≤ 2n (35)

(c, x, y, t0), (c, x, y, t1) ∈ ∆Tn if (c, x, y, t) ∈ ∆Tn , t = t′2 and either

(i) c = b and |t| < 2n or (ii) c ∈ {h, v} and |t| ≤ 2n (36)

(c, x, y, tt′) ∈ ∆Tn if (c, x, y, t) ∈ ∆Tn , t′ ∈ {2−, 2−2} and either (i) c = b

and |t| = 2n or (ii) c ∈ {h, v} and |t| = 2n + 1 (37)

(c, x, y, tt′) ∈ ∆Tn if (c, x, y, t) ∈ ∆Tn , t = t′′2 and

t′ ∈ hrh−rvrv−r∗ ∪ h−rvrv−r∗ ∪ vrv−r∗ ∪ v−r∗ (38)

(c, x, y, tt′) ∈ ∆Tn if (c, x, y, t) ∈ ∆Tn , either t = t′′0 or t = t′′1 and

t′ ∈ vrv−r−hr−h−r−∗ ∪ v−r−hr−h−r−∗∪

hr−h−r−∗ ∪ h−r−∗ (39)

We set oTn = (b, 0, 0, ε) and eTn = (b, 22n
− 1, 22n

− 1, ε). For a decimal number d, we
write biti(d) to return the ith bit of the binary representation of d. We write t| j to denote
the jth character of a string t, c ∈ t (c < t) if the character c occurs (does not occur) in
t, and define the interpretation of atomic concepts as

BTn ={(c, x, y, t) | c = b} (40)

WTn ={(c, x, y, t) | c ∈ {h, v}} (41)

HTn ={(c, x, y, t) | c = h} (42)

VTn ={(c, x, y, t) | c = v} (43)

LTn
i ={(c, x, y, t) | c = b and i = |t|/2}∪ (44)
{(c, x, y, t) | c ∈ {h, v} and i = (|t| − 1)/2} 0≤i≤n+1 (45)

QTn
0 ={(c, x, y, t) | c = b and x + y is even} (46)

QTn
1 ={(c, x, y, t) | c ∈ {h, v} and x + y is odd} (47)

QTn
2 ={(c, x, y, t) | c = b and x + y is odd} (48)

QTn
3 ={(c, x, y, t) | c ∈ {h, v} and x + y is even} (49)



ATn
i ={(c, x, y,= t1t2) | t1 ∈ T ∗1 , t2 ∈ T ∗2 , and either

c = b, 2− < t1, j = 2(i − 1), |t1| ≥ j, t1| j = 1 or

c = b, 2− ∈ t, j = 2(i − 1), |t| ≥ j, t| j = 0 or

c ∈ {h, v}, 2− < t, j = 2i, |t| ≥ j, t| j = 1 or

c ∈ {h, v}, 2− ∈ t, j = 2i, |t| ≥ j, t| j = 0} 1≤i≤n (50)

XTn ={(c, x, y, t1t2) | t1 ∈ T ∗1 , t2 ∈ T ∗2 and

c = b, |t1| = 2n, i = cTn ((c, x, y, t)), biti(x) = 1 or

c = b, |t1| = 2(n + 1), t1 = t2−2, t < XTn or

c = h, |t1| = 2n + 1, i = cTn ((c, x − 1, y, t)), biti(x) = 1 or

c = h, |t1| = 2(n + 1) + 1, t1 = t2−2, t < XTn or

c = v, |t1| = 2n + 1, i = cTn ((c, x, y, t)), biti(x) = 1 or

c = v, |t1| = 2(n + 1) + 1, t1 = t2−2, t < XTn } (51)

YTn ={(c, x, y, t1t2) | t1 ∈ T ∗1 , t2 ∈ T ∗2 and

c = b, |t1| = 2n, i = cTn ((c, x, y, t)), biti(y) = 1 or

c = b, |t1| = 2(n + 1), t1 = t2−2, t < YTn or

c = v, |t1| = 2n + 1, i = cTn ((c, x, y − 1, t)), biti(x) = 1 or

c = v, |t1| = 2(n + 1) + 1, t1 = t2−2, t < YTn or

c = h, |t1| = 2n + 1, i = cTn ((c, x, y, t)), biti(y) = 1 or

c = h, |t1| = 2(n + 1) + 1, t1 = t2−2, t < YTn } (52)

X′Tn ={(c, x, y, t1t2) | t1 ∈ T ∗1 , t2 ∈ T ∗2 and

c ∈ {b, v}, (c, x, y, t1) ∈ XTn or

c = h, |t1| = 2n + 1, i = cTn ((c, x, y, t)), biti(x) = 1 or

c = h, |t1| = 2(n + 1) + 1, t1 = t2−2, t < X′Tn } (53)

Y ′Tn ={(c, x, y, t1t2) | t1 ∈ T ∗1 , t2 ∈ T ∗2 and

c ∈ {b, h}, (c, x, y, t1) ∈ YTn or

c = h, |t1| = 2n + 1, i = cTn ((c, x, y, t)), biti(y) = 1 or

c = h, |t1| = 2(n + 1) + 1, t1 = t2−2, t < Y ′Tn } (54)

MTn
X ={(c, x, y, t) | t ∈ T ∗1 and

c = b, |t| = 2n, (c, x, y, t) ∈ XTn or

c = b, |t| = 2(n − i), i > 0, (c, x, y, t02), (c, x, y, t12) ∈ MTn
X or

c ∈ {h, v}, |t| = 2n + 1, (c, x, y, t) ∈ MTn
X or

c ∈ {h, v}, |t| = 2(n − i) + 1, i > 0, (c, x, y, t02), (c, x, y, t12) ∈ MTn
X } (55)



MTn
Y ={(c, x, y, t) | t ∈ T ∗1 and

c = b, |t| = 2n, (c, x, y, t) ∈ YTn or

c = b, |t| = 2(n − i), i > 0, (c, x, y, t02), (c, x, y, t12) ∈ MTn
Y or

c ∈ {h, v}, |t| = 2n + 1, (c, x, y, t) ∈ MTn
Y or

c ∈ {h, v}, |t| = 2(n − i) + 1, i > 0, (c, x, y, t02), (c, x, y, t12) ∈ MTn
Y } (56)

S Tn ={(c, x, y, t) | t ∈ T ∗1 and

c = b, |t| = 2n, t = (02) ∗ or

c = h, |t| = 2n + 1, (c, x, y, t) < XTn ), (c, x, y, t) ∈ X′Tn ) or

c = v, |t| = 2n + 1, (c, x, y, t) < YTn ), (c, x, y, t) ∈ Y ′Tn ) or

{(c, x, y, t02), (c, x, y, t12)} ∩ S Tn , ∅} (57)

FTn ={(c, x, y, t) | t ∈ T ∗1 and

c = b, |t| = 2n, t = (02) ∗ or

c = h, |t| = 2n + 1, (c, x, y, t) ∈ (X u ¬X′)Tn ) or (c, x, y, t) ∈ (¬X u X′)Tn ) or

c = v, |t| = 2n + 1, (c, x, y, t) ∈ (Y u ¬Y ′)Tn ) or (c, x, y, t) ∈ (¬Y u Y ′)Tn ) or

{(c, x, y, t02), (c, x, y, t12)} ∩ FTn , ∅} (58)

QTn ={(c, x, y, t1t2) | t1 ∈ T ∗1 , t2 ∈ T ∗2 , t1 = t2−} (59)

NTn
B ={(c, x, y, t) | t ∈ T ∗1 , t = t′2} (60)

NTn
I ={(c, x, y, t) | t ∈ T ∗1 , t = t′0 or t = t′1} (61)

We further define the interpretation of roles as

hTn = {〈(c, x, y, t), (c′, x′, y′, t′) | c = b, c′ = h, t = t′ = ε, x′ = x + 1 or

c = h, c′ = b, t = t′ = ε, x = x′ or

c = c′, x = x′, y = y′, t′ = th or

c = c′, x = x′, y = y′, t = t′h−}

vTn = {〈(c, x, y, t), (c′, x′, y′, t′) | c = b, c′ = v, t = t′ = ε, y′ = y + 1 or

c = v, c′ = b, t = t′ = ε, y = y′ or

c = c′, x = x′, y = y′, t′ = tv or

c = c′, x = x′, y = y′, t = t′v−}

rTn = {〈(c, x, y, t), (c, x, y, t′) | t′ = t · 2 or t = t′2− or t′ = tr or t = t′r−}

Lemma 1. Let n ∈ IN be some fixed number, K a knowledge base consisting of Ax-
ioms (1) to (30) and Tn an n-torus interpretation, then Tn |= K .

The above lemma can be shown by exactly defining the canonical n-torus model Tn

and by checking that all axioms are satisfied [9].

Proof. Shouldn’t be too hard to show by going through the axioms...
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Fig. 7. The matching for the query from a black to a white tree via the role v (left-hand side) and
the matching from a white to a black tree via the role v (right-hand side).

Lemma 2. Let n ∈ IN be some fixed number, K a knowledge base consisting of Ax-
ioms (1) to (30), qc as in Definition 1, and Tn an n-torus interpretation, then Tn |= qc.

We can prove the lemma by analyzing how the query can be folded. As Figure 3
and 6 illustrate, there are only two ways of folding a query part for (¬)Ai depending
on where the ith bit if zero or one. In order to cross from a black to a horizontal white
tree, the center point of the folded query has to fall into the longer white tree. Since the
h-edge between the trees has an incoming r-edge from the black tree and an outgoing
edge into the white tree, only the h-edge that follows the middle of the meta role to the
right of the center point in Figure 3. This completely determines how the query has to
be folded to reach the level n + 1 nodes and to match Q between level n and n + 1. As a
consequence, each query atch is such that is connects two elements in neighboring trees
with the same counter value.

Proof. We show that, depending on the trees in which v and v′ match (black, white and
horizontal, or white and vertical), we can fold the query only in two ways to have a
long enough query. Shorter foldings will not be long enough to reach to level n+1. As a
consequence, the query matches elements that have the same value for the exponential
counter.

Let π be a match for qc, i.e., Tn |=
π qc. Let (c, x, y, t) = π(v), (c′, x′, y′, t′) = π(v′).

Due to the atoms B(v) and W(v′) in qc, π(v) ∈ BTn and π(v′) ∈ WTn and, more precisely,
either π(v′) ∈ HTn or π(v′) ∈ VTn . We consider the case c = b, c′ = h (by definition
of Tn, (b, x, y, t) ∈ BTn and (h, x′, y′, t′) ∈ HTn ); we can proceed analogously for the
case c′ = v. Since qc contains no chains of two h atoms (and the torus elements have
no folding side chains that we could use to fold some query part away to come back to
another h-edge), we can assume that π(v) and π(v′) are in neighboring trees of the torus.
Let t = t1t2 such that t1 ∈ T ∗1 and t2 ∈ T ∗2 , i.e., if π(v) matches on a side chain, (c, x, y, t1)
is the tree element between level n and n+1 since only for that tree element and the side
chains starting from that element Q holds and qc contains Q(v). Furthermore, it is easily
verified that (c, x, y, tn) and (c, x, y, tn+1) with t1 = tn2−, tn+1 = t12 are matched in each
query part qi

c with 1 ≤ i ≤ n, i.e., the counter value d = cTn (c, x, y, tn) can be uniquely
determined from the query match. Similarly, we can define d′ = cTn (c′, x′, y′, t′n) and we
claim that d = d′.

We consider the case x′ = x + 1, i.e., π(v′) matches in a successor tree of the tree in
which π(v) matches (see left-hand side of Figure 6). Let i be some fixed number such



that 1 ≤ i ≤ n. We show that there is a unique way for the matching qi
c, determined by

whether (c, x, y, t1) ∈ ATn
i or (c, x, y, t1) ∈ (¬Ai)Tn . We distinguish the two cases:

1. Let (c, x, y, t1) ∈ ATn
i . We claim that meta role with j = 0 has to be folded onto

meta role with j = 1, i.e., vi,0
0 = vi,2

0 (the first variable of meta role with j = 0
matches the last variable of meta role with j = 1, which is the same as the first
variable of meta role with j = 2) and π(v) = π(vi,1

9 ) (not that v = vi,0
9 ). Furthermore,

the meta role with j = 2 has to be folded onto the last one with j = 4n + 3,
i.e., vi,3

0 = vi,4n+3
0 . Accordingly, vi,n+2

0 = vi,3n+4
0 becomes the centre point of the

query, which has to match in the longer white tree. Lastly, vi,2n+2
0 = vi,2n+4

0 , i.e.,
Ai(vi,2n+4

0 ) holds since Ai(vi,2n+2
0 ) ∈ qi

c and v′ = vi,2n+2
9 = vi,2n+4

9 . Since the center
point of the query has to match in the longer white tree, we find that the two torus
points (c, x, y, ε) and (c′, x′, y′, ε) fall into the meta role with j = n + 1 and the
meta role with j = 3n + 4. Since (c, x, y, ε) must have an incoming r-edge, while
(c′, x′, y′, ε) must have an outgoing r-edge and 〈(c, x, y, ε), (c′, x′, y′, ε)〉 ∈ hTn by
assumption, the only suitable role atom in the meta role is r(vi,n+1

10 , vi,n+1
11 ) (folded

onto r(vi,3n+4
7 , vi,3n+4

8 )). Note that the symmetry of the meta role makes the folding
possible since the second half of the meta role with j = n + 1 can be folded onto
the first half of the meta role with j = 3n + 4. If we make this decision, there is
no choice for matching the adjacent variables, since the r-edges only go down into
the trees on both sides and for the black side, the first bit of d, determines whether
A1 or ¬A1 holds and, thus, which of the two r-edges we have to take. On the back
side, we now have another r-edge to match, which means we reach a level 1 node.
We now have to match an h-edge, which means we have to go into a side tree and
again there is no choice about which side tree to take. Figure 5 illustrates that we
have no choice but to match the last node of the meta role onto the last element of
the side chain starting with an h-edge. Thus, vi,n+1

0 matches (c, x, y, 12hrh−rvrv−r)
in case A1 holds at (c, x, y, tn) and (c, x, y, 02hrh−rvrv−r) otherwise. There is again
no choice but to match the side chain in the opposite direction. Once we are back
at the tree node, we can go up or down an r-edge. If we go up, the query is not long
enough to reach a node labeled with Q between level n and n + 1. Therefore, we
go down into the tree with the direction again determined by the counter value d.
After going an r−-edge down, followed by an r-edge, we again have no choice but
to match the query onto the same side chain, just one level down the tree, matching
vi,n

0 onto the end of the side chain on level 2. We proceed this way to match vi,2
0 = vi,0

0
onto the side chain on level n. Finally, in order to reach a node with ¬Ai, we have
to go down to level n + 1, via the Q node and match vi,0

0 to the end of the h-side
chain on level n + 1.Note that this immediately determines the matches for meta
roles with j = 3n + 5 to 4n + 3.
For the white tree, once we have matched the first r-edge, there is no choice but to
match an h−-edge, which means we have to go into the side chain and again there is
no choice about which side chain to take. We match the center node vi,n+2

0 = vi,3n+4
0

of the query, onto the last point of the h− side chain. We can argue as for the black
tree that there is no choice but to go down in the tree, matching the middle points
of each meta role to a h− side chain for a tree node with only outgoing r-edges
and the end points to h− side chains of tree nodes with only incoming r-edges.



Thus, there was indeed no choice as to how the query could be matched and folded.
This also means that Ai holds at (c′, x′, y′, tn) and ¬Ai holds at (c′, x′, y′, tn+1). By
arbitrariness of the chosen i, we find that indeed d = d′, i.e., the query matches
such that it connects two neighboring tree elements with the same value for the
exponential counter.

2. The case for (c, x, y, t1) ∈ (¬Ai)Tn is analogous, just folding the query as shown in
the upper part of figure 3 since only then we have ¬Ai on level n in both trees and
Ai on level n + 1.

The proof for (c′, x′, y′, ε) matching to the predecesor of (c, x, y, ε) is analogues and
illustrated on the right-hand side of Figure 6.

For the case of c′ = v, we can also proceed analogously, using different side chains
as for the previous two cases. Figure 7 illustrates which side chains have to be used
depending on whether the match is from a black to a white or from a white to a black
tree.

To prepare for these components, we introduce additional concept names Q0, . . . ,Q3
that realize a unary counter of trees, counting modulo 4. These concept names will be
used to identify the successor relation between the trees in query matches. The counter
value is incremented when moving from a tree to a successor tree and propagated to all
Ln- and Ln+1-nodes inside each tree and the ends of their side chains. This is achieved
by adding to K0 the following concept inclusions:

{o} v Q0 (62)
Qi u B u L0 v ∀h.∀r.Qi+1 mod 4 u ∀h.Qi+2 mod 4 u

∀v.∀r.Qi+1 mod 4 u ∀v.Qi+2 mod 4 i=0, 2 (63)
Qi u L0 v ∀(r−; r)n.(Ln → Qi) 0≤i≤3 (64)

Qi v ¬Q j 0≤i< j≤3 (65)
Qi u (Ln t Ln+1) v ∀h.∀r.∀h−.∀r.∀v.∀r.∀v−.∀r.Qi u ∀v.∀r.∀v−.∀r.Qi u

∀h−.∀r.∀v.∀r.∀v−.∀r.Qi u ∀v−.∀r.Qi 0≤i≤3 (66)

The copying components take the form displayed in Figure 8, i.e., there are 16 such
components in total. Each component is like the upper half of a counting component,
except that the concept labels have changed to negated conjunctions. In Figure 8, the
four copying components in each row take care of one possible truth assignment to X′

and Y ′ and the corresponding assignment to X and Y . We need four queries per truth
assignment to deal with the four possible ways in which a counting query can match, as
induced by the concept names Q0, . . . ,Q3:

(a) v matches into a tree that satisfies B and Q0, and v′ into a successor tree that satisfies
W and Q1;

(b) v′ matches into a tree that satisfies W and Q1, and v into a successor tree that
satisfies B and Q2;

(c) v matches into a tree that satisfies B and Q2, and v′ into a successor tree that satisfies
W and Q3;

(d) v′ matches into a tree that satisfies W and Q3, and v into a successor tree that
satisfies B and Q0.



v v′

¬(Q0u¬X′u¬Y′) ¬(Q1u¬Xu¬Y)

v v′

¬(Q0u¬X′uY′) ¬(Q1u¬XuY)

v v′

¬(Q0uX′u¬Y′) ¬(Q1uXu¬Y)

v v′

¬(Q0uX′uY′) ¬(Q1uXuY)

v′ v

¬(Q1u¬X′u¬Y′) ¬(Q2u¬Xu¬Y)

v′ v

¬(Q1u¬X′uY′) ¬(Q2u¬XuY)

v′ v

¬(Q1uX′u¬Y′) ¬(Q2uXu¬Y)

v′ v

¬(Q1uX′uY′) ¬(Q2uXuY)

v v′

¬(Q2u¬X′u¬Y′) ¬(Q3u¬Xu¬Y)

v v′

¬(Q2u¬X′uY′) ¬(Q3u¬XuY)

v v′

¬(Q2uX′u¬Y′) ¬(Q3uXu¬Y)

v v′

¬(Q2uX′uY′) ¬(Q3uXuY)

v′ v

¬(Q3u¬X′u¬Y′) ¬(Q0u¬Xu¬Y)

v′ v

¬(Q3u¬X′uY′) ¬(Q0u¬XuY)

v′ v

¬(Q3uX′u¬Y′) ¬(Q0uXu¬Y)

v′ v

¬(Q3uX′uY′) ¬(Q0uXuY)

Fig. 8. The 16 query copying components

To explain in detail how the copying queries work, consider case (a). For simplicity, in
the explanation we largely ignore side chains and pretend that meta roles are composi-
tions r; r−, as in our initial, simplified view on counting components. Take the Q-node
x1 of a tree that satisfies B and Q0 and the Q-node x2 of a successor tree that satisfies W
and Q1. The relevant queries are those from the leftmost column in Figure 8. Let x′i be
the predecessor Ln-node of xi, and x′′i the successor Ln+1-node of xi. Due to the Q-label
in the counting queries, the variable v can only be matched to x1 and the variable v′ can
only be matched to x2. Let u be the neighboring variable of v in the copying compo-
nents, and u′ the neighboring variable of v′. Then u can only be matched to either x′1 or
x′′1 while u′ can only be matched to either x′2 or x′′2 . The match u 7→ x′′1 and u′ 7→ x′′2 is
excluded because the path from u to u′ is not long enough. So a component has a match
iff either x′1 satisfies the label of u or x′2 satisfies the label of u′ (since x′1 and x′′2 have
complementary truth values for X′ and Y ′, one of them always satisfy the label of u and
similarly for x′′1 , x′′2 and u′). The four copying components in the first column exclude
exactly four situations when x′1 has the same truth assignment of X′ and Y ′ as x′2 for X
and Y . It remains to note that the copying components in the other columns always have
a match in this situation due to our use of the concept names Q0, . . . ,Q3 in the labels,
and thus do not interfere with the matches of the queries in the leftmost components.

We remark that, without the use of the concept names Q0, . . . ,Q3, it does not seem
possible to ensure proper directionality of copying. For example, copying components
that copy the X/Y-assignment from a black tree to the X′/Y ′-assignment in white suc-
cessor trees would also copy this assignment to the the X′/Y ′-assignment in white pre-
decessor trees. A formal definition of copying queries can be found in [9].

This finishes the construction of the query q0 and of the part ofK0 that enforces the
torus structure.

We define the copying components precisely as follows:

Definition 3. Let n ∈ IN and A1, . . . , An the concepts to represent a counter with n bits
and let m := 2n + 2. We reuse the definition of the cyclic query parts composed of meta



roles, to define a query qQ as follows:

qQ :=
⋃

n<i≤n+8

qi
c ∪

{(¬Q1 t X′)(vn+1,0
0 ), (¬Q1 t ¬X′)(vn+1,1

0 ), (¬Q2 t ¬X)(vn+1,m
0 ), (¬Q2 t X)(vn+1,m+1

0 )}

{(¬Q3 t X′)(vn+2,0
0 ), (¬Q3 t ¬X′)(vn+2,1

0 ), (¬Q4 t ¬X)(vn+2,m
0 ), (¬Q4 t X)(vn+2,m+1

0 )}

{(¬Q1 t X)(vn+3,0
0 ), (¬Q1 t ¬X)(vn+3,1

0 ), (¬Q4 t ¬X′)(vn+3,m
0 ), (¬Q4 t X′)(vn+3,m+1

0 )}

{(¬Q3 t X)(vn+4,0
0 ), (¬Q3 t ¬X)(vn+4,1

0 ), (¬Q2 t ¬X′)(vn+4,m
0 ), (¬Q2 t X′)(vn+4,m+1

0 )}

{(¬Q1 t Y ′)(vn+5,0
0 ), (¬Q1 t ¬Y ′)(vn+5,1

0 ), (¬Q2 t ¬Y)(vn+5,m
0 ), (¬Q2 t Y)(vn+5,m+1

0 )}

{(¬Q3 t Y ′)(vn+6,0
0 ), (¬Q3 t ¬Y ′)(vn+6,1

0 ), (¬Q4 t ¬Y)(vn+6,m
0 ), (¬Q4 t Y)(vn+6,m+1

0 )}

{(¬Q1 t Y)(vn+7,0
0 ), (¬Q1 t ¬Y)(vn+7,1

0 ), (¬Q4 t ¬Y ′)(vn+7,m
0 ), (¬Q4 t Y ′)(vn+7,m+1

0 )}

{(¬Q3 t Y)(vn+8,0
0 ), (¬Q3 t ¬Y)(vn+8,1

0 ), (¬Q2 t ¬Y ′)(vn+8,m
0 ), (¬Q2 t Y ′)(vn+8,m+1

0 )}

with vi,0
9 = v, vi,2n+2

9 = v′ for n < i ≤ n + 8. We define the query q0 is qc ∪ qQ.

We now show that q0 does not match in our canonical model. We know that the
canonical model is a model of our axioms by Lemma 1 and that the query matches on
the canonical model such that each match connects two elements in neighboring trees
with the same counter value by Lemma 2. Thus, the next lemma shows that only if
a double exponential counter is not incremented properly, the query can match in the
canonical model.

Lemma 3. Let n ∈ IN be some fixed number, K a knowledge base consisting of Ax-
ioms (1) to (30), q0 as in Definition 3, and Tn an n-torus interpretation, then Tn 6|= q0.

Proof. By Lemma 2, we know Tn |= qc. Since q0 = qc ∪ qQ, we only have to show
that Tn 6|= qQ, i.e., some double exponential counter is wrong. Assume to the contrary
of what is to be shown that there is some π such that Tn |=

π q0. By Lemma 2, we know
that each match π is such that the nodes on level n in the match have the same counter
value. By the definition of Tn ((51), (52), (53), and (54)), we know that X,Y, X′, and Y ′

are set correctly. Assume that π(v) matches in a black tree labeled with Q0 and π(v′) in
a horizontal white tree labeled with Q1 (cf. Figure 8). Thus, we have that either

1. ¬X′ holds for the level n element above π(v), X′ holds at the level n + 1 element
below π(v), X holds at the level n element above π(v′), and ¬X at the level n + 1
element below π(v′) or

2. X′ holds for the level n element above π(v), ¬X′ holds at the level n + 1 element
below π(v), ¬X holds at the level n element above π(v′), and X at the level n + 1
element below π(v′).

Assume the former. Since a tree labeled with Q1 can only be a successor tree for a tree
labeled with Q0 when π matches and since the level n elements in the range of π have
the same value for the exponential counter by Lemma 2, we have that the X′ counter in
the black tree does not coincide with the X counter in the successor white tree, which
contradicts the definition of Tn.

We can proceed analogously for the second folding and for other matches of qQ.



It remains to encode tilings of the domino system D0.

> v T1 t · · · t Tk Ti u T j v ⊥ 1 ≤ i < j ≤ k (67)
Ti u ∃h.T j v ⊥ Tk u ∃v.T` v ⊥ 〈i, j〉 < H, 〈k, `〉 < V (68)

Finally, we enforce the initial condition c0 = 〈t0
1, . . . , t

0
n〉 of the torus.

{o} v Tt0
1
u ∀h.(Tt0

2
u ∀h.(Tt0

3
u ∀h.(Tt0

4
u . . .∀h.Tt0

n
. . .))) (69)

More details regarding the correctness of the reduction can be found in [9]. The most
challenging issue is to show that when D0 admits a tiling with initial condition c0 and
we build a model I of K that has the intended torus shape, then I 6|= q0: we need to
prove that there are no unintended foldings and matchings of the query q0.

Lemma 4. Let c0 be an initial condition of size n for the domino system D0,K a knowl-
edge base consisting of Axioms (1) to (69), q0 a query as in Definition 3. If D0 admits a
tiling of 22n

× 22n
for c0, then K 6|= q0.

Proof. We can use the given titling to extend the n-torus model Tn to T ′n such that
Axioms(67) to (69) are also satisfied. Since the query does not use any of the newly
extended symbols, Lemma 3 immediately gives us the desired result.

Lemma 5. Let c0 be an initial condition of size n for the domino system D0,K a knowl-
edge base consisting of Axioms (1) to (69), and q0 a query as in Definition 3. IfK 6|= q0,
then D0 admits the tiling of 22n

× 22n
for c0.

Proof. Since K 6|= q0, there is an interpretation I such that I |= K and I 6|= q0. We
establish a homomorphism from our n-torus model Tn to I, showing that Tn 6|= q0.
Since Tn 6|= q0, all counters are set correctly. Thus, Tn has a grid of double exponential
size and since Tn |= K , we can read of the tile types to construct the solution for D0.

Combining Lemma 4 and 5 then gives the desired result.

Theorem 1. Conjunctive query entailment byALCOIF knowledge bases is co-N2Exp-
Time-hard.

4 Conclusions

We have shown that conjunctive query answerin in ALCOIF is hard for co-N2Exp-
Time. The challenging problem of finding a matching upper bound, or in fact any ele-
mentary upper bound, remains open.
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