

OWL
The Web Ontology Language

part I: overview

Pavel Klinov

In the next 90 mins

Intro
● why OWL?
● relationship to RDF(S) and logics (DLs)

Application areas and tools

Basics
● entities, expressions, axioms
● dealing with data values
● non-logical part: annotations, imports, and versions

So why Semantic Web needs OWL?

First, we've got RDF
● A simple graph language to express facts (LD)
● A simple data model + low-level data integration tools

So why Semantic Web needs OWL?

First, we've got RDF
● A simple graph language to express facts (LD)
● A simple data model + low-level data integration tools

No schema? But we have RDFS!
● A lightweight schema, good for simple vocabularies
● Some simple inferencing (transitivity of rdfs:subClassOf)

RDF(S) not quite sufficient

Schemas are often just too weak
● Can say: :hasWife rdfs:domain :Woman (rdfs:range :Woman)

● Cannot say: :Peter :hasWife some :Woman (only :Woman)

RDF(S) not quite sufficient

Schemas are often just too weak
● Can say: :hasWife rdfs:domain :Woman (rdfs:range :Woman)

● Cannot say: :Peter :hasWife some :Woman (only :Woman)

Reasoning is weak but very hard
● NP-complete without negation, disjunction, etc.

RDF(S) not quite sufficient

Schemas are often just too weak
● Can say: :hasWife rdfs:domain :Woman (rdfs:range :Woman)

● Cannot say: :Peter :hasWife some :Woman (only :Woman)

Reasoning is weak but very hard
● NP-complete without negation, disjunction, etc.

So we need a language(s) that:
● Provides adequate balance between expressivity and

computational complexity
● “pay-as-you-go” behavior

RDF(S) not quite sufficient

Schemas are often just too weak
● Can say: :hasWife rdfs:domain :Woman (rdfs:range :Woman)

● Cannot say: :Peter :hasWife some :Woman (only :Woman)

Reasoning is weak but very hard
● NP-complete without negation, disjunction, etc.

So we need a language(s) that:
● Provides adequate balance between expressivity and

computational complexity
● “pay-as-you-go” behavior

That language is called OWL 2

Application areas

Vocabulary-centric applications
● manage complex terminologies

(in a machine-processable way)
● share terminology across applications

Data-centric applications
● lightweight reasoning over tons of data
● data integration

Terminology management

Example: medical informatics
● Terminologies are huge

– ICD: ~100K medical codes
– SNOMED CT: >300K classes

● Applications are different
– medical diagnosis tools
– electronic medical records
– learning and statistical analysis tools

Scalable schema reasoning is key
● e.g. for quality assurance

All must agree on the
meaning of the terms

Data-centric apps

Mostly about querying loads of data
● w.r.t. some (simple) schema
● on top of RDF (or SQL) database

RDF DB

OWL
Query

OWL
Ontology

Query
Rewriter

SPARQL
Query

SPARQL
Query

...

Data integration

Data sources are often heterogeneous
● RDF data
● relational data
● spreadsheets

RDF DB RDB

query

RDF resources relations

Data integration

Data sources are often heterogeneous
● RDF data
● relational data
● spreadsheets

RDF DB

OWL
(schema

mappings)

Query
Rewriter

RDB

integration layer

query (in ontology terms)

SPARQL (RDF resources) SQL (relations)

One size does not fit all!

OWL 2 DLOWL 2 DL

OWL 2 RLOWL 2 RL OWL 2 QLOWL 2 QL

OWL 2 ELOWL 2 EL

Tools

Reasoners
● DL: Pellet, FaCT++, HermiT, RACER
● Lightweight: CEL/jCEL/ELK/Quest

Semantic databases
● Virtuoso, Stardog, OWLIM, Oracle 11
● not always fully implement profiles

● APIs: OWL API, RDF-based APIs (Jena, Sesame, etc.)
● Data integration (PDQ)
● Matchers, editors, debuggers, visualizers...

Extended RDF or logic?

OWL as RDF extension
● Every OWL ontology can be expressed as RDF graph

(the other way is trickier)
● a semantically compatible RDF graph

Extended RDF or logic?

OWL as RDF extension
● Every OWL ontology can be expressed as RDF graph

(the other way is trickier)
● a semantically compatible RDF graph

OWL as a logic with a Web-friendly syntax
● OWL ontology is a DL knowledge base
● with a DL semantics

Extended RDF or logic?

OWL as RDF extension
● Every OWL ontology can be expressed as RDF graph

(the other way is trickier)
● a semantically compatible RDF graph

OWL as a logic with a Web-friendly syntax
● OWL ontology is a DL knowledge base
● with a DL semantics

The views are compatible to a certain extent

We adopt the second view in this lecture

Schema vs Data

Think RDB
● schema defines structure (tables, keys, attributes)
● data specifies facts

Schema vs Data

Think RDB
● schema defines structure (tables, keys, attributes)
● data specifies facts

OWL
● schema (TBox) statements describe the domain
● data (ABox) statements express facts (like RDF)
● both are called axioms
● TBox + ABox is called ontology

Modeling example

Family
● parent, children
● cousins, aunts, uncles, nephews, etc.
● pets

Need to model to define terms unambiguously
● to manage data
● to make apps understand the data
● to make sure different apps agree on terms

A simple example (TBox, ABox)

TBox: conceptual modeling
● a parent is a mother or a father
● father and mother are disjoint concepts
● every person must have one parent of each kins
● your parents' parents are your grandparents

A simple example (TBox, ABox)

TBox: conceptual modeling
● a parent is a mother or a father
● father and mother are disjoint concepts
● every person must have one parent of each kins
● your parents' parents are your grandparents

ABox: a specific family
● Peter is a father, Lois is a mother
● Peter and Lois are parents of

Chris, Meg, and Stewie
● Pewterschmidts are parents of Lois

Where the analogies stop...

OWL ontologies are not databases
● DB are closed-world collections of facts: either

explicitly true or false (NAF)

Where the analogies stop...

OWL ontologies are not databases
● DB are closed-world collections of facts: either

explicitly true or false (NAF)
● ontologies are open-world: things can be explicitly

true, implicitly true, false, or unknown
– explicitly true: Peter is a father
– implicitly true: Chris, Meg, and Stewie have grandparents
– false: Lois is a father
– unknown: Chris is a parent

Where the analogies stop...

OWL ontologies are not databases
● DB are closed-world collections of facts: either

explicitly true or false (NAF)
● ontologies are open-world: things can be explicitly

true, implicitly true, false, or unknown
– explicitly true: Peter is a father
– implicitly true: Chris, Meg, and Stewie have grandparents
– false: Lois is a father
– unknown: Chris is a parent

● no unique name assumption: Chris, Meg, and Stewie
could all denote the same person

Where the analogies stop...

OWL is not a programming language
● modeling is declarative, describes what's true
● no procedural semantics (triggers, slots, etc.)
● doesn't specify how to infer what's true

Where the analogies stop...

OWL is not a programming language
● modeling is declarative, describes what's true
● no procedural semantics (triggers, slots, etc.)
● doesn't specify how to infer what's true

OWL is not a schema language
● can't impose syntactic constraints on documents

(e.g. like in XML Schema)
● example: can't require that parent axioms are

syntactically present

On OWL syntaxes

There are many:
● RDF-native: RDF/XML, Turtle, N3, etc.

all describe triples
● OWL-native: OWL/XML, Functional, Manchester

all describe axioms

This lecture uses the Functional Syntax
● avoid OWL axiom to RDF triples mapping
● avoid XML verbosity

Axioms, Entities, and Expressions

Entities

Main building blocks: classes, properties, individuals
(all denoted with IRIs)
● Individuals: specific objects

:Peter, :Lois, etc.
● Classes (concepts): sets of individuals

:Family, :Parent
● Properties (roles): sets of pairs of individuals

:marriedTo, :childOf

Entities

Main building blocks: classes, properties, individuals
(all denoted with IRIs)
● Individuals: specific objects

:Peter, :Lois, etc.
● Classes (concepts): sets of individuals

:Family, :Parent
● Properties (roles): sets of pairs of individuals

:marriedTo, :childOf

Entities need to be declared in OWL 2 DL

Declaration (ObjectProperty (:hasParent))

Class expressions (CE)

Classes with a IRI are called named or atomic

:Person, :Parent, ...

owl:Thing (⊤) and owl:Nothing (⊥) are predefined

Can be combined into class expressions
● expressions don't have IRIs
● still interpreted as sets
● propositional and non-propositional

Property expressions

Named properties
● identified with IRI
● owl:topObjectProperty and owl:bottomObjectProperty
● object properties and data properties

Property expressions
● no IRIs
● also interpreted as relations

CE: boolean constructors

OWL 2 DL is a propositionally complete language

intersection: ObjectIntersectionOf(:Woman :Parent)

union: ObjectUnionOf(:Mother :Father)

complement: ObjectComplementOf(:Parent : Mother)

:WomanI :ParentI

CE: restrictions on properties

Existentials:

ObjectSomeValuesFrom(:hasChild :Man)

:ManI

:hasChildI

:hasChildI

:hasChildI

CE: restrictions on properties

Existentials:

ObjectSomeValuesFrom(:hasChild :Man)

:ManI

:hasChildI

:hasChildI

:hasChildI

CE: restrictions on properties

Universals:

ObjectAllValuesFrom(:hasChild :Woman)

:ManI

:hasChildI

:hasChildI

:WomanI

:hasChildI

CE: restrictions on properties

Universals:

ObjectAllValuesFrom(:hasChild :Woman)

:ManI

:hasChildI

:hasChildI

:WomanI

:hasChildI

Nominals classes

Sometimes you just want to enumerate things

ObjectOneOf(:Chris :Meg :Stewie)

Nominals classes

Sometimes you just want to enumerate things

ObjectOneOf(:Chris :Meg :Stewie)

Does it mean that the class
● contains exactly 3 objects?
● at least 3? at most 3?

Self-restrictions

Can define a class of objects related to itself

ObjectHasSelf(:likes)

:likesI

:likesI

Cardinality restrictions

ObjectMinCardinalityFrom (2 :hasChild owl:Thing)

ObjectMaxCardinalityFrom (2 :hasParent :Parent)

Property restrictions

Inverse properties

ObjectInverseOf(:hasChild)

interpreted as inverse relations

:hasParent

:hasParent--

Property restrictions

Property chains

ObjectPropertyChain(:hasParent :hasSibling)

interpreted as compositions of relations

:hasParent :hasSibling

:hasParent o :hasSibling

Axioms

TBox axioms
● relationships between classes (e.g. inclusion)
● relationships between properties

ABox axioms
● class membership
● property membership
● individual equality/inequality

Class inclusions

SubClassOf(:Woman :Person)

SubClassOf(

 :Grandfather

 ObjectIntersectionOf(:Man :Parent))

Class equivalence

EquivalentClasses(

:Mother

ObjectIntersectionOf(:Woman :Parent))
● all mothers are women and parents
● vice versa

Class disjointness

DisjointClasses(:Father :Mother)

no instance of A is an instance of B (and vice versa)

Property axioms

Property inclusions

simple: SubObjectPropertyOf(:hasWife :hasSpouse)

chains:

SubObjectPropertyOf(

ObjectPropertyChain(

:hasParent :hasParent) :hasGrandparent)

Property axioms

FunctionalObjectProperty(:hasMother)

InverseFunctionalObjectProperty(:motherOf)

ReflexiveObjectProperty(:likes)

IrreflexiveObjectProperty(:hates)

TransitiveObjectProperty(:partOf)

SymmetrycObjectProperty(:hasSpouse)

AsymmetricObjectProperty(:hasChild)

The feature set isn't minimal

Existentials and universals
● ObjectSomeValuesFrom(:hasChild :Person)
● ObjectAllValuesFrom(:hasChild :Person)

Class equivalence and disjointness (trivial)

Transitivity?

The feature set isn't minimal

Existentials and universals
● ObjectSomeValuesFrom(:hasChild :Person)
● ObjectAllValuesFrom(:hasChild :Person)

Class equivalence and disjointness (trivial)

Transitivity?

Or even ABoxes?

SubClassOf(ObjectOneOf(:Stewie) :Person)

ClassAssertion(:Person :Stewie)

Where are we?

Parts we've covered
● entities, class expressions
● object properties

Next
● data types and data properties
● very similar to classes and object properties!

Later: non-logical part
● imports
● versions
● annotations

OWL and data values

OWL is a two-sorted language
● The abstract domain

– classes, properties, named objects

ObjectPropertyAssertion(:fatherOf :Peter :Meg)

OWL and data values

OWL is a two-sorted language
● The abstract domain

– classes, properties, named objects

ObjectPropertyAssertion(:fatherOf :Peter :Meg)

● The concrete (or data) domain
– strings, numbers, dates, etc.

DataPropertyAssertion(:hasAge :Meg “17”^^xsd:integer)

Abstract and data domains

Abstract domain: Δ
● non-empty and arbitrary
● finite or infinite

Data domain Δ
● a superset of standard value sets (e.g., integers)
● fixed!

The domains are disjoint

The abstract world of logic

For developing theories about the world
● modelers often cautious and pedantical
● Open World Assumption, no Unique Name Assumption
● instances are defined only by axioms

The abstract world of logic

For developing theories about the world
● modelers often cautious and pedantical
● Open World Assumption, no Unique Name Assumption
● instances are defined only by axioms

Makes sense because
● usually better to under-model than to over-model

– under-modeling loses entailments
– over-modeling introduces errors

● gives extra flexibility

The concrete, data world

For re-using standard data theories
● have excellent theories about numbers, etc.
● know how to use them, how to compute with them
● don't need custom, ill-made integer ontologies!
● don't need UNA

The concrete, data world

For re-using standard data theories
● have excellent theories about numbers, etc.
● know how to use them, how to compute with them
● don't need custom, ill-made integer ontologies!
● don't need UNA

Datatypes fix what we know about, e.g., integers
● “4”^^xsd:integer and “6”^^integer aren't equal
● because all names have fixed meaning

– somewhat like owl:'Thing
– except that the concrete domain is always the same

Connecting the worlds

Data properties
● map abstract individuals to concrete data values
● DataSomeValueFrom(:hasWeight

 :Peter “100”^^xsd:integer)

Semantics
● interpreted as subsets of ΔxΔd

Data axioms

Axioms (mostly as for object properties)
● equivalence, inclusion, disjointness
● domains and ranges
● assertions
● functionality

But
● no chains (even transitivity)
● no inverses, reflexivity, symmetry
● can't go the other way or break the separation

More on fixed semantics

Example:

DataPropertyAssertion(:hasAge

 :Meg “17”^^xsd:integer)

DataPropertyAssertion(:hasAge

 :Meg “16”^^xsd:integer)

FunctionalDataProperty(:hasAge)

This is inconsistent

Try to formalize this logically!
● Remember UNA
● DifferentIndividuals(17 16)?

More on datatypes

Datatype: a kind of data values (integers, strings)
● IRI
● lexical space: “str”, “1”^^xsd:integer, “01”^^xsd:integer

● value space: “str”, 1

● facet spaces: pairs (F, v), mapped to a subset of VS
– F: constraining facet
– v: constraining value
– (xsd:minExclusive , “30”^^xsd:integer)

Datatype map: a particular set of datatypes
● for a language
● for a particular tool (reasoner)

The OWL 2 datatype map

XSD datatypes
● decimals, integers (and subtypes)
● xsd:float
● xsd:double
● strings (subtypes of rdf:PlainLiteral)

Nuances:
● decimals and integers are subtypes of owl:real
● which is pairwise disjoint with xsd:float and xsd:double

DataPropertyRange(a:hasAge xsd:integer)

DataPropertyAssertion(a:hasAge a:Meg "17"^^xsd:double)

Data ranges

Abstract world analogue: class expressions

Can define custom datatypes based on standard ones

DataRange
● Datatype (like xsd:integer)
● DataUnionOf, DataIntersectionOf, DataComplementOf

DataUnionOf(xsd:string xsd:integer)

● DataOneOf

DataOneOf("1"^^xsd:integer “2.5”^^xsd:double)

● DatatypeRestriction

Datatype restrictions

Can constrain a datatype using facets

DatatypeRestriction(DT F1 v1 ... F2 vn)

Example:
DatatypeRestriction(xsd:integer

xsd:minInclusive "5"^^xsd:integer xsd:maxExclusive "10"^^xsd:integer)

contains only 5, 6, 7, 8, 9

facets are combined conjunctively

Datatype definitions

Can assign names to custom (restricted) datatypes

DatatypeDefinition(DT DR)

Example:

DatatypeDefinition(

 :email

 DatatypeRestriction(xsd:string xsd:pattern "..."))

Now can use :email in data axioms:

DataPropertyRange(:hasEmail :email)

Identifying abstract individuals

What if we need to identify objects by their
“attributes”?

For object property values
● use inverse functional properties

InverseFunctionalProperty(:hasName)

Identifying abstract individuals

What if we need to identify objects by their
“attributes”?

For object property values
● use inverse functional properties

InverseFunctionalProperty(:hasName)

Problems:
● global inverse functionality often undesirable

(name's only unique within the Griffin family)
● how about data properties?

no inverse functional data properties

Keys

HasKey(CE (OPE1 ... OPEm) (DPE1 ... DPEn))

This says that:
● if two named individuals of CE coincide on ...
● … values of all object properties …
● … and values of all data properties, then
● the individuals are identical

Example:
● HasKey(:GriffinFamily (:hasName) ())
● HasKey(owl:Thing () (:hasTaxId))

Where are we?

Covered the logical part
● abstract part (class expressions, object properties)
● data part (datatypes, data ranges, data properties)
● axioms

Next: non-logical part
● imports
● versions
● annotations

Imports

Ontologies are meant to be reusable

OWL supports knowledge reuse via importing

Ontology(<http://fox.com/familyguy>

Import(<http://example.org/families.owl>))

Imports

Ontologies are meant to be reusable

OWL supports knowledge reuse via importing

Ontology(<http://fox.com/familyguy>

Import(<http://example.org/families.owl>))

Particularly important in HCLS, biology, etc.
● pros: reuse other people efforts
● cons: can be too heavyweight

solution: modularity (on Friday)

Versions

Ontologies are identified with a IRI

but also may have a version IRI to distinguish versions

Ontology(<http://fox.com/familyguy>

 <http://fox.com/familyguy/2.0>

Why?

● ontologies are like public APIs (for your or shared data)
● changing your ontology may break others

http://fox.com/familyguy
http://fox.com/familyguy

Annotations

Not all content has to be logical

Meta-information
● author info
● axiom labels, comments
● provision

Modeling these on the logical level is unnecessary
● aren't statements about the domain
● statements about statements about the domain!

OWL 2 provides annotation support for these

Annotations

Subjects: ontologies or entities

Assertion: <annotationProperty, annotationValue>

Values: IRIs, literals, or individuals

Examples:
● AnnotationAssertion(rdfs:label a:Peter

 "Represents the main character from Family Guy")
● Ontology(<http://fox.com/familyguy>

 Annotation(rdfs:label "A Family Guy ontology")

Often useful for i18n

End of the basics

questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

