
HTN-Style Planning in Relational POMDPs Using
First-Order FSCs

Felix Müller and Susanne Biundo

Institute of Artificial Intelligence, Ulm University, D-89069 Ulm, Germany

Abstract. In this paper, a novel approach to hierarchical planning under par-
tial observability in relational domains is presented. It combines hierarchical task
network planning with the finite state controller (FSC) policy representation for
partially observable Markov decision processes. Based on a new first-order gen-
eralization of FSCs, action hierarchies are defined as in traditional hierarchical
planning, so that planning corresponds to finding the best plan in a given de-
composition hierarchy of predefined, partially abstract FSCs. Finally, we propose
an algorithm for solving planning problems in this setting. Our approach offers
a way of practically dealing with real-world partial observability planning prob-
lems: it avoids the complexity originating from the dynamic programming backup
operation required in many present-day policy generation algorithms.

1 Introduction

Assisting human users in performing exceptional, complex tasks or even in managing
their day-to-day life requires advanced planning technology. The reason is that user-
centered planning is challenging in two respects. First, the real-world planning domains
underlying these applications are large; they show hierarchical structures and typically
there are numerous options to solve a given problem in a user-conform manner. Second,
information about the user state is essential as the automatically generated plans should
not just solve the problem, but should do so by taking also the user’s emotional state into
account. Information about the user state, just like information about the world state,
depends on sensory input and is thus only partially observable and inherently uncertain.

In order to address partial observability, relational partially observable Markov de-
cision processes (POMDPs) can be employed. They allow to handle complex domain
dynamics and are thus appropriate to represent many real-world decision problems that
arise in the context of user-centered planning. A POMDP-based system to provide as-
sistance for persons with dementia is described by Boger et al. [2], for example. Solving
POMDPs has been shown to be expensive, however. It ranges from PSPACE-complete
for finite horizons [11] to undecidable for infinite horizons [8] even without factored
representations. Therefore, applying POMDPs works well for small to medium sized
domains, while scaling beyond this size is problematic.

The challenge to get along with complex domains is addressed by approaches that
use (variants of) hierarchical task network (HTN) planning [4]. Among others, HTNs
provide the means to encode standard solutions to planning problems and with that en-
able the exploitation of expert knowledge in solution discovery. Applications in many

2 Felix Müller and Susanne Biundo

real-world domains rely on HTN-based systems [9, 1]. While making use of sophisti-
cated representation schemes that allow to compactly describe large domains, HTN-
based systems are aimed at planning for fully observable deterministic domains, how-
ever.

Planning in POMDPs with first-order abstraction has only recently started to be
investigated by Sanner and Kersting [16] as well as Wang and Khardon [17]. Here,
state, action, and observation spaces are factored into a first-order representation, as in
traditional AI planning. There are approaches to (non-first-order) hierarchical planning
in POMDPs, such as the one introduced by Hansen and Zhou [7]. Their approach uses
POMDPs with abstract actions, but instead of a set of predefined finite state controllers
per abstract action, a sub-POMDP is solved to compute a policy for each abstract action.

HTN planning in partially observable domains is introduced by Bouguerra and
Karlsson [3], where HTN planning is extended by probabilistic action effects and ob-
servations, and uncertainty about the environment is represented using belief states. The
approach does not allow for the specification of cyclic methods and does not cover full
POMDP semantics with rewards, however.

In this paper, we present an approach to transfer the benefits of HTN planning to
the POMDP setting, thereby allowing for the exploitation of domain expert knowledge
to generate good policies in large, compactly represented POMDP domains. We begin
by briefly reviewing (PO)MDPs and HTN planning in Section 2. We then enhance the
FSC policy representation such that controllers for relational domains can be compactly
specified (Section 3): transitions between controller nodes are governed by formulas,
which represent conditions that need to be fulfilled by observations instead of anno-
tating transitions with all possible observations directly. After that, Section 4 defines
action hierarchies by introducing abstract actions, each of which is associated with one
or more implementations that are given as predefined enhanced controllers, analogously
to traditional HTN planning. In Section 5, we describe how solutions can be generated
in our formalism before we conclude in Section 6.

2 Background

Our work builds on the POMDP model and HTN planning. We will give short intro-
ductions to both in the following.

2.1 MDPs and POMDPs

MDPs are a framework for planning in fully observable domains with probabilistic
actions [14]. An MDP is a tuple (S,A, T,R), where S is the set of states, A is the
set of actions, T (s, a, s′) = P (s′|s, a) is the transition function, giving the probability
for ending up in state s′ upon executing action a in state s, and R(s, a) determines
the immediate rewards incurred by executing a in s. Additionally, one often specifies a
horizon h for the number of time steps after which the process terminates, or a discount
factor, 0 ≤ γ ≤ 1, for discounting rewards earned at later decision stages, or both.
POMDPs generalize MDPs by making the world state only indirectly observable. A
POMDP introduces a set of observations O and an observation function Z(s, a, o) =

HTN-Style Planning in Relational POMDPs Using First-Order FSCs 3

P (o|a, s), denoting the probability of receiving observation o when a is executed and
the resulting state is s. Since the state cannot be directly observed, a belief state, i. e., a
probability distribution over states, is usually maintained by the planning agent.

A solution for a POMDP is a policy π that maximizes the accumulated reward, or
equivalently minimizes accumulated cost, for an initial belief state b0. One possibil-
ity to represent a policy is a finite state controller, i. e., a directed graph where nodes
are labeled with actions and edges are labeled with observations [5]. Policies can be
generated using dynamic programming approaches such as policy iteration, where a
dynamic programming backup operation is used to iteratively improve an explicitly or
implicitly represented policy. Other algorithms include approximative approaches, e. g.,
point-based value iteration as described by Pineau et al. [13].

In this paper, we will use a POMDP variant introduced by Hansen, called indefinite-
horizon POMDPs with action-based termination [6]. Such POMDPs include one or
more terminal actions, which cause immediate transition to a terminal state from any
state. Also, no discounting is used (so that γ = 1) and action rewards are restricted
to be negative. As a result, there is no bound on the number of steps before termina-
tion, but the optimal policy (and all policies with finite value) eventually terminate with
probability 1. For the sake of readability, we will sometimes speak in terms of positive
costs. We will restrict the description of our approach below to a single terminal action,
though it can be generalized to more than one terminal action.

To overcome the explicit state enumeration used in the definition above, Sanner and
Kersting [16] use a first-order representation based on the situation calculus. We will
employ a similarly powerful representation, namely the probabilistic planning domain
definition language (PPDDL) [18], which is based on a probabilistic extension of the
action description language ADL [12] with MDP semantics. In PPDDL, a domain is
given in terms of predicates and typed objects, and states are sets of ground predicates.
A ground predicate is true in a state if it is contained in the state and false otherwise
(closed world assumption).

A PPDDL action as shown in Figure 1 transforms a state into another state by adding
or removing predicates when it makes them true or false, respectively. It also defines
the conditions and probabilities that govern their addition and removal, alongside with
the condition for receiving rewards. Actions are parametrized, which is why we dis-
tinguish between action schemas, which are the members of A, and action instances
I(A), where (some) action parameters are bound to domain objects, i. e., ground. An
action schema is instantiated into an action instance by substituting parameters by ob-
jects of appropriate type. To allow for partial observability, we augment PPDDL actions
with the possibility to include observations by introducing the field :observation.
Observations are also sets of ground predicates, similar to states. The conditions and
probabilities of receiving an observation are specified in the same manner as for an
action’s effects. As usual for POMDP observations, the conditions for receiving obser-
vations are evaluated after the action effects are applied.

As an example from the context of companion systems, we will use the task of ren-
ovating an apartment as part of the larger domain of moving: the task is to generate a
plan that guides a user in painting each room of an apartment in their preferred color.
At the same time, the plan should account for the user’s preferences and emotional

4 Felix Müller and Susanne Biundo

(:action paint_room
:parameters (?r - Room ?c - Color)
:effect
(and
(has_color ?r ?c)
(forall (?c_old - Color) (when (not (?c_old = ?c)) (not (has_color ?r ?c_old))))
(when (happy) (decrease (reward) 1))
(when (not (happy)) (decrease (reward) 10))
(when (happy) (probabilistic 0.3 (not (happy)))))

:observation
(and
(when (happy) (probabilistic 0.9 (happy_O) 0.1 (not (happy_O))))
(when (not (happy)) (probabilistic 0.8 (not (happy_O)) 0.2 (happy_O)))))

Fig. 1: The paint room action of our example domain, formulated in augmented
PPDDL, which changes the color of a room and has low cost if the user is happy and
high cost if they are not. Painting a room also has a chance to make the user unhappy
and gives a noisy observation of the user’s mood.

state and choose actions accordingly. More precisely, states are defined by the pred-
icates (user wants color ?r - Room ?c - Color), (has color ?r -
Room ?c - Color), and (happy), which represent the desired and current colors
of each room and the user’s emotional state, respectively. Note that for the sake of pre-
sentational simplicity, the user’s emotional state can only be happy or unhappy. A more
complex emotional model, such as the three-dimensional pleasure arousal dominance
(PAD) model [15], could be modeled easily by introducing predicates (pleasure
?l - Level), (arousal ?l - Level), and (dominance ?l - Level).
Both the user’s emotional state and the color the user wants to paint a room can only be
observed indirectly via the separate observation predicates (user wants color O
?r - Room ?c - Color) and (happy O).

There are five available actions. The first is (ask user ?r - Room) which
asks the user to tell the system the preferred color for a room. It generates a perfect
observation of the user’s desired color for a room at a low cost. The second action is the
“easy” way to paint a room: call a painter, i. e., (call painter ?r - Room ?c
- Color). This action changes the color of the room accordingly at a medium cost.
The other possibility to paint a room is to let the user paint the room themselves using
(paint room ?r - Room ?c - Color) (the action represented by Figure 1),
which has a low cost if the user is happy and high cost if they are not. Painting a room by
themselves also has a chance to make the user unhappy. To improve the user’s mood, it
is possible to cheer up the user with the action (cheer up), which also has a low cost
and a good chance to make them happy. Both the (paint room) and (cheer up)
actions generate a noisy observation of the user’s mood. Finally, there is the terminal
action (finish), which ends the process and has a high cost if there exists a room for
which the actual color differs from the color the user wants. As a result, there is some
choice as to how the goal of having the rooms of the apartment painted according to
the user’s preferences can be fulfilled using the actions in the domain: when the user
is unhappy, there is a trade-off between cheering them up and letting them paint by
themselves versus calling a painter.

HTN-Style Planning in Relational POMDPs Using First-Order FSCs 5

2.2 HTN Planning

HTN planning [4] is an approach to planning in fully observable deterministic domains.
World states are described in a similar manner as shown above, yet actions are determin-
istic and the (single) initial world state is completely known. Thus, no observations are
required, because the evolution of the world can be predicted with certainty. Apart from
the domain dynamics, the HTN planning problem definition includes a hierarchy of ac-
tions: in addition to normal, directly executable actions, there are also abstract actions.
Abstract actions cannot be executed directly. Instead, one or more implementations,
called decomposition methods, are provided for each abstract action in form of partial
plans: a method is a partially ordered set of partially instantiated primitive or abstract
actions, called a task network. Methods are specified by domain experts and repre-
sent known possible solutions to subproblems in the form of abstract actions, therefore
encoding a domain expert’s knowledge about typical problem-solving “recipes”. Some
HTN planners such as the original SHOP [10] use a more simple kind of method, where
the tasks are totally ordered into a sequence of actions.

In contrast to reward-based goal models or goal state specifications, the goal in HTN
planning is to perform one or more abstract actions specified in the initial task network.
At planning time, abstract actions are iteratively eliminated by replacing abstract actions
with implementing methods until a plan is found that contains only primitive actions.
Because the goal is to perform actions instead of generating a particular state, actions
are also often called (primitive or abstract, respectively) tasks in HTN planning. In the
course of our paper, we will use both interchangeably.

3 First-Order FSCs

For relational POMDPs such as our example from the previous section, policies can
be represented using a first-order version of finite state controllers. The definition of
first-order FSCs (FOFSCs) is the first contribution of this paper and is required for
the introduction of action hierarchies in Section 4. The rationale behind introducing
FOFSCs is that because the number of possible observations is very large in relational
POMDPs, including an edge label for every observation as in ordinary FSCs is incon-
venient. FOFSCs allow for a more concise representation by using formulas to govern
transitions. Note that our definition already includes terminal controller states and nodes
associated with partially instantiated actions to allow for the addition of hierarchical el-
ements described below.

Definition 1 (First-Order Finite State Controller) A first-order finite state controller
(FOFSC) is a tuple (Q, q0, qt, A, α,O, δ).A andO are sets of actions and observations,
respectively. Q is the set of controller nodes. The node q0 ∈ Q is the start node, and
the node qt ∈ Q, qt 6= q0, is the terminal node. Each node q ∈ Q \ {qt} is associated
with a (partially) instantiated non-terminal action ai ∈ I(A) via the action association
function α : Q \ {qt} → I(A). Transitions are defined via the transition function
δ : Q \ {qt} × Q → F(O), where F(O) is the set of well-formed formulas over the
observation space. Transitions need to be mutually exclusive and exhaustive, i. e., for all
obtainable observations o of α(p), (1) whenever o |= δ(p, qi) it holds that o 6|= δ(p, qj)
for all qj 6= qi and (2) o |=

∨
qi∈Q δ(p, qi).

6 Felix Müller and Susanne Biundo

For nodes p and q and observation o received from executing α(p), δ(p, q) = ϕ means
that the controller state changes from p to q if o |= ϕ. Making the formulas mutu-
ally exclusive guarantees that there is no ambiguity when choosing the successor state.
Exhaustiveness guarantees that every possible observation of an action is covered. How-
ever, this requirement can be dropped by assuming transition to an “error node” (associ-
ated with an action that incurs strongly negative reward) when no condition is fulfilled.

Executing an FOFSC works by iteratively executing the action associated with a
node (starting with q0), receiving an observation, and following the link whose formula
is fulfilled by the observation. This is done until the terminal node is reached, at which
point the terminal action is executed. Figure 2 shows an example FOFSC. For the sake
of clarity, we omit edges between two nodes p and q when δ(p, q) ≡ ⊥. Action parame-

astart b

c d

ϕ1

ϕ2

¬ϕ3

ϕ3

¬ϕ3

ϕ3

¬ϕ3

ϕ3

Fig. 2: An example FOFSC, where a = (ask user ?r), b = (paint room
?r WHITE), c = (paint room ?r LIGHTBLUE), d = (cheer up), ϕ1

= (user wants color O ?r WHITE), ϕ2 = (user wants color O ?r
LIGHTBLUE), and ϕ3 = (happy O). In words, the described course of action pro-
poses to ask the user for the desired room color, paint the room accordingly, and cheer
up the user until their mood seems better.

ters do not need to be ground according to the FOFSC definition, allowing for multiple
usage of the same variable in several nodes of the FOFSC. However, non-ground pa-
rameters introduce a source of nondeterminism into the FOFSC that might prohibit the
unique assignment of an accumulated reward value to the policy the FOFSC represents.
Therefore, we define that an FOFSC is executable if and only if it is fully ground. For
an executable FOFSC, the accumulated reward earned by executing it in a given initial
belief state can for example be calculated by solving the induced system of linear equa-
tions as described by Hansen [5], where the accumulated reward of the terminal state qt
is defined by the cost of the terminal action. When the planning horizon is finite, cycles
in the FOFSC can be eliminated for evaluation purposes: since execution is assumed to
stop when either the terminal node or the horizon is reached, at the latest, they can be
unrolled. This allows for a fast forward-evaluation of FOFSCs.

Note that FOFSCs are a natural generalization of the sequences of ground actions
generated by many planners for fully observable and deterministic planning domains,
such as SHOP.

HTN-Style Planning in Relational POMDPs Using First-Order FSCs 7

4 Hierarchical Relational POMDPs

Now, we can begin adding hierarchical information to create action hierarchies by intro-
ducing abstract actions and the means to carry them out. Abstract actions are specified
in terms of a name and a parameter list just like ordinary actions of the underlying
POMDP, but as they are not part of the underlying POMDP, no transition probabilities,
observation probabilities or rewards are associated with them. However, as only name
and parameter list of an action are needed for the construction of FOFSCs, it is possi-
ble to construct FOFSCs containing abstract actions. Obviously, such abstract actions
cannot be executed directly and neither can FOFSCs that contain abstract actions.

Intuitively, hierarchical planning as we will define it in this section starts with an
initial FOFSC containing abstract actions that have to be iteratively refined into more
concrete implementations. This is done by applying decomposition methods, each map-
ping an abstract action to a possible implementation, until all actions are primitive as
is done in HTN planning. However, in contrast to normal HTN planning, where the
goal is to find an executable primitive plan, the goal here is to find the optimal-reward
primitive FOFSC in the induced hierarchy according to evaluation with an initial belief
state and a planning horizon.

For a formal definition of hierarchical relational POMDPs using FOFSCs with ab-
stract actions, let FSCs(X) denote the set of FSCs over a set of actions X .

Definition 2 (Hierarchical Relational POMDP) A hierarchical relational POMDP
(HPOMDP) is a tuple (P,Aa,M,Cinit, b0, h), where

– P = (S,A, T,R,O,Z) is the underlying relational indefinite-horizon POMDP
with action-based termination,

– Aa is a finite set of abstract actions with Aa ∩A = ∅,
– M ⊆ Aa × FSCs(A ∪ Aa) is a finite set of decomposition methods mapping

abstract actions to their possible implementations,
– Cinit ∈ FSCs(A ∪Aa) is the initial FOFSC containing abstract actions,
– b0 is the initial belief state, and
– h ∈ N ∪ {∞} is the planning horizon.

A possible abstract action for the example POMDP introduced in the previous sec-
tion is (handle room ?r), which completely handles one room. Expert knowledge
is then used to define useful courses of action as implementation for abstract actions.
Consequently, one possible method is to ask the user for the desired room color, paint-
ing the room accordingly and cheer them up afterwards, if needed. Hence, the FOFSC
given in Figure 2 is a method for (handle room ?r). Other implementations in-
clude asking for the desired color and calling a painter, and so on.

Applying a method transforms a partially abstract FOFSC into a more concrete ver-
sion by replacing the abstract action with the implementation specified by the method.
For a formal definition of method application, let pdC(q) denote the set of prede-
cessors of a node q in an FSC C with node set Q and transition function δ, i. e.,
pdC(q) = {p ∈ Q|δ(p, q) 6≡ ⊥} and scC(q) the set of successors of q, i. e., scC(q) =
{p ∈ Q|δ(q, p) 6≡ ⊥}. We use superscripts to disambiguate the members of the different
FSCs involved, e. g., we write Q1 for the node set of the FSC C1.

8 Felix Müller and Susanne Biundo

Definition 3 (Method Application) Let C1 be an FOFSC containing a node q1a with
ai = α1(q1a) being an abstract action instance, m = (a,C) a method for the corre-
sponding action schema a of ai, and C2 an isomorphic copy of C with Q1 ∩ Q2 = ∅.
Let σ be a parameter substitution such that σ(a) = ai. Applying m to q1a results in a
new FOFSC C3 = (Q3, q10 , q

1
t , A

1, α3, O1, δ3) with:

– Q3 := (Q1 ∪Q2) \ {q1a, q2t })

– α3(q) :=

{
α1(q), q ∈ Q1

σ(α2(q)), q ∈ Q2

– δ3(p, q) :=

δ1(p, q), p, q∈Q1

σ(δ2(p, q)), p, q∈Q2∧ ¬(p∈pdC2(q2t)∧q=q20)
σ(δ2(p, q))∨δ1(q1a, q1a), p∈pdC2(q2t)∧q=q20
δ1(p, q1a), p∈pdC1(q1a)∧q=q20
σ(δ2(p, q2t))∧δ1(q1a, q), p∈pdC2(q2t)∧q∈scC1(q1a)

⊥, else

Applying a method m to a node q in an FOFSC C is denoted by C[q←m]. Intuitively,
when an abstract action is replaced by an implementation, all incoming edges of the ab-
stract action are “redrawn“ to point to the initial node of the implementing FOFSC, and
all outgoing edges of the abstract action are combined with the edges pointing to the
terminal node of the implementing FOFSC. Additionally, the substitution is required
to pass the already bound action parameters of the replaced abstract action to its im-
plementation. Figure 3 shows how the abstract action (handle room KITCHEN) is
replaced by one of the introduced methods in our example.

Precisely, the new transition function δ3 is constructed to capture the intended mean-
ing of method application while fulfilling the “mutually exclusive and exhaustive” re-
quirement of Definition 1: the first two cases preserve the internal transitions of C1 and
C2. The third case accounts for the special case when there is a sling at q1a: a sling means
the abstract action can be repeated immediately after its completion. This translates to a
transition from a last action to the first action in its implementation. As the implemen-
tation may already contain such a transition, a disjunction of both transition conditions
is introduced. The fourth case handles transitions to q1a, which result in transitions to
the initial node of C2. The fifth case connects the predecessor nodes of q2t to the suc-
cessor nodes of q1a. As both the transitions to q2t and from q1a are labeled with transition
conditions in C1 and C2, respectively, each possible combination in pd(q2t) × sc(q1a)
is labeled with the conjunction of the respective transition conditions. Finally, the last
case states that no other transitions are introduced.

By iteratively replacing all abstract actions and binding action parameters to con-
stants until all actions are primitive and ground, we can generate executable FSCs. For
a primitive FSC C, we can evaluate its accumulated cost V (C, b0, h) with respect to the
initial belief state b0 and horizon h. This leads us to the definition of a solution for a
hierarchical relational POMDP:

Definition 4 (Solution) A solution of a hierarchical relational POMDP is a fully prim-
itive and executable decomposition C∗ (i. e., fully ground and without abstract actions)

HTN-Style Planning in Relational POMDPs Using First-Order FSCs 9

astart b
> >

(a) A partially abstract FOFSC in our example, where the kitchen and the living room are to be
painted, so a = (handle room KITCHEN) and b = (handle room LIVING ROOM).

a1

start

a2

a3 a4

bϕ1

ϕ2

¬ϕ3

ϕ3

¬ϕ3

ϕ3

¬ϕ3

ϕ3

>

(b) The resulting FOFSC after applying a method (a1 = (ask user KITCHEN), a2 =
(paint room KITCHEN WHITE), a3 = (paint room KITCHEN LIGHTBLUE),
a4 = (cheer up), ϕ1 = (user wants color O KITCHEN WHITE), ϕ2 =
(user wants color O KITCHEN LIGHTBLUE), and ϕ3 = (happy O)).

Fig. 3: The initial FOFSC Cinit for our example domain (Figure (a)) and the resulting
FOFSC after the method shown in Figure 2 has been applied to the node associated with
action a (shown in Figure (b)). Note how the parameter ?r is substituted by KITCHEN.

of Cinit, such that there exists no other fully primitive and executable decomposition C
with smaller accumulated cost, i. e., ∀C, V (C, b0, h) ≥ V (C∗, b0, h), with respect to
evaluation using b0 and h.

Note that a solution is required to be a decomposition of Cinit. This means that it is in
general not an optimal policy for the underlying POMDP. The relative solution quality
of the HPOMDP solution compared to the optimal solution of the underlying POMDP
directly depends on the modeled methods: methods can both be chosen so that the
HPOMDP solution approximates the optimal solution arbitrarily closely and so that
the HPOMDP solution is arbitrarily bad. Since the methods are modeled by a domain
expert, relative HPOMDP solution quality is determined by the quality of the expert
knowledge.

5 Algorithm

The algorithm we propose for hierarchical relational POMDP planning is outlined in
Algorithm 1 and employs an A* search in the space of FOFSCs induced by the ac-
tion hierarchy: it iteratively decides whether an FOFSC is a solution (line 4), generates
successor FOFSCs if it is no solution (line 6-9), ranks them according to their cost-plus-
heuristic value (line 10), and proceeds by considering the lowest-cost candidate next.
A closed-set D that contains already visited FOFSCs is used to prevent the algorithm
from considering the same FOFSC twice (lines 5 and 10). Note that the method appli-
cation in line 8 generates only ground instances, so that the cost and heuristic functions
defined below can be evaluated unambiguously.

10 Felix Müller and Susanne Biundo

Input : A HPOMDP (P,Aa,M, b0, Cinit, h).
Output : A solution or fail.

1 F := 〈Cinit〉, D := ∅
2 while F 6= ε do
3 Ccur := head(F), F := tail(F)
4 if Ccur is executable then return Ccur

5 D := D ∪ Ccur

6 Q := the nodes q in Ccur with α(q) abstract
7 foreach q ∈ Q do
8 〈m1, · · · ,mn〉 := the methods for α(q)
9 Fq := 〈Ccur[q←m1], · · · , Ccur[q←mn]〉

10 F := merge(F, Fq \D)

11 return fail
Algorithm 1: The HPOMDP Planning Algorithm, which employs A* search in the
space of FOFSCs. The call to merge() sorts all plans C in F and Fq in ascending
order according to their cost-plus-heuristic value f(C) = g(C) + h(C).

5.1 Costs and Heuristics

For the cost and heuristic definitions, we distinguish between the part of an FSC that
can be assessed exactly cost-wise, and the part for which cost must be estimated. Cost
can be calculated exactly when there is no abstract action involved, i. e., for the part
between q0 and the first nodes associated with an abstract action. For an abstract action,
neither immediate cost nor transition probabilities are known, therefore it is impossible
to calculate costs correctly beyond the first abstract action encountered. Let Qf (C)
denote the set of those “first abstract nodes”, i. e., nodes q for which α(q) is abstract
and there is a fully primitive path with probability greater than zero leading from q0 to
q. The cost function g(C) of an FSC C is then defined as the accumulated cost V of an
FSC C ′ where every edge pointing to a node in Qf (C) is redrawn to the terminal node.
Note that for a fully primitive FSC C, C = C ′ and hence, g(C) = V (C), i. e., g(C) is
the true cost of C.

The heuristic estimate h(C) tries to assess the cost induced by the remaining part
of C. We will present admissible estimates h for both the finite and the indefinite hori-
zon cases. For the indefinite horizon case, we will calculate a lower bound for the cost
incurred by reaching qt from each node q ∈ Qf (C). The value of h(C) is then calcu-
lated as the weighted sum of the cost bounds for each q according to the probabilities
of reaching q through a fully primitive path, which are in turn lower bounds for the
true probabilities of reaching each q. To calculate the estimate for each q ∈ Qf (C),
we assume that we can choose transitions at each node in C instead of determining
the successor node according to received observations. Additionally, we assign to each
edge the minimal cost of the action of its predecessor node if it is primitive and 0 if it is
abstract. The cost bound for a node q ∈ Qf (C) is then given by the cost of the shortest
path from q to qt in the resulting graph.

In the finite horizon case, it is possible that an expensive action “close” to the end
of the planning horizon is “pushed beyond” the horizon when an abstract action is

HTN-Style Planning in Relational POMDPs Using First-Order FSCs 11

replaced by an implementation and is replaced with a cheaper action for evaluation
purposes. Therefore, for each time step remaining after reaching a node q ∈ Qf (C),
we simply allocate the minimum cost of any action and 0 when the terminal node is
reached. This way, the heuristic is guaranteed to underestimate the remaining costs.
Note that FOFSCs are unrolled for evaluation and comparison for finite horizons.

5.2 Properties

The algorithm is correct for both the finite and indefinite horizon cases, because the
requirements for the usage of A* search are met. Firstly, since all action costs are non-
negative, applying a method never decreases the cost g of an FOFSC. Therefore, there
are no negative path costs as required for A* search. Secondly, the heuristics are con-
structed to underestimate the real costs. Thirdly, because both the cost and the heuristic
estimate only depend on the FOFSC at hand, not on the path that generated it, the usage
of a closed-set is also allowed.

In the finite horizon case, it is also complete and guaranteed to terminate. This is
because there are only finitely many unrolled FOFSCs whose length is limited by the
horizon h. Since every possible FOFSC in the hierarchy is generated and no FOFSC is
considered twice through the use of the closed-set D, the execution terminates.

Because of the infinite plan space in the indefinite horizon case, completeness can-
not be guaranteed in this setting. For some special cases though, the algorithm is also
complete and guaranteed to terminate, for example when the action hierarchy is non-
recursive, i. e., an abstract action is never reintroduced after it has been decomposed.

6 Conclusion and Future Work

We have presented an approach that allows for exploitation of domain knowledge in
relational POMDP planning. While the FOFSCs generated by our approach do not
represent optimal policies for the underlying POMDP, good policies can be generated
through the use of suitable expert knowledge in the form of methods. If an optimal pol-
icy for the underlying POMDP is required, the FOFSC generated by our approach can
be used as an input for traditional, optimal POMDP solution algorithms such as value
or policy iteration.

Our approach covers both finite and indefinite horizons. Especially in the context
of user-centered planning, finite horizons seem appropriate to represent the limited pa-
tience of a human user. As a prerequisite for our approach, we introduced a first-order
generalization of FSCs that also corresponds to a generalization of plans generated by
traditional AI planning systems for fully observable deterministic domains.

As the next step, we plan to implement our formalism and evaluate its effective-
ness in terms of plan generation speed and ease of modeling, using domains from the
2011 International Probabilistic Planning Competition IPPC-2011. We expect that ex-
pert knowledge required for our approach is available in domains like elevator control
or traffic light control, where present-day solutions are hand-crafted by experts. Another
important part in our research is the development of suitable heuristics to improve plan
generation speed.

12 Felix Müller and Susanne Biundo

Acknowledgements

This work was done within the Transregional Collaborative Research Centre SFB/TRR
62 “Companion-Technology for Cognitive Technical Systems” funded by the German
Research Foundation (DFG).

References

1. S. Biundo, P. Bercher, T. Geier, F. Müller, and B. Schattenberg. Advanced user assistance
based on AI planning. Cognitive Systems Research, Special Issue on “Complex Cognition”,
pages 219–236, 2011.

2. J. Boger, P. Poupart, J. Hoey, C. Boutilier, G. Fernie, and A. Mihailidis. A decision-theoretic
approach to task assistance for persons with dementia. In IJCAI, pages 1293–1299, 2005.

3. A. Bouguerra and L. Karlsson. Hierarchical task planning under uncertainty. In 3rd Italian
Workshop on Planning and Scheduling, 2004.

4. K. Erol, J. Hendler, and D. S. Nau. UMCP: A sound and complete procedure for hierarchical
task-network planning. In AIPS, pages 249–254, 1994.

5. E. A. Hansen. Solving POMDPs by searching in policy space. In UAI, pages 211–219, 1998.
6. E. A. Hansen. Indefinite-horizon POMDPs with action-based termination. In AAAI, pages

1237–1242, 2007.
7. E. A. Hansen and R. Zhou. Synthesis of hierarchical finite-state controllers for POMDPs. In

ICAPS, pages 113–122, 2003.
8. O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic planning and

related stochastic optimization problems. Artificial Intelligence, 147(1-2):5 – 34, 2003.
9. D. Nau, T.-Ch. Au, O. Ilghami, U. Kuter, H. Muñoz-Avila, J. W. Murdock, D. Wu, and

F. Yaman. Applications of SHOP and SHOP2. In IEEE Intelligent Systems, 2004.
10. D. Nau, Y. Cao, A. Lotem, and H. Munoz-Avila. SHOP: simple hierarchical ordered planner.

In IJCAI, pages 968–973, 1999.
11. Ch. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov decision processes.

Mathematics of Operations Research, 12(3):441–450, 1987.
12. E. P. D. Pednault. ADL: exploring the middle ground between STRIPS and the situation

calculus. In KR, pages 324–332, 1989.
13. Joelle Pineau, Geoffrey Gordon, and Sebastian Thrun. Anytime point-based approximations

for large POMDPs. JAIR, 27:335–380, 2006.
14. M.L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John

Wiley & Sons, 1994.
15. J. A. Russell and A. Mehrabian. Evidence for a three-factor theory of emotions. Journal of

Research in Personality, 11(3):273 – 294, 1977.
16. S. Sanner and K. Kersting. Symbolic dynamic programming for first-order POMDPs. In

AAAI, pages 1140–1146, 2010.
17. Ch. Wang and R. Khardon. Relational partially observable MDPs. In AAAI, pages 1153–

1158, 2010.
18. H. L. S. Younes and M. L. Littman. PPDDL 1.0: an extension to PDDL for expressing

planning domains with probabilistic effects. Technical Report CMU-CS-04-167, Carnegie
Mellon University, Pittsburgh, 2004.

