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Abstract

When ontological knowledge is acquired automatically, quality control is essential. Which part of the automatically
acquired knowledge is appropriate for an application often depends on the context in which the knowledge base or
ontology is used. In order to determine relevant and irrelevant or even wrong knowledge, we support the tightest
possible quality assurance approach – an exhaustive manual inspection of the acquired data. By using automated
reasoning, this process can be partially automatized: after each expert decision, axioms that are entailed by the already
confirmed statements are automatically approved, whereas axioms that would lead to an inconsistency are declined.

Starting from this consideration, this paper provides theoretical foundations, heuristics, optimization strategies and
comprehensive experimental results for our approach to efficient reasoning-supported interactive ontology revision.

We introduce and elaborate on the notions of revision states and revision closure as formal foundations of our
method. Additionally, we propose a notion of axiom impact which is used to determine a beneficial order of axiom
evaluation in order to further increase the effectiveness of ontology revision. The initial notion of impact is then further
refined to take different validity ratios – the proportion of valid statements within a dataset – into account. Since the
validity ratio is generally not known a priori – we show how one can work with an estimate that is continuously
improved over the course of the inspection process.

Finally, we develop the notion of decision spaces, which are structures for calculating and updating the revision
closure and axiom impact. We optimize the computation performance further by employing partitioning techniques
and provide an implementation supporting these optimizations as well as featuring a user front-end. Our evaluation
shows that our ranking functions almost achieve the maximum possible automatization and that the computation time
needed for each reasoning-based, automatic decision takes less than one second on average for our test dataset of over
25,000 statements.
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1. Introduction

Many real-world applications in the Semantic Web
make use of ontologies, also called knowledge bases, in
order to enrich the semantics of the data on which the
application is based. As a popular example, consider
DBpedia, which consists of structured information ex-
tracted from Wikipedia. DBpedia uses a background
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ontology defining the meaning of and relationships be-
tween terms. For example, if two terms are related via
the property river, the first one can be inferred to be an
instance of the class Place and the latter one of the class
River.

In order to ensure a very high quality, the DB-
pedia background ontology has been created manu-
ally. For many applications, however, the time costs
of a completely manual knowledge acquisition pro-
cess are too high. Thus, the additional application of
(semi-)automatic knowledge acquisition methods such
as ontology learning or matching techniques is often
considered a reasonable way to reduce the expenses of
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SubClassOf(ex:AluminiumNitrideNanotube ex:AluminiumNitride)

SubClassOf(ex:AluminiumNitride ex:NonOxideCeramics)

SubClassOf(ex:NonOxideCeramics ex:Ceramics)

SubClassOf(ex:Ceramics ex:MaterialByMaterialClass)

SubClassOf(ex:MaterialByMaterialClass ex:Material)

SubClassOf(ex:Material ex:PortionOfMaterial)

SubClassOf(ex:Material ex:TangibleObject)

ClassAssertion(ex:AluminiumNitrideNanotube ex:nanotube1) (1)
ClassAssertion(ex:AluminiumNitride ex:nanotube1) (2)
ClassAssertion(ex:NonOxideCeramics ex:nanotube1) (3)
ClassAssertion(ex:Ceramics ex:nanotube1) (4)
ClassAssertion(ex:MaterialByMaterialClass ex:nanotube1) (5)
ClassAssertion(ex:Material ex:nanotube1) (6)
ClassAssertion(ex:PortionOfMaterial ex:nanotube1) (7)
ClassAssertion(ex:TangibleObject ex:nanotube1) (8)

Table 1: An example ontology from the nano technology domain

ontology development. The results produced by such
automatic methods usually need to be manually in-
spected either partially, in order to estimate the over-
all quality of the resulting data, or to the full extent, in
order to keep the quality of the developed ontology un-
der control. Even when we aim at taking an ontology
that has been developed in another area or as part of an-
other application, it might not be appropriate to simply
use the ontology as it is since statements that hold in
the context of one application not necessarily hold in a
different context.

So far, knowledge representation (KR) research has
been focusing on restoring the consistency of knowl-
edge bases enriched with new axioms as done in var-
ious belief revision and repair approaches, see, e.g.,
[3, 4, 5, 6, 7]. Thereby, new axioms not causing an
inconsistency are accepted as valid facts not requiring
further inspection. We aim at a more restrictive qual-
ity control process in which a domain expert inspects a
set of candidate axioms and decides for each of them
whether it is a desired logical consequence. We call this
exhaustive manual inspection of the acquired data ontol-
ogy revision. If we assume that the deductive closure of
the confirmed statements must be disjoint from the set
of declined statements, then this process can be partially
automatized: based on the decisions taken by the expert,
we can automatically discard or include yet unevaluated
axioms depending on their logical relationships with the
already evaluated axioms. On the one hand, we can au-

tomatically approve axioms that are entailed by the al-
ready confirmed statements, since declining then would
violate our assumption. On the other hand, we can au-
tomatically decline axioms that would cause any of the
declined axioms to become a consequence of the con-
firmed ones, since accepting then would again violate
our assumption.

Throughout the paper, we use the following running
example written in OWL’s functional-style syntax [8].
We use an imaginary prefix ex to abbreviate IRIs:

Example 1. Consider the ontology in Table 1. Let us
assume that we have already confirmed that the axioms
in the upper part, which state subclass relations be-
tween classes, belong to the desired consequences.

We further assume that Axiom (1) to Axiom (8) in the
lower part, which define several different types for the
individual ex:nanotube1, are still to be evaluated.

If Axiom (8) is declined, we can immediately also de-
cline Axioms (1) to (6) assuming OWL or RDFS reason-
ing since accepting the axioms would implicitly lead to
the undesired consequence (8). Note that no automatic
decision is possible for Axiom (7) since it is not a con-
sequence of Axiom (8) and the already approved sub-
sumption axioms. Similarly, if Axiom (1) is approved,
Axioms (2) to (8) are implicit consequences, which can
be approved automatically. If we start, however, with
declining Axiom (1), no automatic evaluation can be
performed.
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SubClassOf(a:Ordinary a:Employee)

SubClassOf(a:Employee a:Person)

SubClassOf(b:Ordinary b:Lecture)

SubClassOf(b:Lecture b:Event)

DisjointClasses(a:Person b:Event) (9)
DisjointClasses(a:Employee b:Lecture) (10)
EquivalentClasses(a:Ordinary b:Ordinary) (11)

Table 2: An example ontology from the enterprise domain

In the previous example, we only made decisions
about class assertion axioms since we assumed that all
subclass axioms were already approved or part of an al-
ready established ontology. This is, however, not a re-
striction of the approach. The following example shows
that we can also make decisions about terminological
axioms in the process of revising an ontology. We char-
acterize the formalisms and kinds of axioms to which
our approach can be applied more precisely in the fol-
lowing section. We use imaginary prefixes a and b to
abbreviate IRIs in this example:

Example 2. Let us assume that we have already ap-
proved the axioms in the upper part of Table 2, which
state subclass relations between classes. We further as-
sume that Axiom (9) to Axiom (11) in the lower part of
Table 2 are still to be evaluated. If Axiom (9) is ap-
proved, we can immediately also approve Axiom (10)
since it is already a consequence of the approved ax-
ioms: a:Employee is interpreted as a subset of the exten-
sion of a:Person and b:Lecture is interpreted as a subset
of the extension of b:Event, but if a:Person and b:Event
are disjoint due the just approved Axiom (9) then so
are a:Employee and b:Lecture. Moreover, we can de-
cline Axiom (11), since approving this axiom would im-
plicitly lead to incoherency, again since a:Ordinary and
b:Ordinary have to be interpreted as subsets of disjoint
sets and can, therefore, not be equivalent.

From the above examples, it can be observed that

• a high grade of automation requires a good evalua-
tion order and

• approval and decline of an axiom has a different
impact.

Which axioms have the highest impact on decline or
approval and which axioms can be automatically eval-
uated once a particular decision has been made can be

determined with the help of algorithms for automated
reasoning, e.g., for RDFS or OWL reasoning. One of
the difficulties is, however, that it is not known in ad-
vance, which of the two decisions the domain expert
takes. We show that, in some cases, a realistic predic-
tion about the decision of the user can be made: if the
quality is fairly high, the user is likely to approve an ax-
iom. Hence, axioms that have a high impact on approval
(approval impact) should be evaluated with higher pri-
ority. For low quality data, the situation is reversed, i.e.,
axioms that have a high impact on decline (decline im-
pact) should be considered first. We measure the qual-
ity by means of the validity ratio, i.e., the proportion
of (manually and automatically) accepted axioms, and
show that, depending on the validity ratio of a dataset,
different impact measures used for axiom ranking are
beneficial. While approval and decline impact measures
yield fairly good results for validity ratios close to 100%
or 0%, the optimality of results is left to chance in case
of validity ratios close to 50%. To close this gap, we
introduce an advanced ranking function based on these
simple impact measures but parametrized by an esti-
mated validity ratio. In our evaluation, we show that
the revision based on the novel ranking function almost
achieves the maximum possible automation. In par-
ticular the parametrized ranking functions achieve very
good results for arbitrary validity ratios.

Further, since the expected validity ratio is usually
not known in advance, we suggest a ranking function
where the validity ratio is learned on-the-fly during the
revision. We show that, even for small datasets (50-
100 axioms), it is worthwhile to rank axioms based on
this learned validity ratio instead of evaluating them in
a random order. Furthermore, we show that, in case of
larger datasets (e.g., 5,000 axioms and more) with an
unknown validity ratio, learning the validity ratio is par-
ticularly effective (with only 0.3% loss of effectiveness)
due to the law of large numbers, thereby making the
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assumption of a known or expected validity ratio un-
necessary. For such datasets, our experiments show that
the proportion of automatically evaluated axioms when
learning the validity ratio is nearly the same (difference
of 0.3%) as in case where the validity ratio is known in
advance.

Even for light-weight knowledge representation for-
malisms, reasoning is often expensive and in an inter-
active setting it is crucial to minimize the number of
reasoning tasks while still maximizing the number of
automated decisions. Inspired by the techniques used
to optimize ontology classification [9], we reduce the
number of reasoning tasks by introducing the notion of
decision spaces – auxiliary data structures that allow for
storing the results of reasoning and reading-off the im-
pact that an axiom will have upon approval or decline.
Decision spaces exploit the characteristics of the log-
ical entailment relation between axioms to maximize
the amount of information gained by reasoning, and,
therefore, in particular in case of logics for which en-
tailment checking is not tractable, decision spaces re-
duce the computational effort. In addition to the perfor-
mance gain achieved by using decision spaces, we show
that partitioning – dividing the datasets under revision
into logically independent subsets – further decreases
the number of required reasoning calls.

We implemented the proposed techniques in the tool
revision helper, which even for expressive OWL reason-
ing and our dataset of 25,000 axioms requires on aver-
age only 0.84 seconds (7.4 reasoning calls) per expert
decision, where the automatic evaluation significantly
reduces the number of expert decisions.

From our evaluation, it can be observed that, on the
one hand, a considerable proportion (up to 80%) of ax-
ioms can be evaluated automatically by our revision
support, and, on the other hand, an application of de-
cision spaces and partitioning significantly reduces the
number of required reasoning operations, resulting in a
considerable performance gain – 83% of reasoning calls
could be avoided.

The paper is organized as follows: In Section 2, we
formalize the basic notions of reasoning-supported on-
tology revision. In Section 3, we define decision spaces
and show how they can be updated during the revision.
Section 4 describes the proposed parameterized rank-
ing function. Section 5 introduces the partitioning opti-
mization and we evaluate the approach in Section 6. We
then present the user front-end revision helper in Sec-
tion 7 and discuss existing related approaches in Section
8 before we conclude in Section 9.

The paper combines and extends previous work [1, 2]
with full proofs.

2. Revision of Ontologies

The approach proposed here is not specific to a partic-
ular KR formalism. The only requirement for the cho-
sen formalism is that it is logic-based, there is a proce-
dure for deciding whether an ontology entails an axiom,
and that taking all consequences is a closure operation.
The latter means that, for O,O′ ontologies, the under-
lying entailment relation, denoted |=, has the following
properties:1

1. it is extensive, i.e., any statement logically follows
from itself: {α} |= α,

2. it is monotone, i.e., adding further statements does
not invalidate previous consequences: O |= α im-
plies O ∪O′ |= α, and

3. it is idempotent, i.e., extending an ontology with an
entailed axiom does not yield new consequences:
O |= α and O ∪ {α} |= β imply O |= β.

Most commonly used ontology languages for the Se-
mantic Web such as RDFS or OWL fulfill these require-
ments. For OWL ontologies we are, however, restricted
to the Description Logic based OWL Direct Semantics
[10] since we require the existence of a decision pro-
cedure for logical entailment. The OWL 2 RL profile
[11] allows for decidable reasoning under OWL’s RDF-
Based Semantics, but it is defined in terms of rules that
materialize only certain inferences, namely assertions
about individuals in the ontology such as class member-
ships or property relations between individuals. Other
entailed consequences are not necessarily derived by the
OWL 2 RL rules. Thus, completeness can only be guar-
anteed when the entailment checks are only for asser-
tions about individuals in the ontology and our approach
is only applicable for revising assertions, whereas, in
general, any kind of axiom can be used in the revision.

The revision of an ontology O aims at a separation
of its axioms (i.e., logical statements) into two disjoint
sets: the set of wanted consequences O |= and the set
of unwanted consequences O 6|=. This motivates the fol-
lowing definitions.

Definition 1 (Revision State). A revision state is de-
fined as a tuple (O,O |=,O 6|=) of ontologies withO |= ⊆
O,O 6|= ⊆ O, and O |= ∩ O 6|= = ∅. Given two revi-
sion states (O,O |=1 ,O

6|=
1 ) and (O,O |=2 ,O

6|=
2 ), we call

(O,O |=2 ,O
6|=
2 ) a refinement of (O,O |=1 ,O

6|=
1 ), if O |=1 ⊆

O |=2 and O 6|=1 ⊆ O
6|=
2 . A revision state is complete, if

1Throughout this paper, we assume that an ontology is a set of
axioms, and will use α, β, and γ to denote axioms.

4



O = O |= ∪ O 6|=, and incomplete otherwise. An in-
complete revision state (O,O |=,O 6|=) can be refined by
evaluating a further axiom α ∈ O \ (O |= ∪ O 6|=), ob-
taining (O,O |= ∪ {α},O 6|=) or (O,O |=,O 6|= ∪ {α}).
We call the resulting revision state an elementary re-
finement of (O,O |=,O 6|=).

We introduce the notion of consistency of revision states
to express the condition that the deductive closure of
the wanted consequences in O |= must not contain un-
wanted consequences. If we want to maintain consis-
tency, a single evaluation decision can predetermine the
decision for several yet unevaluated axioms. These im-
plicit consequences of a refinement are captured in the
revision closure.

Definition 2 (Revision State Consistency & Closure).
A (complete or incomplete) revision state
(O,O |=,O 6|=) is consistent if there is no α ∈ O 6|=
such that O |= |= α. The revision closure
clos(O,O |=,O 6|=) of (O,O |=,O 6|=) is (O,O |=c ,O 6|=c )
with O |=c := {α ∈ O | O |= |= α} and
O 6|=c := {α ∈ O | O |= ∪ {α} |= β for some β ∈ O 6|=}.

Note that, in order to be able to maintain the consistency
of a revision state, O 6|=c must contain all axioms that, in
case of an accept, would lead to an entailment of any
unwanted consequences. We can show the following
useful properties of the closure of consistent revision
states:

Lemma 1. For (O,O |=,O 6|=) a consistent revision
state,

1. clos(O,O |=,O 6|=) is consistent,
2. every elementary refinement of clos(O,O |=,O 6|=)

is consistent,
3. every consistent and complete refine-

ment of (O,O |=,O 6|=) is a refinement of
clos(O,O |=,O 6|=).

Proof. The first claim is immediate by the definition of
consistency and closures of revisions. For the second
claim, (O,O |=,O 6|=) is consistent by assumption and
clos(O,O |=,O 6|=) is then consistent (by the first claim).
Since clos(O,O |=,O 6|=) is a closure of (O,O |=,O 6|=),
we have clos(O,O |=,O 6|=) = (O, {α ∈ O | O |= |=
α}, {α ∈ O | O |= ∪ {α} |= β for some β ∈ O 6|=}).
Since an elementary revision of clos(O,O |=,O 6|=) has
to be for an axiom α ∈ O \ ({β | O |= |= β} ∪ {β |
O 6|= ∪ β |= γ for some γ ∈ O 6|=}), we immediately
get that the elementary refinement is consistent. For the
last claim, if clos(O,O |=,O 6|=) is already complete, the
claim trivially holds. Otherwise, since (O,O |=,O 6|=)

Algorithm 1 Interactive Ontology Revision
Input: (O,O |=0 ,O

6|=
0 ) a consistent revision state

Output: (O,O |=,O 6|=) a complete and consistent revi-
sion state

1: (O,O |=,O 6|=)← clos(O,O |=0 ,O
6|=
0 )

2: while O |= ∪ O 6|= 6= O do
3: choose α ∈ O \ (O |= ∪ O 6|=)
4: if expert confirms α then
5: (O,O |=,O 6|=)← clos(O,O |= ∪ {α},O 6|=)
6: else
7: (O,O |=,O 6|=)← clos(O,O |=,O 6|= ∪ {α})
8: end if
9: end while

is consistent, we cannot make elementary refinements
that add an axiom α ∈ {β | O |= |= β} to O 6|=
since this would result in an inconsistent refinement,
neither can we add an axiom α ∈ {β | O 6|= ∪ β |=
γ for some γ ∈ O 6|=} to O |=. Thus, a complete and
consistent refinement of (O,O |=,O 6|=) is a refinement
of clos(O,O |=,O 6|=). 2

Algorithm 1 employs the above properties to implement
a general methodology for interactive ontology revision.
Instead of starting with empty O |=0 and O 6|=0 , we can
initialize these sets with approved and declined axioms
from a previous revision or add axioms of the ontology
that is being developed toO |=0 . We can further initialize
O 6|=0 with axioms expressing inconsistency and unsatis-
fiability of predicates (i.e. of classes or relations) in O,
which we assume to be unwanted.

In line 3, an axiom is chosen that is evaluated next.
As mentioned earlier, choosing randomly can have a
detrimental effect on the number of manual decisions
needed. Ideally, we want to rank the axioms and choose
one that allows for a high number of consequential au-
tomatic decisions. The notion of axiom impact refers
to the number of axioms that can be automatically eval-
uated upon approval or decline of an axiom. Note that
after an approval, the closure might extend bothO |= and
O 6|=, whereas after a decline only O 6|= can be extended.
We further define ?(O,O |=,O 6|=) as the number of yet
unevaluated axioms and write |S| to denote the cardi-
nality of a set S:

Definition 3 (Impact). Let (O,O |=,O 6|=) be a con-
sistent revision state with α ∈ O and let
?(O,O |=,O 6|=) := |O \ (O |= ∪ O 6|=)|. For an ax-
iom α, we define its approval impact, impact+(α), its
decline impact, impact−(α), and its guaranteed impact
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(1)impact+→

(2)

(3)

(4)guaranteed→

(5)guaranteed→

(6)

(7)impact−→ (8)

Axiom impact+a impact+d impact− guaranteed
(1) 7 0 0 0
(2) 6 0 1 1
(3) 5 0 2 2
(4) 4 0 3 3
(5) 3 0 4 3
(6) 2 0 5 2
(7) 0 0 6 0
(8) 0 0 6 0

Table 3: Example axiom dependency graph and the corresponding ranking values

guaranteed(α):

impact+(α) =?(O,O |=,O 6|=)
− ?(clos(O,O |= ∪ {α},O 6|=)),

impact−(α) =?(O,O |=,O 6|=)
− ?(clos(O,O |=,O 6|= ∪ {α})),

guaranteed(α) =min(impact+(α), impact−(α)).

We further separate impact+(α) into the number of au-
tomatic approvals, impact+a(α), and the number of au-
tomatic declines, impact+d(α):

impact+a(α) =|{β ∈ O | O |= ∪ {α} |= β}|,

impact+d(α) =|{β ∈ O | O |= ∪ {α, β} |= γ,

for some γ ∈ O 6|=}|.

Note that impact+(α) = impact+a(α) + impact+d(α).
Ranking axioms by impact+ privileges axioms for
which the number of automatically evaluated axioms in
case of an accept is high. Going back to our running
example, Axiom (1), which yields 7 automatically ac-
cepted axioms in case it is approved, will be ranked
highest. The situation is the opposite for impact−,
which privileges axioms for which the number of auto-
matically evaluated axioms in case of a decline is high
(Axioms (7) and (8)). Ranking by guaranteed privileges
axioms with the highest guaranteed impact, i.e., axioms
with the highest number of automatically evaluated ax-
ioms in the worst-case (Axioms (4) and (5)).

Table 3 lists the values for all ranking functions for
the axioms from Example 1.

Since computing such an impact as well as comput-
ing the closure after each evaluation (lines 1, 5, and 7)
can be considered very expensive, we next introduce
decision spaces, auxiliary data structures which signif-
icantly reduce the cost of computing the closure upon
elementary revisions and provide an elegant way of de-
termining high impact axioms.

3. Decision Spaces

Intuitively, the purpose of decision spaces is to keep
track of the dependencies between the axioms in such a
way, that we can read-off the consequences of revision
state refinements upon an approval or a decline of an
axiom, thereby reducing the required reasoning opera-
tions. Furthermore, we will show how we can update
these structures after a refinement step avoiding many
costly recomputations.

Definition 4 (Decision Space). Given a revision state
(O,O |=,O 6|=) with O 6|= 6= ∅, the according decision
space D(O,O |=,O 6|=) = (O ?, E, C) contains the set

O ? := O \ ({α | O |= |= α}∪
{α | O |= ∪ {α} |= β, β ∈ O 6|=})

of unevaluated axioms and two binary relations, E (en-
tails) and C (conflicts) defined by

αEβ iff O |= ∪ {α} |= β and

αCβ iff O |= ∪ {α, β} |= γ for some γ ∈ O 6|=.

The requirement that O 6|= 6= ∅ is without loss of gen-
erality since we can always add an axiom that expresses
an inconsistency, which is clearly undesired. On the
other hand, the non-emptiness condition ensures that
two axioms which together lead to an inconsistency are
indeed recognized as conflicting. For example, consider
the following two axioms:

SameIndividual(ex:a ex:b) (12)
DifferentIndividuals(ex:a ex:b) (13)

We assume that Axiom (12) has just been approved and
belongs, therefore, to O |=, whereas Axiom (13) is a not
yet evaluated axiom. Clearly, Axiom (12) and (13) can-
not be true at the same time and, consequently, the in-
consistent ontologyO |=∪{(13)} entails any axiom, but,
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unless we have some axiom β in O 6|=, this will not be
recognized.

As a direct consequence of this definition, we have
D(O,O |=,O 6|=) = Dclos(O,O |=,O 6|=). The following prop-
erties follow immediately from the above definition:

Lemma 2. For any decision space D(O,O |=,O 6|=) =
(O ?, E, C), the following hold:

P1 (O ?, E) is a quasi-order (i.e., reflexive and tran-
sitive),

P2 C is symmetric,
P3 αEβ and βCγ imply αCγ for all α, β, γ ∈ O ?,

and
P4 if αEβ then αCβ does not hold.

Proof. For P1, due to the required properties of the
underlying logic we have {α} |= α (extensivity) and
O |= ∪ {α} |= α (monotonicity) and it follows that E is
reflexive. Given O |= ∪ {α} |= β and O |= ∪ {β} |= γ,
idempotency ensures O |= ∪ {α} |= γ, hence E is tran-
sitive. For P2, symmetry of C is an immediate con-
sequence from its definition. For showing P3, suppose
O |=∪{α} |= β andO |=∪{β, γ} |= δ for some δ ∈ O 6|=.
Monotonicity allows to get O |= ∪ {α, γ} |= β from the
former andO |=∪{α, β, γ} |= δ from the latter, whence
O |= ∪ {α, β, γ} |= δ follows via idempotency. To see
that E and C are mutually exclusive (P4), assume the
contrary, i.e.,O |=∪{α} |= β andO |=∪{α, β} |= γ for
some γ ∈ O 6|= hold simultaneously. Yet, idempotency
allows to conclude O |= ∪ {α} |= δ. However then α
cannot be contained in O ? by definition, which gives a
contradiction and proves the claim. 2

In fact, the properties established in Lemma 2 are
characteristic. This means that no other than the above
established properties hold for decision spaces. We
show this by proving that any structure satisfying these
properties can be seen as the decision space for an ap-
propriate revision state:2

Lemma 3. Let V be finite set and let E,C ⊆ V ×V be
relations for which (V,E) is a quasi-order, C = C−,
E ◦ C ⊆ C and E ∩ C = ∅. Then there is a decision
space D(O,O |=,O 6|=) isomorphic to (V,E,C).

Proof. As a very basic formalism, we choose proposi-
tional logic as KR language. Let O contain one atomic
proposition pv for every v ∈ V , let O |= = {pv → pv′ |
vEv′} ∪ {¬pv ∨ ¬pv′ | vCv′} and let O 6|= = {false}.
First observe that O ? = O. Next, we claim that the
function f : V → O with v 7→ pv is an isomorphism

2As usual, we letR− = {(y, x) | (x, y) ∈ R} as well asR◦S =
{(x, z) | (x, y) ∈ R, (y, z) ∈ S for some y}.

between (V,E,C) and D(O,O |=,O 6|=). Clearly, f is a
bijection. Moreover, vEv′ implies pvEpv′ by modus
ponens since pv → pv′ ∈ O |=. Likewise, vCv′ im-
plies pvCpv′ due to ¬pv ∨ ¬pv′ ∈ O |=. The two other
directions are shown indirectly.

To show that pvEpv′ implies vEv′ assume there are
pv, pv′ with pvEpv′ , but vEv′ does not hold. Now, con-
sider the propositional interpretation mapping pṽ to true
whenever ṽ ∈ ↑v and to false otherwise. It can be ver-
ified that this interpretation is a model of O |= and sat-
isfies pv as well as ¬pv′ , hence O |= ∪ {pv} 6|= pv′ and
consequently pvEpv′ cannot hold, so we have a contra-
diction.

To show that pvCpv′ implies vCv′ assume there are
pv, pv′ with pvCpv′ , but vCv′ does not hold. Now, con-
sider the propositional interpretation mapping pṽ to true
whenever ṽ ∈ ↑v ∪ ↑v′ and to false otherwise. It can
be verified that this interpretation is a model ofO |= and
satisfies pv as well as pv′ , henceO |=∪{pv, pv′} 6|= false
and consequently pvCpv′ cannot hold, so we have a
contradiction. 2

The following lemma shows how decision spaces
can be used for calculating closures of updated re-
vision states and impacts of axioms. As usual for
(quasi)orders, we define ↑α = {β | αEβ} and ↓α =
{β | βEα}. Moreover, we let oα = {β | αCβ}.

Lemma 4. Given D(O,O |=,O 6|=) = (O ?, E, C) for a re-
vision state (O,O |=,O 6|=) such that (O,O |=,O 6|=) =
clos(O,O |=,O 6|=) with O 6|= 6= ∅ and α ∈ O ?, then

1. clos(O,O |=∪{α},O 6|=)=(O,O |=∪↑α,O 6|=∪oα),
2. clos(O,O |=,O 6|= ∪ {α})=(O,O |=,O 6|= ∪ ↓α),
3. impact+(α) = |↑α|+ |oα|, and
4. impact−(α) = |↓α|.

Proof.

1. By definition of closures, we have that
clos(O,O |= ∪ {α},O 6|=) is (O,O |=c ,O 6|=c )
for O |=c = {β ∈ O | O |= ∪ {α} |= β} and
O 6|=c = {β ∈ O | O |= ∪ {α, β} |= γ, γ ∈ O 6|=}.
By definition of the entails and conflicts relation
we obtain O |=c = O |= ∪ {β ∈ O ? | αEβ} and
O 6|=c = O 6|= ∪ {β ∈ O ? | αCβ}.
By definition of ↑α and oα followsO |=c = O |=∪↑α
andO 6|=c = O 6|=∪oα. Thus we obtain clos(O,O |=∪
{α},O 6|=) = (O,O |= ∪ ↑α,O 6|= ∪ oα) as claimed.

2. Since (O,O |=,O 6|=) is already closed,
clos(O,O |=,O 6|= ∪ {α}) is (O,O |=,O 6|=c ) with
O 6|=c = {β ∈ O | O |= ∪ {β} |= γ for some γ ∈
(O 6|= ∪ {α})}. Due to the prior closedness, α is
the only possibly γ that will yield some β, hence
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R0 → E(x, x) reflexivity of E
R1 E(x, y) ∧ E(y, z) → E(x, z) transitivity of E
R2 E(x, y) ∧ C(y, z) → C(x, z) (P3)
R3 C(x, y) → C(y, x) symmetry of C
R4 E(x, y) → C(x, y) disjointness of E and C
R5 C(x, y) → C(y, x) symmetry of C
R6 E(x, y) ∧ C(x, z) → C(y, z) (P3)
R7 C(x, y) → E(x, y) disjointness of E and C
R8 C(x, y) ∧ C(y, z) → E(x, z) (P3)
R9 E(x, y) ∧ E(x, z) → E(y, z) transitivity of E

Table 4: Completion rules for partially known decision spaces

O 6|=c = O 6|= ∪ {β ∈ O ? | O |= ∪ {β} |= α}. By
definition of the conflicts relation, this implies
O 6|=c = O 6|= ∪ {β ∈ O ? | αCβ}), whence by defi-
nition of ↓α follows O 6|=c = O 6|= ∪ ↓α). Therefore
clos(O,O |=,O 6|= ∪ {α}) = (O,O |=,O 6|= ∪ ↓α)

3. By Definition 3, impact+(α) = ?(O,O |=,O 6|=) −
?(clos(O,O |= ∪ {α},O 6|=)). By Definition 2,
?(clos(O,O |= ∪ {α},O 6|=)) equals
?
(
O,{β ∈ O | O |= ∪ {α} |= β},
{β ∈ O | O |= ∪ {α, β} |= γ, γ ∈ O 6|=}

)
.

By the definition of ?(·) (Definition 3),
impact+(α) = |O\(O |=∪O 6|=)|−|O\(O |=α ∪O 6|=α )|
where O |=α = {β ∈ O | O |= ∪ {α} |= β} and
O 6|=α = {β ∈ O | O |= ∪ {α, β} |= γ, γ ∈ O 6|=}.
By definition of the entails and conflicts relations
the line above equals

|O \ (O |= ∪ {β ∈ O ? | αEβ}∪
O 6|= ∪ {β ∈ O ? | αCβ})|,

which, by definition of ↑ and o, is |O\ (O |=∪↑α∪
O 6|= ∪ oα)|. Overall we then have impact+(α) =
|O| − (|O |=| + |O 6|=|) − (|O| − (|O |=| + |↑α| +
|O 6|=|+ |oα|)), which is |↑α|+ |oα|.

4. By Definition 3, impact−(α) = ?(O,O |=,O 6|=) −
?(clos(O,O |=,O 6|= ∪ {α})). By Definition 2, the
latter is ?(O,O |=,O 6|= ∪ {β ∈ O | O |= ∪ {β} |=
α}). Using Definition 3, impact−(α) then is:
|O \ (O |=∪O 6|=)|−
|O \ (O |= ∪ O 6|= ∪ {β ∈ O | O |= ∪ {β} |= α})|
By definition of the entails relation the latter is
|O \ (O |= ∪ O 6|= ∪ {β ∈ O ? | βEα})|, which, by
definition of ↓, is |O \ (O |= ∪ O 6|= ∪ ↓α)|. Thus
impact−(α) = |O| − (|O |=| + |O 6|=|) − (|O| −
(|O |=|+ |O 6|=|+ |↓α|)) = |↓α|.

2

Hence, the computation of the revision closure (lines 5
and 7) and axiom impacts does not require any entail-
ment checks if the according decision space is avail-
able. For the computation of decision spaces, we exploit
the structural properties established in Lemmas 2 and 3
in order to reduce the number of required entailment
checks in cases where the relations E and C are par-
tially known. For this purpose, we define the rules R0
to R9 displayed in Table 4, which describe the inter-
play between the relations E and C and their comple-
ments E and C. The rules can serve as production rules
to derive new instances of these relations thereby min-
imizing calls to costly reasoning procedures. By virtue
of Lemma 3, we also have the guarantee that no further
rules of this kind can be created, i.e., the rule set is com-
plete for decision spaces.

An analysis of the dependencies between the rules R0
to R9 reveals an acyclic structure (indicated by the order
of the rules). Therefore E,C,C, and E can be saturated
one after another. Moreover, the exhaustive application
of the rules R0 to R9 can be condensed into the follow-
ing operations:

E ← E∗

C ← E ◦ (C ∪ C−) ◦ E−

C ← E− ◦ (C ∪ Id ∪ C
−
) ◦ E

E ← E− ◦ (C ◦ C ∪ E) ◦ E−

The correctness of the first operation (where (·)∗ de-
notes the reflexive and transitive closure) is a direct con-
sequence of R0 and R1. For the second operation, we
exploit the relationships

E◦C◦E− R2
⊆ C◦E− R3

⊆ C−◦E− R2
⊆ C−

R3
⊆ C

E◦C−◦E− R2
⊆ E◦C− R3

⊆ E◦C R2
⊆ C

8



that can be further composed into

E◦C◦E− ∪ E◦C−◦E− = E ◦ (C ∪ C−) ◦ E− ⊆ C

Conversely, iterated backward chaining for C w.r.t. R2
and R3 yields E ◦ (C ∪ C−) ◦ E− as a fixpoint, under
the assumptionE = E∗. The correctness of the last two
operations can be shown accordingly.

Algorithm 2 realizes the cost-saving identification of
the complete entailment and conflict relations of a deci-
sion space. Maintaining sets of known entailments (E),
non-entailments (E), conflicts (C) and non-conflicts
(C), the algorithm always closes these sets under the
above operations before it cautiously executes expen-
sive deduction checks to clarify missing cases. First, the
initially known (non-)entailments and (non-)conflicts
are closed in the aforementioned way (lines 1–7). There
and in the subsequent lines, we split computations into
several ones where appropriate in order to minimize the
size of sets subject to the join operation ( ◦ ). Lines
8–26 describe the successive clarification of the entail-
ment relation (for cases where neither entailment nor
non-entailment is known yet) via deduction checks. Af-
ter each such clarification step, the sets E,E,C, and
C are closed. Thereby, we exploit known properties of
intermediate results such as already being transitive or
symmetric to avoid redoing the according closure oper-
ations unnecessarily (transupdatediff computes,
for a relation R and a pair of elements (α, β), the dif-
ference between the reflexive transitive closure of R ex-
tended with (α, β) and R∗, i.e., (R∪{(α, β)})∗ \R∗)).
Likewise, we also avoid redundant computations and re-
duce the size of the input sets for the join operations
by explicitly bookkeeping sets E′,C ′,C

′
, and E

′
con-

taining only the instances newly added in the current
step. Lines 27–38 proceed in the analog way for step-
wise clarification of the conflicts relation.

Since the complexity of entailment checking will al-
most always outweigh the complexity of the other oper-
ations in Algorithm 2, we first analyze the complexity
of the algorithm under the assumption that entailment
checking is done by a constant time oracle. We then
show how entailment checking can be factored in.

Lemma 5. Let (O,O |=,O 6|=) be a revision state with
O 6|= 6= ∅ and E,E,C,C (possibly empty) subsets of the
entailment and conflicts relations. We denote the size
|O| of O with n. Given (O,O |=,O 6|=) and E,E,C,C
as input, Algorithm 2 runs in time bounded by O(n5)
and space bounded by O(n2) if we assume that entail-
ment checking is a constant time operation.

Proof. We first note that O ? is bounded by n since
|O ?| = |O| − (|O |=| + |O 6|=|). Similarly, the size of

Algorithm 2 Decision Space Completion
Input: (O,O |=,O 6|=) a consistent revision state;

E,E,C,C subsets of the entailment and conflict
relations and their complements

Output: (O ?, E, C) the corresponding decision space
1: E ← E∗

2: C ← E ◦ C ◦ E−
3: C ← C ∪ C−
4: C ← E− ◦ C ∪ IdO ? ◦ E
5: C ← C ∪ C−

6: E ← (C ◦ C) ∪ E
7: E ← E− ◦ E ◦ E−
8: while E ∪ E 6= O ? ×O ? do
9: pick one (α, β) ∈ O ? ×O ? \ (E ∪ E)

10: if O |= ∪ {α} |= β then
11: E′ ← transupdatediff(E, (α, β))
12: E ← E ∪ E′
13: C ′ ← (E′ ◦ C) \ C
14: C ′ ← C ′ ∪ (C ′ ◦ E′−) \ C
15: C ← C ∪ C ′
16: C

′ ← (E′− ◦ C) \ C
17: C

′ ← C
′ ∪ (C

′ ◦ E′) \ C
18: C ← C ∪ C ′

19: E
′ ← ((C

′ ◦ C) ∪ (C ◦ C ′)) \ E
20: E ← E ∪ E′

21: E
′ ← ((E′− ◦ E) ∪ (E− ◦ E′)) \ E

22: E ← E ∪ E′ ∪ (E
′ ◦ E−) ∪ (E ◦ E′−)

23: else
24: E ← E ∪ (E− ◦ {(α, β)} ◦ E−)
25: end if
26: end while
27: while C ∪ C 6= O ? ×O ? do
28: pick one (α, β) ∈ O ? ×O ? \ (C ∪ C)
29: if O |= ∪ {α, β} |= γ for some γ ∈ O 6|= then
30: C ′ ← E ◦ {(α, β), (β, α)} ◦ E−
31: C ← C ∪ C ′
32: E ← E ∪ (E− ◦ C ◦ C ′ ◦ E−)
33: else
34: C

′ ← (E− ◦ {(α, β), (β, α)} ◦ E) \ C
35: C ← C ∪ C ′

36: E ← E ∪ (E− ◦ C ′ ◦ C ◦ E−)
37: end if
38: end while

each relation E,E,C, and C is bounded by n2 since
the relations are binary relations over axioms in O. We
first analyze the individual operations. Computing the
transitive reflexive closure of a relation can be done in
cubic time, i.e., for E∗ with E a relation over at most
n axioms, we get a bound of n3. The computation of
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transupdatediff is in the worst case the same as
computing the reflexive transitive closure. For a binary
join operation (◦), the output is again a binary relation
over O of size bounded by n2. Each binary join can be
computed in at most n3 steps. Note that multiple joins
can be seen as several binary joins since each intermedi-
ate for formalisms where entailment checking is harder
than PTime relation is again over axioms from O and is
of size at most n2. The union operation (∪) corresponds
to the addition of axioms. Each of the while loops is ex-
ecuted at most n2 times and requires a fixed number of
join operations and possibly in one case the computation
of transupdatediff, which gives an upper bound
of O(n2 · n3) = O(n5) for the both while loops. To-
gether with the reflexive transitive closure and the fixed
number of join operations before the while loops, we
have that the time complexity of Algorithm 2 is O(n5)
and its space complexity is O(n2) assuming that entail-
ment checking is a constant time operation. 2

Note that the approach is targeted towards logics where
the entailment checking problem is not tractable, i.e.,
harder than PTime. Otherwise, the performance bene-
fit is only due to avoiding applying the same entailment
checks multiple times.

Lemma 6. Let (O,O |=,O 6|=) be a revision state with
O 6|= 6= ∅, |O| := n and the axioms in O expressed in a
logicL in which taking all consequences is a closure op-
eration and for which there is a decision procedure for
logical entailment of complexity c(n) where n is the size
of the input to the procedure. Let E,E,C,C be (possi-
bly empty) subsets of the according entailment and con-
flicts relations. Then there is a polynomial p such that
the runtime of Algorithm 2, given (O,O |=,O 6|=) and
E,E,C,C as input, is bounded by p(n) · c(n).

Proof. The input to the entailment checking algorithm
is in all cases of size n. Both while loops perform
at most n2 entailment checks, which together with the
analysis from Lemma 5 give the desired result. 2

3.1. Updating Decision Spaces

We proceed by formally describing the change of the
decision space as a consequence of approving or declin-
ing one axiom with the objective of again minimizing
the required number of entailment checks. We first con-
sider the case that an expert approves an axiom α ∈ O ?,
and hence α is added to the set O |= of wanted conse-
quences.

Lemma 7. Let D(O,O |=,O 6|=) = (O ?, E, C), α ∈ O ?,
and D(O,O |=∪{α},O 6|=) = (O ?

new, E
′, C ′). Then

Algorithm 3 Update of Decision Space D(O,O |=,O 6|=)

on Approving α
Input: D(O,O |=,O 6|=), α ∈ O ?

Output: D(O,O |=∪{α},O 6|=) updated decision space
1: O ? ← O ? \ (↑α ∪ oα)
2: E ← E ∩ (O ? ×O ?)
3: C ← C ∩ (O ? ×O ?)
4: C ← E− ◦ E
5: E ← E− ◦ C ◦ C ◦ E−
6: execute lines 8–38 from Alg. 2

• O ?
new = O ? \ (↑α ∪ oα),

• βEγ implies βE′γ for β, γ ∈ O ?
new, and

• βCγ implies βC ′γ for β, γ ∈ O ?
new.

Essentially, the lemma states that all axioms entailed
by α (as witnessed by E) as well as all axioms con-
flicting with α (indicated by C) will be removed from
the decision space if α is approved. Moreover due to
monotonicity, all positive information about entailments
and conflicts remains valid. Algorithm 3 runs in time
bounded by O(n5) and space bounded by O(n2) and
takes advantage of these correspondences when fully
determining the updated decision space.

Lemma 8. Let D(O,O |=,O 6|=) be a decision space, α ∈
O ? an axiom. We denote the size |O| ofO with n. Given
D(O,O |=,O 6|=) and α as input, Algorithm 3 runs in time
bounded by O(n5) and space bounded by O(n2) if we
assume that entailment checking is a constant time op-
eration.

Proof. Lines 1–5 of Algorithm 3 can be executed in
cubic time and quadratic space using the same argu-
ments as in Lemma 5. By Lemma 5, executing lines
8–38 from Algorithm 2 under the assumption that en-
tailment checking is a constant time operation can be
done in time O(n5), which proves the claim. 2

The next lemma considers changes to be made to the
decision space on the denial of an axiom α by charac-
terizing it as unwanted consequence.

Lemma 9. Let D(O,O |=,O 6|=) = (O ?, E, C), α ∈ O ?,
and D(O,O |=,O 6|=∪{α}) = (O ?

new, E
′, C ′). Then

• O ?
new = O ? \ ↓α,

• βEγ exactly if βE′γ for β, γ ∈ O ?
new, and

• βCγ implies βC ′γ for β, γ ∈ O ?
new.
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Algorithm 4 Update of Decision Space D(O,O |=,O 6|=)

on Declining α
Input: D(O,O |=,O 6|=), α ∈ O ?

Output: D(O,O |=,O 6|=∪{α}) updated decision space
1: O ? ← O ? \ ↓α,
2: E ← E ∩ (O ? ×O ?)
3: E ← E ∩ (O ? ×O ?)
4: C ← C ∩ (O ? ×O ?)
5: C ← E− ◦ E
6: while C ∪ C 6= O ? ×O ? do
7: pick one (β, γ) ∈ O ? ×O ? \ (C ∪ C)
8: if O |= ∪ {β, γ} |= α then
9: C ← C ∪ (E ◦ {(β, γ), (γ, β)} ◦ E−)

10: else
11: C ← C ∪ (E− ◦ {(β, γ), (γ, β)} ◦ E)
12: end if
13: end while

The lemma shows that the updated decision space
can be obtained by removing all axioms that entail α.
Furthermore entailments between remaining axioms re-
main unaltered whereas the set of conflicts may in-
crease. Algorithm 4 implements the respective decision
space update, additionally exploiting that new conflicts
can only arise from derivability of the newly declined
axiom α. Algorithms 3 and 4 have to be called in Alg. 1
after the accept (line 5) or decline revision step (line 7),
respectively.

For n the number of involved axioms, Algo-
rithms 2, 3, and 4 run in time bounded by O(n5) and
space bounded by O(n2) if we treat entailment check-
ing as a constant time operation. Without the latter
assumption, the complexity of reasoning usually dom-
inates. For example, if the axioms use all features
of OWL 2 DL, entailment checking is N2ExpT ime-
complete [12], which then also applies to our algorithm.

Lemma 10. Let D(O,O |=,O 6|=) be a decision space, α ∈
O ? an axiom. We denote the size |O| ofO with n. Given
D(O,O |=,O 6|=) and α as input, Algorithm 4 runs in time
bounded by O(n5) and space bounded by O(n2) if we
assume that entailment checking is a constant time op-
eration.

Proof. The execution lines 1–5 of Algorithm 4 can be
performed in quadratic space and cubic time using the
same arguments as in Lemma 5. We execute the opera-
tions within the while loop at most n2 times, and under
the assumption that entailment checking is a constant
time operation, we find that the operations can again be
performed in cubic time and quadratic space resulting in

an overall bound for the time complexity of O(n5) and
O(n2) space complexity. 2

4. Parametrized Ranking

Let us look again at our running example, but assume
that Axioms (1) and (2) are incorrect, i.e., the validity
ratio is 75%. The so far introduced ranking functions
do not take this into account: if we use impact+, which
shows the highest value of 7 for Axiom (1), then the
user would decline the axiom and no automatic deci-
sions are possible. Next, Axiom (2) is highest ranked,
but again declined. Finally, after presenting Axiom (3)
to the user, the axiom is approved and all remaining ax-
ioms can be approved automatically. The ranking func-
tion impact− even takes 7 steps, whereas guaranteed
performs slightly better with (theoretically) 2.8 expert
decisions. This is an average for the different possible
choices among the highest ranked axioms assuming that
these have the same probability of being chosen. If we
look at impact+ again, the problem is that the function
ignores the validity ratio, i.e., Axiom (1) is presented
to the user in the hope of an approval knowing that this
could only happen if the validity ratio was 100% (due
to the automatic approval of all remaining axioms). To
address this issue, we now present a ranking function
that takes the validity ratio into account.

4.1. The Ranking Function norm

We now define the ranking function normR, which
minimizes the deviation of the fraction of accepted and
declined axioms from the expected overall ratios of de-
sired and undesired consequences. To determine this
deviation for each axiom α, we first have to compute
the fraction of accepted and declined axioms by nor-
malizing impacts of α to values between 0 and 1. For
this purpose, we define functions impact+N and impact−N .
Since in the case of an approval, we can possibly both
accept and decline axioms automatically, an approval
influences both, the ratio of accepted and declined ax-
ioms. To take both influences into account, in Defi-
nition 3 we split the approval impact accordingly into
impact+a and impact+d. Along the same lines, we ob-
tain impact+aN and impact+aN by normalizing these two
components with respect to the expected validity ratio.
On the contrary, in the case of a decline, we can only de-
cline axioms automatically. Therefore, we do not split
impact−.

Definition 5. Let O ? be a connected component of the
decision space and R the expected validity ratio. The
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normalized impact functions are:

impact+aN (α) =
1 + impact+a(α)

|O ?|
,

impact+dN (α) =
impact+d(α)
|O ?|

,

impact−N (α) =
1 + impact−(α)

|O ?|
.

The ranking functions norm+a
R , norm+d

R and norm−R
are then defined by

norm+a
R (α) = −|R− impact+aN (α)|,

norm+d
R (α) = −|1−R− impact+dN (α)|,

norm−R(α) = −|1−R− impact−N (α)|.

Finally, the ranking function normR for an axiom α is
defined as

max(norm+a
R (α), norm+d

R (α), norm−R(α)).

When computing impact+aN , we increment it by 1, since
we are interested in the overall fraction of accepted ax-
ioms, and, α itself is one of the accepted axioms. For
the same reason, we also increment impact−N by 1, but
not impact+dN , where α itself is accepted and does not
increment the number of declined axioms.

Table 5 shows the computation of norm0.75 for Ex-
ample 1. The function norm+a

R captures how the frac-
tion of automatically accepted axioms deviates from the
expected overall ratio of wanted consequences, e.g., ac-
cepting Axiom (2) or (4) deviates by 12.5%: for the for-
mer axiom we have automatically accepted too many
axioms, while for the latter we do not yet have accepted
enough under the premise that the validity ratio is in-
deed 75%. Since Example 1 does not allow for auto-
matic declines after an approval, the function norm+d

R

shows that for each accept, we still deviate 25% from
the expected ratio of invalid axioms, which is 1 − R.
The function norm−R works analogously for declines.
Hence, normR is defined in a way that it takes the great-
est value if the chance that all wanted (unwanted) ax-
ioms are accepted (declined) at once becomes maximal.

Note that the expected validity ratio within the cor-
responding connected decision space component needs
to be adjusted after each expert decision, to reflect the
expected validity ratio of the remaining unevaluated ax-
ioms. For instance, after Axiom (2) has been declined,
norm1.00 needs to be applied to rank the remaining
axioms. If, however, Axiom (3) has been accepted,
norm0.00 is required.

Further, it is interesting to observe that employ-
ing norm0.00 for ranking yields the same behavior as
impact−. On the other hand, norm1.00 corresponds
to impact+ in case no conflicting axioms are involved,
which is in fact very probable if R is close to 100%.
Therefore, norm represents a generalization of the ear-
lier introduced impact functions impact+ and impact−.

4.2. Learning the Validity Ratio
Users might only have a rough idea or even no idea at

all of the validity ratio of a dataset in advance of the re-
vision. Hence, it might be difficult or impossible to de-
cide upfront whichR to use for normR. To address this
problem, we investigate how efficiently we can “learn”
the validity ratio on the fly. In this setting, the user gives
a prior estimate for R (or we use 50% as default) and
with each revision of another connected decision space
component,R is adjusted to reflect exactly the actual va-
lidity ratio at the current stage– the proportion of (manu-
ally and automatically) approved axioms within the total
set of the evaluated axioms so far. Thus, the algorithm
tunes itself towards an optimal ranking function, which
relieves the user from choosing a validity ratio. We call
the according ranking function dynnorm as it dynami-
cally adapts the estimated validity ratio over the course
of the revision.

In our experiments, we show that, already for small
datasets, dynnorm outperforms random ordering and,
in case of sufficiently large datasets, the estimate con-
verges towards the actual validity ratio, thereby making
the assumption of a known validity ratio obsolete.

5. Partitioning

Since reasoning operations, in particular for expres-
sive formalisms such as OWL, are very expensive (the
reasoner methods take 99.2% of the computation time
in our experiments according to our profiling measure-
ments), we combine the optimization using decision
spaces with a straight-forward partitioning approach
that is applicable for OWL ontologies and splits ABox
axioms (i.e., class and property assertions) into disjoint
subsets. Thus, the subsequent discussion is specific to
OWL reasoning.

Definition 6. LetA be a set of ABox axioms, ind(A) the
set of individual names used in A, then A is connected
if, for all pairs of individuals a, a′ ∈ ind(A), there exists
a sequence a1, . . . , an such that a = a1, a′ = an, and,
for all 1 ≤ i < n, there exists a property assertion
in A containing ai and ai+1. A collection of ABoxes
A1, . . . ,Ak is a partitioning ofA ifA = A1∪ . . .∪Ak,
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Axiom impact+aN impact+dN impact−N norm+a
0.75 norm+d

0.75 norm−0.75 norm0.75

(1) 100.0% 0.0% 12.5% -25.0% -25.0% -12.5% -12.5%
(2) 87.5% 0.0% 25.0% -12.5% -25.0% 0.0% 0.0%
(3) 75.0% 0.0% 37.5% 0.0% -25.0% -12.5% 0.0%
(4) 62.5% 0.0% 50.0% -12.5% -25.0% -25.0% -12.5%
(5) 50.0% 0.0% 62.5% -25.0% -25.0% -37.5% -25.0%
(6) 37.5% 0.0% 75.0% -37.5% -25.0% -50.0% -25.0%
(7) 12.5% 0.0% 87.5% -62.5% -25.0% -62.5% -25.0%
(8) 12.5% 0.0% 87.5% -62.5% -25.0% -62.5% -25.0%

Table 5: The values for norm0.75 and the intermediate functions (shown in percentage)

ind(Ai)∩ ind(Aj) = ∅ for 1 ≤ i < j ≤ k, and eachAi
is connected.

The proposed partitioning process can be done in lin-
ear time, since it is more or less straight-forward prod-
uct of the computation of the connected components of
the ABox graph. In the absence of nominals (OWL’s
oneOf constructor), the above described partitions or
clusters of an ABox are indeed independent. Thus, the
above partitioning does not split any connected decision
space components, and, therefore, we obtain an equiv-
alent complete revision state and an equivalent evalua-
tion order within each connected decision space com-
ponent. We apply partitioning once at the beginning of
the revision to the whole set of unevaluated axioms and
then perform the revision for each partition separately
by joining the partition with the remaining terminolog-
ical axioms. So far, we abstract from the possibility to
update the partitioning to a more fine-grained one over
the course of revision.

In order to also partition non-Abox axioms or to prop-
erly take axioms with nominals into account, other par-
titioning techniques can be applied, e.g., the signature
decomposition approach by Konev et al. [13] that parti-
tions the vocabulary of an ontology into subsets that are
independent regarding their meaning. The resulting in-
dependent subsets of the ontology can then be reviewed
independently from each other analogously to the clus-
ters of ABox axioms used in our evaluation. We made
the following general observations:

• In particular in case of large datasets containing
several partitions, the additional partitioning-based
optimization significantly reduces the computa-
tional effort.

• Partitioning intensifies the effectiveness of deci-
sion spaces, since the “density” of entailment
and contradiction relations are significantly higher

within each partition than the density within a set
of independent partitions.

6. Experimental Results

We evaluated our revision support methodology
within the project NanOn aiming at ontology-supported
literature search. During this project, a hand-crafted on-
tology modeling the scientific domain of nano technol-
ogy has been developed, capturing substances, struc-
tures, and procedures used in that domain. The ontol-
ogy, denoted here with O, is specified in the Web On-
tology Language OWL 2 DL [14] and comprises 2,289
logical axioms. This ontology is used as the core re-
source to automatically analyze scientific documents for
the occurrence of NanOn classes and properties by the
means of lexical patterns. When such classes and prop-
erties are found, the document is automatically anno-
tated with them to facilitate topic-specific information
retrieval on a fine-grained level. Note that these annota-
tions are modeled as ABox facts and must not be con-
fused with OWL annotations, which do not carry any
semantics in OWL 2 DL. In this way, one of the project
outputs is a large amount of class and property asser-
tions associated with the NanOn ontology. In order to
estimate the accuracy of such automatically added an-
notations, they need to be inspected by human experts,
which provides a natural application scenario for our ap-
proach. The manual inspection of annotations provided
us with sets of valid and invalid annotation assertions
(denoted by A+ and A−, respectively). To investigate
how the quality and the size of each axiom set influ-
ences the results, we created several distinct annotation
sets with different validity ratios |A+|/(|A+| + |A−|).
As the annotation tools provided rather reliable data, we
had to manually create additional wrong frequently oc-
curring patterns and apply them for annotating texts to
obtain datasets with a lower validity ratio.
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validity ratio optimal norm best unparameterized random
L1 90% 65.6% 65.4% (impact+) 65.4% 41.7%
L2 76% 59.8% 59.8% (impact+) 55.8% 35.8%
L3 50% 47.8% 47.6% (guaranteed) 36.5% 24.4%
L4 25% 59.9% 59.8% (impact−) 54.9% 37.6%
L5 10% 63.9% 63.9% (impact−) 63.9% 40.3%
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Figure 1: Revision results of norm in comparison with other ranking functions for the sets L1-L5

For each set, we applied our methodology starting
from the revision state (O ∪ O− ∪ A+ ∪ A−,O,O−)
with O containing the axioms of the NanOn ontology
and with O− containing axioms expressing inconsis-
tency and class unsatisfiability. We obtained a complete
revision state (O∪O−∪A+∪A−,O∪A+,O−∪A−)
where on-the-fly expert decisions about approval or de-
cline were simulated according to the membership in
A+ or A−. For computing the entailments, we used the
OWL reasoner HermiT.3

For each set, our baseline is the reduction of expert
decisions when axioms are evaluated in random order,
i.e., no ranking is applied and only the revision closure
is used to automatically evaluate axioms. The upper
bound for the in principle possible reduction of expert
decisions is called the optimal ranking, obtained by ap-
plying the “impact oracle” for each axiom α that is to
be evaluated:

KnownImpact(α) =

{
impact+(α) if α ∈ A+,

impact−(α) if α ∈ A−.

3http://www.hermit-reasoner.com

6.1. Evaluation of norm

To compare the effectiveness of impact+, impact−,
and guaranteed with the parametrized ranking norm,
we created five sets of annotations L1 to L5, each com-
prising 5,000 axioms with validity ratios varying from
10% to 90%.

The table in Fig. 1 shows the results for the dif-
ferent ranking techniques: the column optimal shows
the upper bound achieved by using the impact oracle,
norm shows the results for norm parameterized with
the actual validity ratio, best unparameterized shows
the best possible value achievable with the unparame-
terized functions, and, finally, the column random states
the effort reduction already achieved by presenting the
axioms in random order. The results show that norm
consistently achieves almost the maximum effort reduc-
tion with an average difference of 0.1%. The unparam-
eterized functions only work well for the high and low
quality datasets, as expected, where impact+ works well
for the former case, while impact− works well for the
latter. For the dataset with validity ratio 50%, norm
achieves an additional 11.1% of automatization by us-
ing the parameterized ranking.

In general, the actual difference in performance
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achieved by the more precise parameterized ranking
increases for a higher average maximum path length
within connected decision space graphs. To see this,
consider again the decision space shown in Table 3. It
is clear that the distance between the highest ranked
axioms for different ranking functions increases as the
height of the presented tree becomes greater.

6.2. Evaluation of dynnorm
In order to evaluate our solution for situations where

the validity ratio is unknown or only very rough es-
timates can be given upfront, we analyzed the effec-
tiveness of the dynamically learning ranking function
dynnorm. To this end, we created the following anno-
tation sets in addition to the datasets L1 − L5:

• small datasets S1 to S5 with the size constantly
growing from 29 to 102 axioms and validity ratios
varying from 10% to 90%.

• medium-sized datasets M1 to M5 with 500 axioms
each and validity ratios varying from 10% to 91%.

Table 6 shows the results of the revision: the columns
optimal and random are as described above, the column
norm shows the results that we would obtain if we were
to assume that the validity ratio is known and given as
parameter to the norm ranking function, the columns
dynnorm0.50, dynnorm1.00 and dynnorm0.00 show
the results for starting the revision with a validity ra-
tio of 50%, 100%, and 0%, respectively, where over the
course of the revision, we update the validity ratio esti-
mate.

We observe, that, in case of small datasets (Si), the
deviation from norm (on average 5%) as well as the
dependency of the results on the initial value of the va-
lidity ratio are clearly visible. However, the results of
dynnorm are significantly better (45.0%) than those of
a revision in random order. It is also interesting to ob-
serve that the average deviation from norm decreases
with the size of a dataset (6.9%, 10.5%, 2.7%, 3.3%,
1.9% for S1 to S5, respectively) and that the probabil-
ity of a strong deviation is lower for datasets with an
extreme validity ratio (close to 100% or 0%).

For medium-sized and large datasets (Mi and Li), the
deviation from norm (on average 0.3% for both) as well
as the dependency on the initial value of the validity
ratio are significantly lower, as displayed in Fig. 2.

We conclude that

• ranking based on learning validity ratio is already
useful for small datasets (30-100 axioms), and im-
proves significantly with the growing size of the
dataset under revision;

• in case of large datasets, the performance differ-
ence between the the results with a validity ratio
known in advance and a learned validity ratio al-
most disappears, thereby making the assumption
of known average validity ratio obsolete for axiom
ranking.

6.3. Computational Effort

During our experiments, we measured the average
number of seconds after each expert decision required
for the automatic evaluation and ranking as well as the
average number of reasoning calls. If we compute the
average values for the revision based on dynnorm rank-
ing for all 15 datasets, the revision took 0.84 seconds
(7.4 reasoning calls) after each expert decision. In the
case of small datasets, partitioning yields an additional
improvement by an order of magnitude in terms of rea-
soning calls. For medium-sized datasets without par-
titioning, the first step out of on average 153 evalua-
tion steps took already 101,101 reasoning calls (ca. 3
hours) even when using decision spaces. Without deci-
sion spaces and partitioning, the required number of rea-
soning calls for the revision of the setsM1 toM5 would
be more than 500,000, judging by the required reason-
ing calls to build the corresponding decision space in
the worst case. For this reason, we did not try to run
the experiment without partitioning for large datasets,
which would require more than 50 million reasoning
calls without decision in the worst case. In contrast to
that, the average number of required reasoning calls for
a complete revision of the setsM1 toM5 with partition-
ing amounts to 3,380. The revision of datasets L1 to L5

with partitioning required overall on average 16,175
reasoning calls, which corresponds to between 6 and 7
reasoning calls per evaluation decision. We can summa-
rize the evaluation results as follows:

• The proposed reasoning-based support performs
well in an interactive revision process with on av-
erage 0.84 seconds per expert decision.

• In particular in case of large datasets contain-
ing several partitions, partitioning significantly re-
duces the computational effort.

• The employment of decision spaces saves in our
experiments on average 75% of reasoner calls. As
measured in the case of small datasets, partitioning
further intensifies the effect of decision spaces and
we save even 80% of reasoner calls.
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validity ratio optimal norm dynnorm0.50 dynnorm1.00 dynnorm0.00 random
S1 90% 72.4% 72.4% 58.6% 72.4% 65.5% 40.8%
S2 77% 68.6% 65.7% 57.1% 62.9% 48.6% 38.2%
S3 48% 65.1% 65.1% 65.1% 60.3% 61.9% 22.0%
S4 25% 68.3% 68.3% 64.6% 63.4% 67.1% 37.6%
S5 10% 72.5% 72.5% 71.6% 67.6% 72.5% 29.2%
M1 91% 66.4% 66.0% 66.2% 66.4% 65.6% 40.8%
M2 77% 60.0% 60.0% 59.6% 59.8% 59.2% 38.2%
M3 44% 40.8% 40.6% 40.4% 40.6% 40.4% 22.0%
M4 25% 60.0% 60.0% 59.6% 59.2% 59.8% 37.6%
M5 10% 53.2% 53.0% 52.8% 52.8% 53.2% 29.2%
L1 90% 65.6% 65.4% 65.4% 65.4% 65.3% 41.7%
L2 76% 59.8% 59.8% 59.8% 59.8% 59.9% 35.8%
L3 50% 47.8% 47.6% 47.4% 47.2% 47.3% 24.4%
L4 25% 59.9% 59.8% 59.8% 59.8% 59.8% 37.6%
L5 10% 63.9% 63.9% 63.9% 63.8% 63.9% 40.3%

Table 6: Revision results for datasets S1 to S5, M1 to M5, and L1 to L5

7. User Front-End

Figure 3 shows the user front-end of the revision
helper tool. It allows the user to load the set O of ax-
ioms under revision and save or load an evaluation state
for the currently loaded setO. Thereby, the user can in-
terrupt the revision at any time and proceed later on. If
partitioning is activated, revision helper shows the parti-
tions one after another and the revision of each partition
is independent from the revision of all other partitions.

By default, revision helper initializes the set O 6|= of
undesired statements with the minimal set of statements
expressing the inconsistency of the ontology or unsat-
isfiability of its classes. The set of desired statements
O |= can be initialized by loading an arbitrary ontology.
A statement can be evaluated by choosing one of the
values Accept and Decline, and it can be excluded from
the revision process by choosing Exclude. The latter
option should be used, if the meaning of a statement
is not clear and the user cannot decide whether to ac-
cept or to decline it. After the statement has been eval-
uated, it disappears from the revision list as well as all
statements that could be evaluated automatically, unless
the checkbox Propagate Decisions is deactivated. The
ranking strategy used for sorting the statements can be
selected or deactivated at any time and is taken into ac-
count after the next evaluation decision. At any stage of
the revision, it is possible to export the current set O |=
of accepted statements as an ontology. For the export,
we exclude, however, axioms with which O |= has been
initialized at the beginning of the revision.

8. Related Work

In our previous work [15], we proposed an approach
for determining a beneficial order of axiom evaluation
under the assumption of a high validity ratio within the
axiom set under investigation. The latter approach aims
at reducing the manual effort of revision by eliminat-
ing the redundancy within the corresponding axiom set,
which is the major factor leading to automatic axiom
evaluation under the assumption of a high validity ratio.

In addition to our own work, we are aware of two ap-
proaches for supporting the revision of ontological data
based on logical appropriateness: an approach by Meil-
icke et al. [16] and another one called ContentMap by
Jiménez-Ruiz et al. [17]. Both approaches are applied in
the context of mapping revision. An extension of Con-
tentMap called ContentCVS [18] supports an integration
of changes into an evolving ontology. In all of these
approaches, dependencies between evaluation decisions
are determined based on a set of logical criteria each
of which is a subset of the criteria that can be derived
from the notion of revision state consistency introduced
in Def. 1.

In contrast to our approach, ContentMap and Con-
tentCVS focus on the visualization of consequences and
user guidance in case of difficult evaluation decisions.
These approaches selectively materialize and visualize
the logical consequences caused by the axioms under
investigation and support the revision of those conse-
quences. Subsequently, the approved and declined ax-
ioms are determined in correspondence with the revi-

16



0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

small medium large

optimal
norm

dynnorm(50)
dynnorm(100)

dynnorm(0)
random

small (~50)	
 medium (~500)	
 large (~5000)	

size of dataset	


 c
os

t r
ed

uc
tio

n	


0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

small medium large

optimal
norm

dynnorm(50)
dynnorm(100)

dynnorm(0)
random

optimal	

norm	


dynnorm0.50	

dynnorm1.00	


dynnorm0.00	

random	


-25%!

-20%!

-15%!

-10%!

-5%!

%!

norm!

dynnorm1.0!

dynnorm0.5!

dynnorm0.0!

random!

0!

small (~50)! medium (~500)! large (~5000)!

de
vi

at
io

n 
fr

om
 o

pt
im

al
 c

os
t r

ed
uc

tio
n!

size of dataset!

1.0!

0.5!

0.0!

Figure 2: Effect of learning validity ratio for different data set sizes.

sion of the consequences. The minimization of the
manual and computational effort required for the re-
vision is not considered. In contrast to our approach,
which requires at most a polynomial number of entail-
ment checks, ContentMap and ContentCVS require an
exponential number of reasoning operations compared
to the size of the ontology under revision. The reason
for this is that ContentMap and ContentCVS determine
the dependencies between the consequences by compar-
ing their justifications, i.e., sets of axioms causing the
entailment of the consequence.

Similarly to our approach, Meilicke et al. aim at re-
ducing the manual effort of mapping revision. However,
their results are difficult to generalize to the revision of
ontologies, since the notion of impact is defined based
on specific properties of mapping axioms. For every
mapping axiom possible between the entities of the two
mapped ontologies O1 and O2, they define the impact
as the corresponding number of possible entailed and
contradicting mapping axioms. The assumption is that
the set of possible mapping axioms and the set of pos-
sible axioms in O1 and O2 are mostly disjoint, since
axioms in O1 and O2 usually refer only to entities from
the same ontology, while mapping axioms are assumed
to map only entities from different ontologies. In case
of ontology revision in general, no such natural distinc-
tion criteria for axioms under revision can be defined.
Moreover, in contrast to our approach, Meilicke et al.
abstract from the interactions between more than one
mapping axiom.

Another strand of work is related to the overall mo-
tivation of enriching ontologies with additional expert-
curated knowledge in a way that minimizes the work-
load of the human expert: based on the attribute ex-

ploration algorithm from formal concept analysis [19],
several approaches have proposed structured interactive
enumeration strategies of axioms of certain fragments
of OWL which then are to be evaluated by an expert
[20, 21]. While similar in terms of the workflow, the
major difference of these approaches to ours is that the
axioms are not pre-specified but created on the fly and,
therefore, the exploration may require (in the worst case
exponentially) many human decisions.

9. Summary

In this paper, we proposed a methodology for sup-
porting ontology revision based on logical criteria. We
stated consistency criteria for revision states and intro-
duced the notion of revision closure, based on which the
revision of ontologies can be partially automatized.

Even though a significant effort reduction can be
achieved when axioms are chosen randomly for each
expert decision, an evaluation of the axioms in an ap-
propriate order usually yields a higher effort reduction.
We introduced the notion of axiom impact, which can
directly be used to define axiom ranking functions that
work well for data of either high or low quality. In order
to achieve significant improvements for data with an ar-
bitrary validity ratio, we further refine the ranking func-
tions to take into account the estimated validity ratio of
the ontology under revision. We then show how the va-
lidity ratio can be learned on-the-fly over the course of
the revision, which alleviates the user from having to
provide such an estimate.

Moreover, we provide an efficient and elegant way
of determining the revision closure and axiom impact
by computing and updating structures called decision
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Figure 3: Revision Helper GUI

spaces which saved 75% of reasoner calls during our
evaluation.

We present the implementation of the approach in-
cluding an optimization based on partitioning, which
significantly reduces the required computational ef-
fort. We evaluate our implementation in a revision
of ontology-based annotations of scientific publications
comprising over 25,000 statements and show that

• On average, we were able to reduce the num-
ber of required evaluation decisions by 36% when
the statements were reviewed in an arbitrary or-
der, and by 55.4% when the unparameterized rank-
ing techniques were used. The parametrized rank-
ing technique almost achieved the maximum possi-
ble automatization (59.4% of evaluation decisions)
thereby reducing the manual effort of revision by
59.3%. The gain of the parametrized compared
to the unparameterized ranking functions is partic-
ularly important for datasets with a validity ratio
close to 50% (we observed an up to 11.1% im-
provement), since for those datasets the potential
of automatization cannot be fully exploited with-
out parameterizing the ranking function.

• In case of large datasets with an unknown validity
ratio, learning the validity ratio is particularly ef-
fective due to the law of large numbers. In our ex-
periments, the proportion of automatically evalu-
ated statements is nearly the same as in case where

the validity ratio is known a priori and is used as
a fixed parameter of norm, thereby making the as-
sumption of known average validity ratio not nec-
essary for axiom ranking.

• The proposed reasoning-based support is feasible
for an interactive revision process requiring on av-
erage less than one second after each expert deci-
sion in our evaluation.

As part of our future work, we intend to study more
general partitioning methods, e.g., [13], to increase the
applicability of the partitioning optimization. Also the
currently proposed partitioning could be further devel-
oped. The initially determined sets remain independent
during the whole revision process. However, a single
partition could potentially be further divided after some
evaluation decisions, e.g., after rejecting an axiom a par-
tition might fall apart into two partitions. We do not
yet take such further refinements into account and sim-
ply stick to the originally defined partition, however it
would be interesting to investigate whether such an ad-
ditional partition refinement pays off. Another interest-
ing approach in this direction would also be to study the
effects of separating the ontology into parts that are not
logically independent. In such a case, we might miss
automatic decisions, but the potential performance gain,
due to the reasoning with smaller subsets of the ontol-
ogy, might compensate for this drawback.
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