
Cost based Query Ordering over OWL Ontologies

Ilianna Kollia1,2 and Birte Glimm1

1 University of Ulm, Germany, birte.glimm@uni-ulm.de
2 National Technical University of Athens, Greece, ilianna2@mail.ntua.gr

Abstract. The paper presents an approach for cost-based query planning for
SPARQL queries issued over an OWL ontology using the OWL Direct Semantics
entailment regime of SPARQL 1.1. The costs are based on information about the
instances of classes and properties that are extracted from a model abstraction
built by an OWL reasoner. A static and a dynamic algorithm are presented which
use these costs to find optimal or near optimal execution orders for the atoms of
a query. For the dynamic case, we improve the performance by exploiting an in-
dividual clustering approach that allows for computing the cost functions based
on one individual sample from a cluster. Our experimental study shows that the
static ordering usually outperforms the dynamic one when accurate statistics are
available. This changes, however, when the statistics are less accurate, e.g., due
to non-deterministic reasoning decisions.

1 Introduction

Query answering—the computation of answers to users’ queries w.r.t. ontologies and
data—is an important task in the context of the Semantic Web that is provided by many
OWL reasoners. Although much effort has been spent on optimizing the ‘reasoning’
part of query answering, i.e., the extraction of the individuals that are instances of a
class or property, less attention has been given to optimizing the actual query answering
part when ontologies in expressive languages are used. The SPARQL query language,
which was standardized in 2008 by the World Wide Web Consortium (W3C), is widely
used for expressing queries in the context of the Semantic Web. We use the OWL Direct
Semantics entailment regime of SPARQL 1.1 according to which RDF triples from ba-
sic graph patterns are first mapped to extended OWL axioms which can have variables
in place of classes, properties and individuals and are then evaluated according to the
OWL entailment relation. We focus only on queries with variables in place of individ-
uals since such queries are very common. We call the extended OWL axioms query
atoms or atoms.

In the context of databases or triple stores, cost-based ordering techniques for find-
ing an optimal or near optimal join ordering have been widely applied [12, 13]. These
techniques involve the maintenance of a set of statistics about relations and indexes,
e.g., number of pages in a relation, number of pages in an index, number of distinct
values in a column, together with formulas for the estimation of the selectivity of pred-
icates and the estimation of the CPU and I/O costs of query execution that depends
amongst others, on the number of pages that have to be read from or written to sec-
ondary memory. The formulas for the estimation of selectivities of predicates (result

output size of query atoms) estimate the data distributions using histograms, parametric
or sampling methods or combinations of them.

In the context of reasoning over ontologies, the formulas should take the cost of
executing specific reasoner tasks such as entailment checks or instance retrievals into
account. The precise estimation of this cost before query evaluation is difficult as this
cost takes values from a wide range. For example, the description logic SROIQ, which
underpins the OWL 2 DL standard, has a worst case complexity of 2-NExpTime [6] and
typical implementations are not worst case optimal. The hypertableau algorithm that we
use has a worst-case complexity of 3-NExpTime in the size of the ontology [9, 6].3

In this paper we address the optimization task of ordering the query atoms. The opti-
mization goal is to find the execution plan (an order for the query atoms) which leads to
the most efficient execution of the query by minimizing the number of needed reasoning
tasks and the size of intermediate results. The execution plan which satisfies the above
property is determined by means of a cost function that assigns costs to atoms within
an execution plan. This cost function is based on heuristics and summaries for statistics
about the data, which are extracted from an OWL reasoner model. We explore static
and dynamic algorithms together with cluster based sampling techniques that greedily
explore the execution plan search space to determine an optimal or near optimal exe-
cution plan. Static ordering refers to the finding of a join order before query evaluation
starts whereas dynamic ordering determines the ordering of query atoms during query
evaluation, taking advantage of already computed query atom results.

2 Preliminaries

In this section we briefly present an overview of the model building tableau and hyper-
tableau calculi and give a brief introduction to SPARQL queries. For brevity, we use the
description logic (DL) [1] syntax for examples.

Checking whether an individual s0 (pair of individuals 〈s0, s1〉) is an instance of a
class C (property R) w.r.t. an ontology O is equivalent to checking whether the class
assertion ¬C(c0) (the negation of the class assertion C(s0)) or the property assertion
(∀R.¬{s1})(s0) (s0 is only R-related to individuals that are not s1) is inconsistent w.r.t.O.
To check this, most OWL reasoners use a model construction calculus such as tableau or
hypertableau. In the remainder, we focus on the hypertableau calculus [9], but a tableau
calculus could equally be used and we state how our results can be transferred to tableau
calculi. The hypertableau calculus starts from an initial set of assertions and, by apply-
ing derivation rules, it tries to construct (an abstraction of) a model of O. Derivation
rules usually add new class and property assertion axioms, they may introduce new in-
dividuals, they can be nondeterministic, leading to the need to choose between several
alternative assertions to add or they can lead to a clash when a contradiction is detected.
To show that an ontology O is (in)consistent, the hypertableau calculus constructs a
derivation, i.e., a sequence of sets of assertions A0, . . . , An, such that A0 contains all
assertions in O, Ai+1 is the result of applying a derivation rule to Ai and An is the final
set of assertions where no more rules are applicable. If a derivation exists such that

3 The 2-NExpTime result for SHOIQ+ increases to 3-NExpTime when adding role chains [6]

An does not contain a clash, then O is consistent and An is called a pre-model of O.
Otherwise O is inconsistent. Each assertion in a set of assertions Ai is derived either
deterministically or nondeterministically. An assertion is derived deterministically if
it is derived by the application of a deterministic derivation rule from assertions that
were all derived deterministically. Any other derived assertion is derived nondetermin-
istically. It is easy to know whether an assertion was derived deterministically or not
because of the dependency directed backtracking that most (hyper)tableau reasoners
employ. In the pre-model, each individual s0 is assigned a label L(s0) representing the
classes it is (non)deterministically an instance of and each pair of individuals 〈s0, s1〉 is
assigned a label L(〈s0, s1〉) representing the properties through which individual s0 is
(non)deterministically related to individual s1.

The WHERE clause of a SPARQL query consists of graph patterns. Basic graph
patterns (BGPs) can be composed to more complex patterns using operators such as
UNION and OPTIONAL for alternative and optional selection criteria. The evaluation
of (complex) graph patterns is done by evaluating each BGP separately and combining
the results of the evaluation. We only consider the evaluation of BGPs since this is
the only thing that is specific to a SPARQL entailment regime. We further focus on
conjunctive instance queries, i.e., BGPs that retrieve tuples of individuals, which are
instances of the queried classes and properties. Such BGPs are first mapped to OWL
class and (object) property assertions that allow for variables in place of individuals
[7]. For brevity, we directly write mapped BGPs in DL syntax extended to allow for
variables. We use the term query in the remainder for such BGPs. W.l.o.g., we assume
that queries are connected [2].

Definition 1. Let O be an ontology with signature S O = (CO,RO, IO), i.e., S O consists
of all class, property and individual names occurring in O. We assume that S O also
contains OWL’s special classes and properties such as owl:Thing. Let V be a countably
infinite set of variables disjoint from CO, RO and IO. A term t is an element from V ∪ IO.
Let C ∈ CO be a class, R ∈ RO a property, and t, t′ ∈ IO ∪ V terms. A class atom is an
expression C(t) and a property atom is an expression R(t, t′). A query q is a non-empty
set of atoms. We use Vars(q) to denote the set of variables and Inds(q) for the set of
individuals occurring in q and set Terms(q) = Vars(q) ∪ Inds(q). We use |q| to denote
the number of atoms in q.

Let q = {at1, . . . , atn} be a query. A mapping µ for q over O is a total function
µ : Terms(q) → IO such that µ(a) = a for each a ∈ Inds(q). The set Γq of all possible
mappings for q is defined as Γq := {µ | µ is a mapping for q}. A solution mapping µ
for q over O is a mapping such that O |= C(µ(t)) for each class atom C(t) ∈ q and
O |= R(µ(t), µ(t′)) for each property atom R(t, t′) ∈ q.

3 Extracting Individual Information from Reasoner Models

The first step in the ordering of query atoms is the extraction of statistics, exploiting
information generated by reasoners. We use the labels of an initial pre-model to pro-
vide us with information about the classes the individuals belong to or the properties in
which they participate. We exploit this information similarly as was suggested for deter-
mining known (non-)subsumers for classes during classification [3]. In the hypertableau

Algorithm 1 initializeKnownAndPossibleClassInstances
Require: a consistent SROIQ ontology O to be queried
Ensure: sets K[C] (P[C]) of known (possible) instances for each class C of O are computed
1: An := buildModelFor(O)
2: for all ind ∈ IO do
3: for all C ∈ LAn (ind) do
4: if C was derived deterministically then
5: K[C] := K[C] ∪ {ind}
6: else
7: P[C] := P[C] ∪ {ind}
8: end if
9: end for

10: end for

calculus, the following two properties hold for each ontology O and each constructed
pre-model An for O:

(P1) for each class name C (property R), each individual s0 (pair of individuals 〈s1, s2〉)
in An, if C ∈ LAn (s0) (R ∈ LAn (〈s1, s2〉)) and the assertion C(s0) (R(s1, s2)) was
derived deterministically, then it holds O |= C(s0) (O |= R(s1, s2)).

(P2) for an arbitrary individual s0 in An (pair of individuals 〈s1, s2〉 in An) and an arbi-
trary class name C (simple property R), if C < LAn (s0) (R < LAn (〈s1, s2〉)), then
O 6|= C(s0) (O 6|= R(s1, s2)).

The term simple property refers to a property that is neither transitive nor has a transitive
subproperty.

We use these properties to extract information from the pre-model of a satisfiable
ontology O as outlined in Algorithm 1. In our implementation we use a more compli-
cated procedure to only store the direct types of each individual. The information we
extract involves the maintenance of the sets of known and possible instances for all
classes of O. The known instances of a class C (K[C]) are the individuals that can be
safely considered instances of the class according to the pre-model, i.e., for each in-
dividual i ∈ K[C], C(i) was derived deterministically in the pre-model. Similarly, the
possible instances of a class C (P[C]) are the individuals i such that C(i) was derived
nondeterministically. These possible instances require costly consistency checks in or-
der to decide whether they are real instances of the class.

For simple properties, a procedure to find the known and possible instances of a
property or, given an individual, the known and possible property successors or prede-
cessors can be defined similarly. For non-simple properties, O is expanded with addi-
tional axioms that capture the semantics of the transitive relations before the buildMod-
elFor procedure is applied since (hyper)tableau reasoners typically do not deal with
transitivity directly [9]. In particular, for each individual i and non-simple property R,
new classes Ci and CR

i are introduced and the axioms Ci(i) and Ci v ∀R.CR
i are added

to O. The consequent application of the transitivity encoding [9] produces axioms that
propagate CR

i to each individual s that is reachable from i via an R-chain. The known
and possible R-successors for i can then be determined from the CR

i instances.

The technique presented in this paper can be used with any (hyper)tableau calcu-
lus for which properties (P1) and (P2) hold. All (hyper)tableau calculi used in practice
that we are aware of satisfy property (P1). Pre-models produced by tableau algorithms
as presented in the literature also satisfy property (P2); however, commonly used opti-
mizations, such as lazy unfolding, can compromise property (P2), which we illustrate
with the following example. Let us assume we have an ontology O containing the ax-
ioms A v ∃R.(C u D), B ≡ ∃R.C and A(a). It is obvious that in this ontology A is a
subclass of B (hence O |= B(a)) since every individual that is R-related to an individual
that is an instance of the intersection of C and D is also R-related to an individual that
is an instance of the class C. However, even though the assertion A(a) occurs in the
ABox, the assertion B(a) is not added in the pre-model when we use lazy unfolding.
With lazy unfolding, instead of treating B ≡ ∃R.C as two disjunctions ¬B t ∃R.C and
B t ∀R.(¬C) as is typically done for complex class inclusion axioms, B is only lazily
unfolded into its definition ∃R.C once B occurs in the label of an individual. Thus,
although (∃R.(C u D))(a) would be derived, this does not lead to the addition of B(a).

Nevertheless, most (if not all) implemented calculi produce pre-models that satisfy
at least the following weaker property:

(P3) for an arbitrary individual s0 in An and an arbitrary class C where C is primitive in
O,4 if C < LAn (s0), then O 6|= C(s0).

Hence, properties (P2) and (P3) can be used to extract (non-)instance information from
pre-models. For tableau calculi that only satisfy (P3), Algorithm 1 can be modified
accordingly. In particular, for each non-primitive class C in O we need to add to P[C]
the individuals in O that do not include the class C in their label.

The proposed technique for determining known and possible instances of classes
and properties can be used in the same way with both tableau and hypertableau reason-
ers. Since tableau algorithms often introduce more nondeterminism than hypertableau,
one might, however, find less deterministic derivations, which results in less accurate
statistics.

3.1 Individual Clustering

In this section, we describe the procedure for creating clusters of individuals within an
ontology O using the constructed pre-model An of O. Two types of clusters are created:
class clusters and property clusters. Class clusters contain individuals having the same
classes in their label and property clusters contain individuals with the same class and
property labels. Property clusters are divided into three categories, those that are based
on the first individual of property instances, those based on the second individual and
those based on both individuals. First we define, for an ontology O with pre-model An,
the relations P1 and P2 that map an individual a from O to the properties for which a
has at least one successor or predecessor, respectively:

P1(a) = {R | ∃b ∈ IO such that R ∈ LAn (〈a, b〉)}
P2(a) = {R | ∃b ∈ IO such that R ∈ LAn (〈b, a〉)}

4 A class C is considered primitive in O if O is unfoldable [14] and it contains no axiom of the
form C ≡ E

Based on these relations, we partition IO into class clusters CC = {C1, . . . ,Cn}, property
successor clusters PC1 = {C1

1, . . . ,C
n
1}, property predecessor clusters PC2 = {C1

2, . . . ,C
n
2}

and IO × IO into property clusters PC12 = {C1
12, . . . ,C

n
12} such that the clusters satisfy:

∀C ∈ CC.(∀a1, a2 ∈ C.(LAn (a1) = LAn (a2)))
∀C ∈ PC1.(∀a1, a2 ∈ C.(LAn (a1) = LAn (a2) and P1(a1) = P1(a2)))
∀C ∈ PC2.(∀a1, a2 ∈ C.(LAn (a1) = LAn (a2) and P2(a1) = P2(a2)))

∀C ∈ PC12.(∀〈a1, a2〉, 〈a3, a4〉 ∈ C.(LAn (a1) = LAn (a3),LAn (a2) = LAn (a4) and
LAn (〈a1, a2〉) = LAn (〈a3, a4〉)))

4 Query Answering and Query Atom Ordering

In this section, we describe two different algorithms (a static and a dynamic one) for
ordering the atoms of a query based on some costs and then we deal with the formulation
of these costs. We first introduce the abstract graph representation of a query q by means
of a labeled graph Gq on which we define the computed statistical costs.

Definition 2. A query join graph Gq for a query q is a tuple (V, E, EL), where

– V = q is a set of vertices (one for each query atom);
– E ⊆ V × V is a set of edges such that 〈at1, at2〉 ∈ E iff Vars(at1) ∩ Vars(at2) , ∅

and at1 , at2;
– EL is a function that assigns a set of variables to each 〈at1, at2〉 ∈ E such that

EL(at1, at2) = Vars(at1) ∩ Vars(at2).

In the remainder, we use a, b for individual names, x, y for variables, q for a query
{at1, . . . , atn} with query join graph Gq, and Ωq for the solution mappings of q.

Our goal is to find a query execution plan, which determines the evaluation order for
atoms in q. Since the number of possible execution plans is of order |q|!, the ordering
task quickly becomes impractical. In the following, we focus on greedy algorithms for
determining an execution order, which prune the search space considerably. Roughly
speaking, we proceed as follows: We define a cost function, which consists of two com-
ponents (i) an estimate for the reasoning costs and (ii) an estimate for the intermediate
result size. Both components are combined to induce an order among query atoms. In
this paper, we simply build the sum of the two cost components, but different combi-
nations such as a weighted sum of the two values could also be used. For the query
plan construction we distinguish static from dynamic planning. For the former, we start
constructing the plan by adding a minimal atom according to the order. Variables from
this atom are then considered bound, which changes the cost function and might induce
a different order among the remaining query atoms. Considering the updated order, we
again select the minimal query atom that is not yet in the plan and update the costs.
This process continues until the plan contains all atoms. Once a complete plan has been
determined the atoms are evaluated. The dynamic case differs in that after selecting an
atom for the plan, we immediately determine the solutions for the chosen atom, which
are then used to update the cost function. While this yields accurate cost estimates, it

can be very costly when all solutions are considered for updating the cost function.
Sampling techniques can be used to only test a subset of the solutions, but we show in
Section 5 that random sampling, i.e., randomly choosing a percentage of the individ-
uals from the so far computed solutions, is not adequate. For this reason, we propose
an alternative sampling approach that is based on the use of the previously described
individual clusters. We now make the process of query plan construction more precise,
but we leave the exact details of defining the cost function and the ordering it induces
to later.

Definition 3. A static (dynamic) cost function w.r.t. q is a function s : q × 2Vars(q) →

R × R (d : q × 2Γq → R × R). The two costs are combined to yield a static ordering �s

(dynamic ordering �d), which is a total order over the atoms of q.
An execution plan for q is a duplicate-free sequence of query atoms from q. The

initial execution plan is the empty sequence and a complete execution plan is a sequence
containing all atoms of q. For Pi = (at1, . . . , ati) with i < n an execution plan for q
with query join graph Gq = (V, E, EL), we define the potential next atoms qi for Pi

w.r.t. Gq as qi = q for Pi the initial execution plan and qi = {at | 〈at′, at〉 ∈ E, at′ ∈
{at1, . . . , ati}, at ∈ q\ {at1, . . . , ati}} otherwise. The static (dynamic) ordering induces an
execution plan Pi+1 = (at1, . . . , ati, ati+1) with ati+1 ∈ qi and ati+1 �s at (ati+1 �d at) for
each at ∈ qi such that at , ati+1.

For i > 0, the set of potential next atoms only contains atoms that are connected to
an atom that is already in the plan since unconnected atoms will cause an unnecessary
blowup of the number of intermediate results. Let Pi = (at1, . . . , ati) with i ≤ n be an
execution plan for q. The procedure to find the solution mappingsΩi for Pi is recursively
defined as follows: Initially, our solution set contains only the identity mapping Ω0 =

{µ0}, which does not map any variable to any value. Assuming that we have evaluated
the sequence Pi−1 = (at1, . . . , ati−1) and we have found the set of solution mappings
Ωi−1, in order to find the solution mappings Ωi of Pi, we use the instance retrieval tasks
of reasoners to extend the mappings in Ωi−1 to cover the new variables of ati or the
entailment check service of reasoners if ati does not contain new variables. A detailed
description of the method for evaluating a query atom together with optimizations can
be found in our previous work [7].

We now define the cost functions s and d more precisely, which estimate the cost of
the required reasoner operations (first component) and the estimated result output size
(second component) of evaluating a query atom. The intuition behind the estimated
value of the reasoner operation costs is that the evaluation of possible instances is much
more costly than the evaluation of known instances since possible instances require
expensive consistency checks whereas known instances require cheap cache lookups.
The estimated result size takes into account the number of known and possible instances
and the probability that possible instances are actual instances. Apart from the relations
K[C] and P[C] (K[R] and P[R]) for the known and possible instances of a class C
(property R) from Section 3, we use the following auxiliary relations:

Definition 4. Let R be a property and a an individual. We define sucK[R] and preK[R]
as the set of individuals with known R-successors and R-predecessors, respectively:

sucK[R] := {i | ∃ j.〈i, j〉 ∈ K[R]} and preK[R] := {i | ∃ j.〈 j, i〉 ∈ K[R]}.

Similarly, we define sucK[R, a] and preK[R, a] as the known R-successors of a and the
known R-predecessors of a, respectively:

sucK[R, a] := {i | 〈a, i〉 ∈ K[R]} and preK[R, a] := {i | 〈i, a〉 ∈ K[R]}.

We analogously define the functions sucP[R], preP[R], sucP[R, a], and preP[R, a] by
replacing P[C] and P[R] with K[C] and K[R], respectively. We write CL to denote the
cost of a cache lookup in the internal structures of the reasoner, CE for the cost of an
entailment check, and PIS for the possible instance success, i.e, the estimated percentage
of possible instances that are actual instances.

The costs CL and CE are determined by recording the average time of previously
performed lookups and entailment checks for the queried ontology, e.g., during the ini-
tial consistency check, classification, or for previous queries. In the case of CE , we
multiply this number with the depth of the class (property) hierarchy since we only
store the direct types of each individual (properties in which each individual partici-
pates) and, in order to find the instances of a class (property), we may need to check
all its subclasses (subproperties) that contain possible instances. The time needed for
an entailment check can change considerably between ontologies and even within an
ontology (depending on the involved classes, properties, and individuals). Thus, the use
of a single constant for the entailment cost is not very accurate, however, the definition
of different entailment costs before executing the reasoning task is very difficult.

The possible instance success, PIS , was determined by testing several ontologies
and checking how many of the initial possible instances were real ones, which was
around 50% in nearly all ontologies.

4.1 The Static and Dynamic Cost Functions

The static cost function s takes two components as input: a query atom and a set con-
taining the variables of the query atom that are considered bound. The function returns
a pair of real numbers for the reasoning cost and result size for the query atom.

Initially, all variables are unbound and we use the number of known and possible
instances or successors/predecessors to estimate the number of required lookups and
consistency checks for evaluating the query atom and for the resulting number of map-
pings. For an input of the form 〈C(x), ∅〉 or 〈R(x, y), ∅〉 the resulting pair of real numbers
for the computational cost and the estimated result size is computed as

〈|K[at]| ·CL + |P[at]| ·CE , |K[at]| + PIS · |P[at]|〉,

where at denotes the predicate of the query atom (C or R). If the query atom is a prop-
erty atom with a constant in the first place, i.e., the input to the cost function is of the
form 〈R(a, x), ∅〉, we use the relations for known and possible successors to estimate the
computational cost and result size:

〈|sucK[R, a]| ·CL + |sucP[R, a]| ·CE , |sucK[R, a]| + PIS · |sucP[R, a]|〉.

Analogously, we use preK and preP instead of sucK and sucP for an input of the form
〈R(x, a), ∅〉. Finally, if the atom contains only constants, i.e., the input to the cost func-
tion is of the form 〈C(a), ∅〉, 〈R(a, b), ∅〉, the function returns 〈CL, 1〉 if the individual is a

known instance of the class or property, 〈CE , PIS〉 if the individual is a possible instance
and 〈CL, 0〉 otherwise, i.e., if the individual is a known non-instance.

After determining the cost of an initial query atom, at least one variable of a con-
sequently considered atom is bound, since during the query plan construction we move
over atoms sharing a common variable and we assume that the query is connected. We
now define the cost functions for atoms with at least one variable bound. We make the
assumption that atoms with unbound variables are more costly to evaluate than atoms
with all their variables bound. For a query atom R(x, y) with only x bound, i.e., func-
tion inputs of the form 〈R(x, y), {x}〉, we use the average number of known and possible
successors of the property to estimate the computational cost and result size:〈

|K[R]|
|sucK[R]|

·CL +
|P[R]|
|sucP[R]|

·CE ,
|K[R]|
|sucK[R]|

+
|P[R]|
|sucP[R]|

·PIS

〉
In case only y in R(x, y) is bound, we use the predecessor functions preK and preP
instead of sucK and sucP. Note that we now work with an estimated average number
of successors (predecessors) for one individual.

For the remaining cases (atoms with all their variables bound), we use formulas
that are comparable to the ones above for an initial plan, but normalized to estimate the
values for one individual. The normalization is important for achieving compatibility
with the formulas described above for inputs of the form 〈R(x, y), {x}〉 and 〈R(x, y), {y}〉.
For an input query atom of the form C(x) with x a bound variable we use〈

|K[C]|
|IO|

·CL +
|P[C]|
|IO|

·CE ,
|K[C]| + PIS ·|P[C]|

|IO|

〉
Such a simple normalization is not always accurate, but leads to good results in most
cases as we show in Section 5. Similarly, we normalize the formulae for property atoms
of the form R(x, y) such that {x, y} is the set of bound variables of the atom. The two
cost components for these atoms are computed as〈

|K[R]|
|IO|

·CL +
|P[R]|
|IO|

·CE ,
|K[R]| + PIS ·|P[R]|

|IO|·|IO|

〉
For property atoms with a constant and a bound variable, i.e., atoms of the form R(a, x)
(R(x, a)) with x a bound variable, we use sucK[R, a] and sucP[R, a] (preK[R, a] and
preP[R, a]) instead of K[R] and P[R] in the above formulae.

The dynamic cost function d is based on the static function s, but only uses the first
equations, where the atom contains only unbound variables or constants. The function
takes a pair 〈at, Ω〉 as input, where at is a query atom and Ω is the set of solution
mappings for the atoms that have already been evaluated, and returns a pair of real
numbers using matrix addition as follows:

d(at, Ω) =
∑
µ∈Ω

s(µ(at), ∅)

When sampling techniques are used, we compute the costs for each of the potential
next atoms for an execution plan by only considering one individual of each relevant

Table 1. Query Ordering Example

Atom Sequences Known Instances Possible Instances Real from Possible Instances
1 C(x) 200 350 200
2 R(x,y) 200 200 50
3 D(y) 700 600 400
4 R(x,y), C(x) 100 150 100
5 R(x,y), D(y) 50 50 40
6 R(x,y), D(y), C(x) 45 35 25
7 R(x,y), C(x), D(y) 45 40 25

cluster. Which cluster is relevant depends on the query atom for which we compute the
cost function and the previously computed bindings. For instance, if we compute the
cost of a property atom R(x, y) and we already determined bindings for x, we use the
property successor cluster PC1. Among the x bindings, we then just check the cost for
one binding per cluster and assign the same cost to all other x bindings of the same
cluster.

A motivating example showing the difference between static and dynamic ordering
and justifying why dynamic ordering can be beneficial in our setting is shown below.
Let us assume that a query q consists of the three query atoms: C(x), R(x, y), D(y).
Table 1 gives information about the known and possible instances of these atoms within
a sequence. In particular, the first column enumerates possible execution sequences
S i = (at1, . . . , ati) for the atoms of q. Column 2 (3) gives the number of mappings to
known (possible) instances of ati (i.e., the number of known (possible) instances of ati)
that satisfy at the same time the atoms (at1, . . . , ati−1). Column 4 gives the number of
possible instances of ati from Column 3 that are real instances (that belong toΩi). Let us
assume that we have 10,000 individuals in our ontology O. We will now explain via the
example what the formulas described above are doing. We assume that CL ≤ CE which
is always the case since a cache lookup is less expensive than a consistency check. In
both techniques (static and dynamic) the atom R(x, y) will be chosen first since it has
the least number of possible instances (200) while it has the same (or smaller) number
of known instances (200) as the other atoms:

s(R(x, y), ∅) = d(R(x, y), {µ0}) = 〈200 ·CL + 200 ·CE , 200 + PIS · 200〉,
s(C(x), ∅) = d(C(x), {µ0}) = 〈200 ·CL + 350 ·CE , 200 + PIS · 350〉,
s(D(y), ∅) = d(D(y), {µ0}) = 〈700 ·CL + 600 ·CE , 700 + PIS · 600〉.

In the case of static ordering, the atom C(x) is chosen after R(x, y) since C has less
possible (and known) instances than D (350 versus 600):

s(C(x), {x}) =

〈
200

10, 000
·CL +

350
10, 000

·CE ,
200 + 350 · PIS

10, 000

〉
,

s(D(y), {y}) =

〈
700

10, 000
·CL +

600
10, 000

·CE ,
700 + 600 · PIS

10, 000

〉
.

Hence, the order of evaluation in this case will be P = (R(x, y),C(x),D(y)) leading to
200 (row 2)+150 (row 4)+40 (row 7) entailment checks. In the dynamic case, after the

evaluation of R(x, y), which gives a set of solutions Ω1, the atom D(y) has fewer known
and possible instances (50 known and 50 possible) than the atom C(x) (100 known and
150 possible) and, hence, a lower cost:

d(D(y), Ω1) = 〈50 ·CL + 150 ·CL + 50 ·CE , 50 + 0 + 50 · PIS〉,

d(C(x), Ω1) = 〈100 ·CL + 0 ·CL + 150 ·CE , 100 + 0 + 150 · PIS〉.

Note that applying a solution µ ∈ Ω1 to D(y) (C(x)) results in a query atom with a
constant in place of y (x). For D(y), it is the case that out of the 250 R-instances, 200
can be handled with a look-up (50 turn out to be known instances and 150 turn out not to
be instances of D), while 50 require an entailment check. Similarly, when considering
C(x), we need 100 lookups and 150 entailment checks. Note that we assume the worst
case in this example, i.e., that all values that x and y take are different. Therefore, the
atom D(y) will be chosen next leading to the execution of the query atoms in the order
P = (R(x, y),D(y),C(x)) and the execution of 200 (row 2) + 50 (row 5) + 35 (row 6)
entailment checks.

5 Evaluation

We tested our ordering techniques with the Lehigh University Benchmark (LUBM) [4]
as a case where no disjunctive information is present and with the more expressive Uni-
versity Ontology Benchmark (UOBM) [8] using the HermiT5 hypertableau reasoner.
All experiments were performed on a Mac OS X Lion machine with a 2.53 GHz Intel
Core i7 processor and Java 1.6 allowing 1GB of Java heap space. We measure the time
for one-off tasks such as classification separately since such tasks are usually performed
before the system accepts queries. The ontologies and all code required to perform the
experiments are available online.6

We first used the 14 conjunctive ABox queries provided in LUBM. From these,
queries 2, 7, 8, 9 are the most interesting ones in our setting since they contain many
atoms and ordering them can have an effect in running time. We tested the queries on
LUBM(1,0) and LUBM(2,0) which contain data for one or two universities respec-
tively, starting from index 0. LUBM(1,0) contains 17,174 individuals and LUBM(2,0)
contains 38,334 individuals. LUBM(1,0) took 19 s to load and 0.092 s for classification
and initialization of known and possible instances of classes and properties. The clus-
tering approach for classes took 1 s and resulted in 16 clusters. The clustering approach
for properties lasted 4.9 s and resulted in 17 property successor clusters, 29 property
predecessor clusters and 87 property clusters. LUBM(2,0) took 48.5 s to load and 0.136
s for classification and initialization of known and possible instances. The clustering
approach for classes took 3.4 s and resulted in 16 clusters. The clustering approach for
properties lasted 16.3 s and resulted in 17 property successor clusters, 31 property pre-
decessor clusters and 102 property clusters. Table 2 shows the execution time for each
of the four queries for LUBM(1,0) and LUBM(2,0) for four cases: i) when we use the
static algorithm (columns 2 and 6), ii) when we use the dynamic algorithm (columns

5 http://www.hermit-reasoner.com/
6 http://code.google.com/p/query-ordering/

Table 2. Query answering times in milliseconds for LUBM(1,0) and LUBM(2,0) using i) the
static algorithm ii) the dynamic algorithm, iii) 50% random sampling (RSampling), iv) the con-
structed individual clusters for sampling (CSampling)

LUBM(1,0) LUBM(2,0)
Query Static Dynamic RSampling CSampling Static Dynamic RSampling CSampling
∗2 51 119 390 37 162 442 1,036 153
7 25 29 852 20 70 77 2,733 64
8 485 644 639 551 622 866 631 660
∗9 1,099 2,935 3,021 769 6,108 23,202 14,362 3,018

Table 3. Statistics about the constructed plans and chosen orderings and running times in mil-
liseconds for the orderings chosen by Pellet and for the worst constructed plans

Query PlansNo Chosen Plan Order Pellet Plan Worst Plan
Static Dynamic Sampling

2 336 2 1 1 51 4,930
7 14 1 1 1 25 7,519
8 56 1 1 1 495 1,782
9 336 173 160 150 1,235 5,388

3 and 7), iii) when we use random sampling, i.e., taking half of the individuals that
are returned (from the evaluation of previous query atoms) in each run, to decide about
the next cheapest atom to be evaluated in the dynamic case and iv) using the proposed
sampling approach that is based on clusters constructed from individuals in the queried
ontology (columns 4 and 8). The queries marked with (*) are the queries where the
static and dynamic algorithms result in a different ordering. In queries 7 and 8 we ob-
serve an increase in running time when the dynamic technique is used (in comparison to
the static) which is especially evident on query 8 of LUBM(2,0), where the number of
individuals in the ontology and the intermediate result sizes are larger. Dynamic order-
ing also behaves worse than static in queries 2 and 9. This happens because, although
the dynamic algorithm chooses a better ordering than the static algorithm, the interme-
diate results (that need to be checked in each iteration to determine the next query atom
to be executed) are quite large and hence the cost of iterating over all possible map-
pings in the dynamic case far outweighs the better ordering that is obtained. We also
observe that a random sampling for collecting the ordering statistics in the dynamic
case (checking only 50% of individuals in Ωi−1 randomly for detecting the next query
atom to be executed) leads to much worse results in most queries than plain static or
dynamic ordering. This happens since random sampling often leads to the choice of a
worse execution order. The use of the cluster based sampling method performs better
than the plain dynamic algorithm in all queries. In queries 2 and 9, the gain we have
from the better ordering of the dynamic algorithm is much more evident. This is the
case since we use at most one individual from every cluster for the cost functions com-
putation and the number of clusters is much smaller than the number of the otherwise
tested individuals in each run.

In order to show the effectiveness of our proposed cost functions we compared
the running times of all the valid plans (plans constructed according to Definition 3)

with the running time of the plan chosen by our method. In the following we show
the results for LUBM(1, 0), but the results for LUBM(2,0) are comparable. In Table
3 we show, for each query, the number of plans that were constructed (column 2), the
order of the plan chosen by the static, dynamic, and cluster based sampling methods
if we order the valid plans by their execution time (columns 3,4,5; e.g., a value of 2
indicates that the ordering method chose the second best plan), the running time of
HermiT for the plan that was created by Pellet7 (column 6) as well as the running time
of the worst constructed plan (column 7). The comparison of our ordering approach with
the approach followed by other reasoners that support conjunctive query answering such
as Pellet or Racer8 is not very straightforward. This is the case because Pellet and Racer
have many optimizations for instance retrieval [11, 5], which HermiT does not have.
Thus, a comparison between the execution times of these reasoners and HermiT would
not convey much information about the effectiveness of the proposed query ordering
techniques. The idea of comparing only the orderings computed by other reasoners
with those computed by our methods is also not very informative since the orderings
chosen by different reasoners depend much on the way that queries are evaluated and
on the costs of specific tasks in these reasoners and, hence, are reasoner dependent,
i.e., an ordering that is good for one reasoner and which leads to an efficient evaluation
may not be good for another reasoner. We should note that when we were searching
for orderings according to Pellet, we switched off the simplification optimization that
Pellet implements regarding the exploitation of domain and range axioms of the queried
ontology for reducing the number of query atoms to be evaluated [10]. This has been
done in order to better evaluate the difference of the plain ordering obtained by Pellet
and HermiT since our cost functions take into account all the query atoms.

We observe that for all queries apart from query 9 the orderings chosen by our algo-
rithms are the (near)optimal ones. For queries 2 and 7, Pellet chooses the same ordering
as our algorithms. For query 8, Pellet chooses an ordering which, when evaluated with
HermiT, results in higher execution time. For query 9, our algorithms choose plans from
about the middle of the order over all the valid plans w.r.t. query execution time, which
means that our algorithms do not perform well in this query. This is because of the
greedy techniques we have used to find the execution plan which take into account only
local information to choose the next query atom to be executed. Interestingly, the use
of cluster based sampling has led to the finding of a better ordering, as we can see from
the running time in Table 2 and the better ordering of the plan found with cluster based
sampling techniques compared to static or plain dynamic ordering (Table 3). The order-
ing chosen by Pellet for query 9 does also not perform well. We see that, in all queries,
the worst running times are many orders of magnitude greater than the running times
achieved by our ordering algorithms. In general, we observe that in LUBM static tech-
niques are adequate and the use of dynamic ordering does not improve the execution
time much compared to static ordering.

Unlike LUBM, the UOBM ontology contains disjunctions and the reasoner makes
also nondeterministic derivations. In order to reduce the reasoning time, we removed
the nominals and only used the first three departments containing 6,409 individuals. The

7 http://clarkparsia.com/pellet/
8 http://www.racer-systems.com

Table 4. Query answering times in seconds for UOBM (1 university, 3 departments) and statistics

Query Static Dynamic CSampling PlansNo Chosen Plan Order Pellet Plan Worst Plan
Static Dynamic Sampling

4 13.35 13.40 13.41 14 1 1 1 13.40 271.56
9 186.30 188.58 185.40 8 1 1 1 636.91 636.91

11 0.98 0.84 1.67 30 1 1 1 0.98 > 30 min
12 0.01 0.01 0.01 4 1 1 1 0.01 > 30 min
14 94.61 90.60 93.40 14 2 1 1 > 30 min > 30 min
q1 191.07 98.24 100.25 6 2 1 1 > 30 min > 30 min
q2 47.04 22.20 22.51 6 2 1 1 22.2 > 30 min

resulting ontology took 16 s to load and 0.1 s to classify and initialize the known and
possible instances. The clustering approach for classes took 1.6 s and resulted in 356
clusters. The clustering approach for properties lasted 6.3 s and resulted in 451 prop-
erty successor clusters, 390 property predecessor clusters and 4,270 property clusters.
We ran our static and dynamic algorithms on queries 4, 9, 11, 12 and 14 provided in
UOBM, which are the most interesting ones because they consist of many atoms. Most
of these queries contain one atom with possible instances. As we see from Table 4,
static and dynamic ordering show similar performance in queries 4, 9, 11 and 12. Since
the available statistics in this case are quite accurate, both methods find the optimal
plans and the intermediate result set sizes are small. For both ordering methods, atoms
with possible instances for these queries are executed last. In query 14, the dynamic al-
gorithm finds a better ordering which results in improved performance. The effect that
the cluster based sampling technique has on the running time is not as obvious as in
the case of LUBM. This happens because in the current experiment the intermediate
result sizes are not very large and, most importantly, because the gain obtained due to
sampling is in the order of milliseconds whereas the total query answering times are in
the order of seconds obscuring the small improvement in running time due to sampling.
In all queries the orderings that are created by Pellet result in the same or worse running
times than the orderings created by our algorithms.

In order to illustrate when dynamic ordering performs better than static, we also
created the two custom queries:

q1 = { isAdvisedBy(x,y), GraduateStudent(x), Woman(y) }
q2 = { SportsFan(x), GraduateStudent(x), Woman(x) }

In both queries, P[GraduateStudent], P[Woman] and P[isAdvisedBy] are non-empty,
i.e., the query concepts and properties have possible instances. The running times for
dynamic ordering are smaller since the more accurate statistics result in a smaller num-
ber of possible instances that have to be checked during query execution. In particular,
for the static ordering, 151 and 41 possible instances have to be checked in query q1 and
q2, respectively, compared to only 77 and 23 for the dynamic ordering. Moreover, the
intermediate results are generally smaller in dynamic ordering than in static leading to
a significant reduction in the running time of the queries. Interestingly, query q2 could
not be answered within the time limit of 30 minutes when we transformed the three
query classes into a conjunction, i.e., when we asked for instances of the intersection

of the three classes. This is because for complex classes the reasoner can no longer use
the information about known and possible instances and falls back to a more naive way
of computing the class instances. Again, for the same reasons as before, the sampling
techniques have no apparent effect on the running time of these queries.

6 Related work

The problem of finding good orderings for the atoms of a query issued over an ontology
has already been preliminarily studied [10, 5].

Similarly to our work, Sirin et al. exploit reasoning techniques and information pro-
vided by reasoner models to create statistics about the cost and the result size of query
atom evaluations within execution plans. A difference is that they use cached models
for cheaply finding obvious class and property (non-)instances, whereas in our case we
do not cache any model or model parts. Instead we process the pre-model constructed
for the initial ontology consistency check and extract the known and possible instances
of classes and properties from it. We subsequently use this information to create and up-
date the query atom statistics. Moreover, Sirin et al. compare the costs of complete exe-
cution plans —after heuristically reducing the huge number of possible complete plans
— and choose the one that is most promising before the beginning of query execution.
This is different from our cheap greedy algorithm that finds, at each iteration, the next
most promising query atom. Our experimental study shows that this is equally effective
as the investigation of all possible execution orders. Moreover, in our work we have
additionally used dynamic ordering combined with clustering techniques, apart from
static ones, and have shown that these techniques lead to better performance particu-
larly in ontologies that contain disjunctions and do now allow for purely deterministic
reasoning.

Haarslev et al. discuss by means of an example the ordering criteria they use to find
efficient query execution plans. In particular, they use traditional database cost based
optimization techniques, which means that they take into account only the cardinality
of class and property atoms to decide about the most promising ordering. As previously
discussed, this can be inadequate especially for ontologies with disjunctive information.

7 Conclusions

In the current paper, we presented a method for ordering the atoms of a conjunctive
instance query that is issued over an OWL ontology. We proposed a method for the
definition of cost formulas that are based on information extracted from models of a
reasoner (in our case HermiT). We have devised two algorithms, a static and a dy-
namic one, for finding a good order and show through an experimental study that static
techniques are quite adequate for ontologies in which reasoning is deterministic. When
reasoning is nondeterministic, however, dynamic techniques often perform better. The
use of cluster based sampling techniques can improve the performance of the dynamic
algorithm when the intermediate result sizes of queries are sufficiently large, whereas
random sampling was not beneficial and often led to suboptimal query execution plans.

Future work will include the definition of additional cost measures and sampling
criteria for ordering query atoms and the evaluation of our ordering techniques on a
broader set of ontologies and queries.
Acknowledgements This work was done within the Transregional Collaborative Re-
search Centre SFB/TRR 62 “Companion-Technology for Cognitive Technical Systems”
funded by the German Research Foundation (DFG).

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press, second edn. (2007)

2. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the descrip-
tion logic SHIQ. Journal of Artificial Intelligence Research 31, 151–198 (2008)

3. Glimm, B., Horrocks, I., Motik, B., Shearer, R., Stoilos, G.: A novel approach to ontology
classification. Journal of Web Semantics: Science, Services and Agents on the World Wide
Web, Accepted (2012)

4. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. J. Web
Semantics 3(2-3), 158–182 (2005)

5. Haarslev, V., Möller, R.: On the scalability of description logic instance retrieval. J. Autom.
Reason. 41(2), 99–142 (Aug 2008)

6. Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In: Brewka, G., Lang, J. (eds.)
Proc. 11th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’08).
pp. 274–284. AAAI Press (2008)

7. Kollia, I., Glimm, B., Horrocks, I.: SPARQL query answering over OWL ontologies. In:
Proceedings of the 8th Extended Semantic Web Conference (ESWC 2011). pp. 382–396.
Lecture Notes in Computer Science, Springer-Verlag (2011)

8. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete OWL ontology
benchmark. In: The Semantic Web: Research and Applications, chap. 12, pp. 125–139. Lec-
ture Notes in Computer Science, Springer (2006)

9. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics. Journal
of Artificial Intelligence Research 36, 165–228 (2009)

10. Sirin, E., Parsia, B.: Optimizations for answering conjunctive ABox queries: First results. In:
Proc. of the Int. Description Logics Workshop DL (2006)

11. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL rea-
soner. J. of Web Semantics 5(2), 51–53 (2007)

12. Steinbrunn, M., Moerkotte, G., Kemper, A.: Heuristic and randomized optimization for the
join ordering problem. VLDB Journal 6, 191–208 (1997)

13. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic graph pat-
tern optimization using selectivity estimation. In: Proceedings of the 17th international con-
ference on World Wide Web. pp. 595–604. WWW ’08, ACM, New York, NY, USA (2008)

14. Tsarkov, D., Horrocks, I., Patel-Schneider, P.F.: Optimizing terminological reasoning for ex-
pressive description logics. J. Autom. Reasoning 39(3), 277–316 (2007)

