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Abstract

In this paper, we introduce an admissible heuristic for
hybrid planning with preferences. Hybrid planning is
the fusion of hierarchical task network (HTN) planning
with partial order causal link (POCL) planning. We
consider preferences to be soft goals — facts one would
like to see satisfied in a goal state, but which do not
have to hold necessarily.

Our heuristic estimates the best quality of any solu-
tion that can be developed from the current plan under
consideration. It can thus be used by any branch-and-
bound algorithm that performs search in the space of
plans to prune suboptimal plans from the search space.

Introduction
In real-world planning, for example, when assisting hu-
man users in their everyday life (Biundo et al. 2011),
plans are often of different quality depending on the
specific user carrying out the plan. In many applica-
tion contexts, there is therefore the need to specify a
quality measure that reflects the different needs and
preferences of different human users. In this setting,
a planning problem is augmented with a set of pref-
erence formulas. The goal is to find a solution to the
planning problem that satisfies the preferences to the
largest possible extent.

Planning with preferences has attracted increased at-
tention with the development of pddl3 (Gerevini and
Long 2005), the language for the fifth International
Planning Competition (IPC-5). In pddl3, preferences
are either soft goals or plan constraints. The former are
non-mandatory conditions that should hold in the fi-
nal state produced by a solution, whereas the latter are
non-mandatory constraints on the state trajectories in-
duced by a solution. In this paper, we focus on solving
planning problems with soft goals.

We are concerned with solving hybrid planning
problems (Kambhampati, Mali, and Srivastava 1998;
Gerevini et al. 2008; Biundo et al. 2011; Geier and
Bercher 2011) favoring those solutions which satisfy the
preferences to the largest extent. The hybrid planning
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paradigm is particularly well suited for solving real-
world planning problems, as it fuses ideas from classi-
cal planning with those of hierarchical planning: many
real-world problems are inherently hierarchical. How-
ever, parts of the domain might be non-hierarchical and
could be modeled more adequately in the classical state-
based paradigm. Hybrid planning fuses both, in that
it allows for the specification of an initial task network
and of compound tasks as in hierarchical planning, but
also enables the arbitrary insertion of tasks to support
open preconditions as in classical planning.

Problem Setting
Our formalization of hybrid planning fuses hierarchi-
cal task network (HTN) planning (Erol, Hendler, and
Nau 1994) with partial order causal link (POCL) plan-
ning (McAllester and Rosenblitt 1991).

A hybrid planning problem is given in terms of an ini-
tial task network. Task networks can contain primitive
tasks, which correspond to classical planning operators,
and compound tasks, which represent high-level activ-
ities. Both primitive and compound tasks show pre-
conditions and effects. However, only primitive tasks
specify state transitions. Compound tasks are abstract
specifications of standard solutions for their precondi-
tions and effects. For every compound task the domain
model holds several decomposition methods mapping
that task to some pre-defined task network which “im-
plements” its desired effect and requires the specified
precondition. A solution is then a refinement of the ini-
tial task network which consists only of primitive tasks
and is executable in the classical sense.

More formally, a hybrid planning problem Π is a tuple
(Tp, Tc,M, C, sinit,TNinit, g) consisting of the following
components. The set Tp contains the primitive task
schemata and Tc contains the compound ones. Task
schemata are tuples t = (prec, add,del) consisting of a
precondition, an add-, and a delete list; the latter two
are also referred to as effects. The precondition and
effects are sets of positive literals and depend on the
parameters v̄(t). M is the set of available decompo-
sition methods, each being a tuple (t,TN) mapping a
compound task schema t ∈ Tc to a task network TN. C
is the set of available constants and P denotes the set of



all possible ground atomic propositions using constants
from C. Then, sinit ∈ 2P is the initial state, g ⊆ P is
the goal description and TNinit is the initial task net-
work. Please note that we encode the initial state and
the goal description as the effect and the precondition
of an artificial start and end task, respectively. A task
network is a tuple (T,≺, V, CL) and consists of the fol-
lowing components. T is a set of tasks, where each task
l:t ∈ T consists of a (partially) instantiated primitive or
compound task schema t and a label l to differentiate
between multiple occurrences of t. ≺ is a partial order
on T , V is a set of variable constraints, and CL is a set
of causal links. A causal link l′ →φ l ∈ CL indicates
that the precondition literal φ of l:t ∈ T is an effect of
l′:t′ ∈ T and is supported this way.

Every solution TN′ = (T ′,≺′, V ′, CL′) of Π must ful-
fill the standard POCL solution criteria (Younes and
Simmons 2003) of having no unsupported preconditions
and causal threats. These criteria ensure that every lin-
earization of T ′ that respects ≺′, V ′, and CL′ is an ex-
ecutable task sequence that transforms the initial state
into a state satisfying the goal description. In addition,
all tasks in T ′ must be primitive and TN′ must be a
refinement of TNinit w.r.t. decomposition of compound
tasks and the insertion of tasks, causal links, ordering-
and variable constraints.

In addition to the planning problem, we are given
preferences as a set of ground facts Pref ⊆ P which
denote optional planning goals. We can hence assume
Pref ∩ g = ∅. Each preference p has an associated
weight w(p), which is interpreted as a “violation value”
and depreciates a given solution TN by the respective
weight if p does not necessarily hold in all final states
produced by TN (which we denote by TN 6|= p). More
formally, the quality (metric) of a solution TN is de-
fined by m(TN) :=

∑
p∈Pref with TN 6|=p w(p). Then, a

solution TN1 is preferred over a solution TN2, if and
only if m(TN1) ≤ m(TN2).

Preference Heuristic for POCL Planning

In this section we describe our heuristic that can be
used to estimate the final quality of the current task
network under consideration.

In a first step, we transform a given hybrid plan-
ning problem Π with the current task network TN =
(T,≺, V, CL) under consideration into a relaxed classi-
cal planning problem Π′, such that Π′ has a solution
if TN can be developed to a solution of Π. Further-
more, any solution of Π′ contains all primitive tasks
of TN and respects its constraints. Using this reduc-
tion, we reduce the problem of calculating a heuristic
value for a task network to the problem of calculat-
ing a heuristic value for the initial state of the trans-
formed planning problem. In the second step, we build
a planning graph until is has “leveled off” (i.e., until
a fixed point is reached) and use the mutex relations
still present in the last fact layer. The heuristic thus
shows close relationship to the h2 heuristic (Haslum

and Geffner 2000), the heuristic implicitly used by the
planning system Graphplan (Blum and Furst 1997).

For the sake of simplicity, we assume that V binds
every variable to a constant c ∈ C, i.e., TN is ground.

Domain Transformation

In this section, we show how to transform a hybrid
planning problem Π with a current task network TN
under consideration into a classical planning problem
Π′, s.t. each solution of Π′ is a refinement of TN w.r.t.
its primitive tasks. Although we are going to use the
transformed classical planning problem Π′ for calcu-
lating an estimate of the best solution quality of the
original hybrid planning problem Π, we can ignore the
hierarchical components of Π (i.e., compound tasks and
decomposition methods) without “loosing solutions” or
sacrificing admissibility. This is due to the fact that
compound tasks do not directly contribute to the satis-
faction of facts like the primitive tasks do — they can
be regarded as additional constraints, since they need
to be decomposed using only the available decomposi-
tion methods. Ignoring the hierarchical components of
Π is hence just a relaxation.

The main idea behind the domain transformation is
to augment the set of available task schemata by an ad-
ditional copy of all tasks that occur in TN and to alter
the initial state and goal state description, s.t. any so-
lution of the transformed problem must contain these
tasks with exactly the same ordering as present in TN.
For the remaining, i.e., non-additional, task schemata
we perform a delete-relaxation for efficiency reasons:
ignoring their delete lists improves the speed of build-
ing the planning graph, which is done in the second
step (see next section) based on the transformed plan-
ning problem. However, the additional task schemata
cannot show any relaxation, because their effects are
the only available information about the current task
network. Planning systems that perform progression
update the initial state as the generated sequence of
tasks increases. In our case, the initial state remains
always the same — it is just the current task network
that changes. Hence, the additional task schemata
encode the information about the progression of the
search and consequently should not be relaxed. Re-
laxing these task schemata would correspond to relax-
ing the current state in a progression search. Thus,
let Π = (Tp, Tc,M, C, sinit,TNinit, g) and the current
task network to refine be TN = (T,≺, V, CL). The
transformed classical planning problem is then given
by Π′ = (T ′, C, s′init, g

′) and defined as follows.
T ′ contains additional copies of the task schemata

used by TN as well as all task schemata from Π,
but with ignored delete lists. More formally, T ′ :=
delete-relax(Tp) ∪ encode(TN) with delete-relax(Tp) :=
{(prec, add, ∅) | (prec, add,del) ∈ Tp} and encode(TN)
containing the fresh copies of the task schemata used
by TN. For every task l:t in T , encode(TN) contains a
modified version of its task schema t, s.t.:



• every task schema t′ in encode(TN) is used by exactly
one task of every solution of Π′, and

• the tasks of every solution of Π′ which use the task
schemata in encode(TN) are ordered in the same way
like their corresponding tasks in TN.

For the first property, let l:t ∈ T be a task in the task
network TN. The additional task schema t′ is an ex-
tension of t s.t. it contains the additional precondition
¬l and the additional effect l, where l is a new nullary
predicate symbol. Since we use the STRIPS formaliza-
tion, in which no negative preconditions are allowed,
we use two mutually exclusive facts l and not-l to en-
code l and ¬l. Now, every solution can contain every
task that uses a task schema from encode(TN) at most
once. To ensure that it is contained at least once, we
also alter the goal description to contain the fact l for
every primitive task l:t ∈ T . For the second property,
let li:ti ∈ T and t′i be the corresponding encoding in
encode(TN). Then, t′i has an additional precondition lj
for every primitive task lj :tj ∈ T that has to be ordered
before li:ti w.r.t. ≺ and CL. Thus, we get:

encode(TN) := {encode(l:t) | ∃l:t ∈ T, s.t. t ∈ Tp},
with encode(l:(pre, add,del)) :=

(pre ∪ {not-l} ∪ {l′ | l′ ≺ l or l′ →φ l ∈ CL},
add ∪ {l},
del ∪ {not-l})

The new initial state is defined by s′init := sinit ∪
{not-l | ∃l:t ∈ T, s.t. t ∈ Tp}; it contains the informa-
tion that no task of TN was inserted, yet.

The new goal description is defined by g′ := g ∪
{l | ∃l:t ∈ T, s.t. t ∈ Tp} and encodes that every solu-
tion must contain the tasks in T .

Concerning the computational complexity of the
transformation, note that the delete-relaxation of our
transformation has to be performed only once for the
planning problem Π, whereas the construction of s′init,
g′, and the calculation of encode(TN) has to be done
for each current task network TN. This transforma-
tion runs in O(|TN|); however, an incremental domain
transformation will clearly reduce the necessary effort.

Heuristic Calculation

In this section, we describe how our heuristic uses the
transformed domain model Π′ described in the last sec-
tion to calculate an admissible estimate of the metric
function m. We call our heuristic h2dr , as it fuses ideas
from the h2 heuristic with delete relaxation.

Graphplan builds a directed, layered planning
graph containing fact and task nodes. Each layer con-
tains only nodes of one of those types; the layers al-
ternate between fact and task layers, starting with fact
layer 0, which is the initial state, followed by task layer
0, which contains all tasks applicable in that state.
More generally, a task layer at level i contains all tasks
applicable to the fact layer at level i. Graphplan cal-
culates binary symmetric mutex relations between facts

inside the same layer and between tasks inside the same
layer. The former indicates that two facts cannot be
true at the same time, whereas the latter indicates that
two tasks can not be executed in an arbitrary order
leading to the same successor state. Blum and Furst
have shown that the fact layers monotonically increase,
whereas the mutex relations monotonically decrease.
Thus, the planning graph construction of Graphplan
eventually terminates with a final fact layer containing
some mutex relations. Given a task network TN, our
heuristic uses this final fact layer to estimate the best
quality of any solution obtainable by refining TN.

Given a hybrid planning problem Π and a task net-
work TN, let Π′ = (T , C, sinit, g) be the transformed
classical planning problem. Then, we build the plan-
ning graph starting in s := sinit. Let layer ⊆ P be
the fix point layer produced by calling Graphplan in
s and let mutex ⊆ P × P be the set of its symmetric
mutex relations. For the sake of readability, we divide
the final fact layer into four pairwise disjunctive sets:
layer := lg ∪̇ lp,m ∪̇ lp,¬m ∪̇ l¬p. lg := layer ∩ g is the
set of goal facts in the final layer, lp,m := layer ∩ {p ∈
Pref | ∃m ∈ mutex, p ∈ m,m ∩ lg 6= ∅} is the set of
all preferences in the final layer which are mutex so
some goal fact. Analogously, lp,¬m := layer ∩ {p ∈
Pref | @m ∈ mutex, p ∈ m,m ∩ lg 6= ∅} is the set of all
preferences for which there is no goal fact which it is
mutex with. Finally, l¬p := layer \Pref \ g is the set of
all remaining facts in that layer.

First of all, we can define h2dr (s) := ∞ if g 6= lg (or,
equivalently, g 6⊆ layer) or if there is a mutex rela-
tion m ∈ mutex with m ⊆ lg, since in these cases the
goal formula can not be satisfied. Preferences which do
not appear in layer can be used to increase h2dr (s), as
they can not be satisfied even by delete-relaxed tasks.
Furthermore, all preferences in lp,m can never be sat-
isfied, as they are mutex to goal facts. The only non-
trivial case is handling the mutexes between preferences
in lp,¬m. We know that certain pairs of preferences can-
not be true at the same time, but we do not know which
set of preferences do – or do not – necessarily hold in a
final state. The idea is to calculate all subsets of pref-
erences in lp,¬m which cannot be true at the same time
and choose the one which leads to the best plan quality.
Formally, let b : lp,¬m → {>,⊥} be a truth assignment
of the preferences in lp,¬m which respects the mutex re-
lations; i.e., if {p, p′} ∈ mutex, then either b(p) = ¬b(p′)
or b(p) = b(p′) = ⊥. Since we use this assignment to
calculate a non-overestimation of the metric m, b needs
to minimize the sum

∑
p∈lp,¬m,b(p)=⊥ w(p). Putting it

all together, we get:

h2dr (s) :=
∑

p∈Pref and
(p/∈layer or p∈lp,m)

w(p)

︸ ︷︷ ︸
(1)

+ min
b

∑
p∈lp,¬m and
b(p)=⊥

w(p)

︸ ︷︷ ︸
(2)

Whereas the summation term (1) can clearly be cal-
culated in linear time w. r. t. the size of Pref , term (2)
turns out to be much harder.



Theorem 1. The calculation of summation term (2) is
NP hard w.r.t. the size of lp,¬m.

We prove this by a reduction from the weighted min-
imum vertex cover problem:

Proof. Let G = (V,E) be a graph with a weight w(v)
for each v ∈ V . Then, the minimum weighted ver-
tex cover is a set V ′ ⊆ V , such that for each edge
{v, v′} ∈ E, at least one of the vertices v, v′ is in V ′

and the weighted sum
∑
v∈V ′ w(v) is minimal. If we

set lp,¬m := V and mutex := E, it is easy to see that
the value of minb

∑
p∈lp,¬m,b(p)=⊥ w(p) is also the value

of the minimum weighted vertex cover. As the mini-
mum weighted vertex cover problem is a generalization
of the NP complete vertex cover problem (Karp 1972),
in which there are no weights and the decision problem
is whether there is a vertex cover V ′ of size at most k,
NP hardness follows.

Please note that the size of this NP hard subproblem
is bounded by the number of preferences. Hence, solv-
ing it will probably not dominate the runtime of the
heuristic calculation. As a second observation, please
note that the NP hardness of our heuristic comes with
the prize of admissibility together with high accuracy.
One could easily drop this term or use approximations
to achieve an admissible, but less accurate, heuristic.

Related Work

Our work is closely related to that of Baier et al. (2009).
They solve classical planning problems with soft goals
via heuristic search using a state-based branch-and-
bound algorithm. Among others, they propose the Best
Relaxed Metric Function (B) for pruning. B basically
reduces to the same idea like our h2dr heuristic; the main
difference is that it takes a state as input rather than
a task network: starting in the current state, it builds
the relaxed planning graph using tasks with delete re-
laxation until it reaches the final fact layer. Due to the
absence of negative effects this graph does not show any
mutex relations. B is then the metric value m evaluated
in the last fact layer.1

The idea of encoding a task network into a plan-
ning problem was also already addressed (Ramirez and
Geffner 2009; Alford, Kuter, and Nau 2009), but neither
for hybrid planning problems, nor for partially ordered
task networks, nor was it used for heuristic calculation
in the context of POCL planning, which is one of our
main contributions.

Summary

We have proposed an admissible heuristic for hybrid
planning with preferences that allows to estimate the

1To be precise, B is defined as the minimum of the metric
m evaluated in each fact layer. These two definitions differ
from each other only in the case where violating a preference
can increase m which is not the case in our setting.

final quality of the current task network under con-
sideration. Its core idea is to reduce the problem of
calculating a heuristic value for a task network to the
problem of calculating a heuristic value for a state. The
actual heuristic calculation is based on a planning graph
which is used for a relaxed reachability analysis.
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