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Abstract: Reinforcement learning models can explain various aspects of two-way avoidance
learning but do not provide a rationale for the relationship found between the dynamics of
initial learning and those of reversal learning. Artificial Intelligence planning offers a novel way
to conceptualize the learners’ cognitive processes by providing an explicit representation of
and reasoning about internal processing stages. Our hybrid planning and plan repair approach
demonstrates that the empirically found relationships could be motivated from a consistent
theoretical framework.
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1. INTRODUCTION

The framework of reinforcement learning (RL), in partic-
ular temporal difference learning, is traditionally utilized
when it comes to modeling Pavlovian and instrumental
learning in animal and human subjects. Neurophysiolog-
ical correlates’ model parameters, on the level of both
single cells and fMRI data, support this approach. Notably,
most of these models are applied to appetitive learning,
as their nature demands that reinforcement is directly
related to an action. In aversive learning this is not the
case – at least not for directly observable actions of the
animal. Therefore, RL models of avoidance learning are
studied only relatively recently. Previous work (Schulz
et al. (2011)) has presented a study to investigate an
extended RL model in the context of two-way avoidance
and reversal learning experiments that involve Mongolian
gerbils trained in a shuttle box Go/NoGo paradigm (Wet-
zel et al. (2008); Ohl et al. (2001)). The animals learn to
discriminate classes of sound stimuli and to respond to
them by leaving and staying in their box compartment,
respectively. Wrong responses are answered by slightly
unpleasant feedback. After some time, the experimenter
introduces a contingency reversal: positive and negative
feedback criteria are switched. The animals adapt to this
contingency but they do so not as efficient as in their initial
learning phase. RL models can explain various aspects
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of two-way avoidance learning but they do not provide
a rationale for the relationship found between dynamics
of initial learning and dynamics of reversal learning. As
we will show in this paper, the Artificial Intelligence (AI)
paradigm of automated planning (Nau et al. (2004); Bi-
undo et al. (2011b)) is able to provide such a rationale.

In contrast to RL techniques that aim at an operational
level, we use AI planning to conceptualize the animal’s
cognitive processes as explicit representations of and rea-
soning about internal processing stages. In a first step, the
learning experiment is formalized as an abstract specifica-
tion of the trial series without contingency reversal. From
that the planning system derives a concrete configuration
of cognitive processes that is consistent with the specified
subject’s decision making procedure and with its knowl-
edge about the world: a “best-case” reference plan that
describes the animal in non-contingency scenario trials.

Reversal learning can then be expressed by means of re-
configuring the cognitive processes in order to address
the changes in the environment. A contingency reversal
is consequently interpreted as the occurrence of an execu-
tion failure of the reference plan. We use AI plan repair
techniques to add knowledge/behavior updates as explicit
learning steps, where necessary, or to alter the imple-
mentation of complex sub-processes. These techniques are
designed to introduce only a minimal amount of change
to the previous plan structure: in some parts of the plan,
it will be “easier” for the repair procedure to include a
knowledge update process that fixes a number of wrong-
based decisions of the subject, in other parts, minimal



change translates into merely discovering and assessing
that the subject made a wrong decision. Hence, the repair
method does not necessarily prevent negative feedback for
the subject, but it becomes a qualitative model for the
effort it takes to re-establish a consistent cognitive process
and with that an estimate for the prediction of subject
performance in reversal learning experiments.

2. HYBRID PLANNING

Formal Framework: The hybrid planning framework is a
combination of the state-based methods from partial-order
causal-link (POCL) and the procedure-oriented techniques
found in hierarchical task-network (HTN) planning (Estlin
et al. (1997); Kambhampati et al. (1998); Biundo and
Schattenberg (2001); Gerevini et al. (2008)). As it is usual
for POCL approaches (McAllester and Rosenblitt (1991)),
hybrid planning systems conceptualize the application
domain in a formal way based on the notion of states,
which describe all relevant aspects of world situations
in terms of object entities and the relationships between
them, and by state transitions, which account for the
dynamics in the world by specifying how situations change.

Our hybrid planning framework makes use of an order-
sorted logic and defines states as interpretations of logical
formulae over a given language L in which we specify sorts,
constants, variables, relation symbols, and the like, that we
are going to use in our model. Constants represent typed
objects and relations are used to describe properties of
and relationships between these objects. For example, a
literal or fact like detected(stimulus 1) holds in all states
where the subject perceived the stimulus stimulus 1, and
an atom analyzed(stimulus 1, up) is true in every world
state in which the subject has evaluated the modulation
characteristic of stimulus 1 and determined its value to
be up, i.e., it is modulated upwards.

Actions are the means to represent the world dynamics.
Their execution induces changes of a situation in the real
world world, which means that the interpretation of facts
and their respective logical symbols change; the resulting
situation is described by a new state that reflects this
new interpretation. While the fact detected(stimulus 1)
may not hold in a given state, it may do so in a state
reached by executing a suitable perception operation in
which the subject actively becomes aware of the stimulus.
Basic actions are supposed to be executed directly in the
environment and are called primitive tasks. A primitive
task is given by a schema t(v1, . . . , vn) = 〈pre, eff 〉,
which specifies the parameters, precondition and effects
of the task t: if the formula pre holds in a state, t can
be executed in that state and causes a state transition
such that formula eff holds in the resulting state. For
the purpose of this presentation, we may assume that
preconditions and effects are conjunctions of positive and
negative literals over the logical language L. Further
details of state definitions and task semantics can be found
in (Biundo and Schattenberg (2001)).

The following task schema specifies an action that cor-
responds to the process of selecting that feature of a
stimulus, which the subject considers to be relevant:
select(f : Feature, s : Stimulus, v : Value) = 〈detected(s) ∧
relevantFeature(f) ∧ hasCharacteristic(s, f, v), selected(f)〉

The precondition of the primitive task requires that the
subject has detected a stimulus s and considers a given
feature f to be relevant. Furthermore, the characteristics
for the given stimulus and feature are determined: note
that this is not a state feature intended in the sense of
a goal that “has to be made true” but rather in a way
of “binding” the parameter v to the respective Value
object in the current state. After the task select has
been executed, feature f becomes selected for the given
stimulus s in the subsequent state.

Before we take a closer look at abstract actions, let us
consider the representation of plans. A partial plan is a
tuple P = 〈PS,≺, V, C〉, which consists of a set of plan
steps (partially instantiated task schema), a set of ordering
constraints ≺ that impose a partial order on the plan steps,
a set of variable constraints, and a set of causal links. The
variable constraints are equations for codesignating and
non-codesignating parameters that occur in PS with each
other and with constants, respectively. Causal links are
the means to establish and maintain causal relationships
among the tasks in a partial plan: (s →φ s ′) means that
plan step s provides condition φ for plan step s ′ with
eff (s)⇒ φ and pre(s ′)⇒ φ.

From HTN planning (Erol et al. (1994)), hybrid planning
adopts the concepts of primitive and abstract tasks. By
doing so, partial plans do not only represent intermediate
results of the plan generation process but are also used
to specify implementations of abstract tasks. Abstract
tasks have the same syntactical structure like primitive
ones but are associated with at least one decomposition
method that describes a (standard) solution of the task by
providing a partial plan for it. A domain model typically
contains more than one method per abstract task and
their implementations may in turn include abstract tasks
as well. With that, hierarchies of tasks and associated
methods can be used to encode the various ways in which
an abstract task can be accomplished.

In the discussed domain, we model a trial in the exper-
iment series by the abstract task trial(s : Stimulus, f :

Feedback) = 〈¬presented(s), isGiven(f)〉. While on the ab-
stract level conducting a trial is specified in terms of giving
feedback to the subject on a yet unprocessed stimulus, the
partial plan for achieving this task introduces those plan
steps that actually present the stimulus to the subject,
produce and observe its response, and eventually provide
the appropriate feedback to that response.

method 1 for t r i a l ( s : Stimulus , f : Feedback )
steps
pre sent ( s p : St imulus ) ,
sub jec tTr ia lPer fo rmance ( s s : Stimulus , r s : Response ) ,
feedback ( f f : Feedback , r f : Response , s f : St imulus )

orderings
pre sent≺ sub jec tTr ia lPer fo rmance≺ f eedback

constraints
s=s p=s s=s f , r s=r f , f=f f

l inks
(present→presented(s) subjectTrialPerformance) ,

(subjectTrialPerformance→responded(s,r s) feedback)

Plan step feedback thereby refers to a corresponding
abstract task schema. The model provides two methods
for that task, one implementing a positive and one im-



plementing a negative feedback from the experimenter,
depending on the experimental setup. To this end, the
atom isGiven(feedback), which is used in the effects
of the abstract task schema definition trial above, is
specified as an abstract state feature via a so-called
decomposition axiom. Hybrid planning domain models
make use of decomposition axioms in order to allow for
causal reasoning between tasks on different levels of ab-
straction. Regarding the above model excerpt, the ax-
iom ∀f : Feedback.[isGiven(f) ⇔ isPositive(f) ∨
isNegative(f)] realizes such a link between the abstract
action of giving neutral feedback and its concrete imple-
mentations.

With the formal structures defined above, we introduce
a hybrid planning domain model D = 〈L, T ,M,∆〉 over
the logical language L as a set T of available abstract
and primitive task schemata, a set M of methods for the
abstract tasks in T , and a set ∆ of decomposition axioms.

A hybrid planning problem is given by the 4-tuple Π =
〈D, sinit, Pinit, g〉, with D specifying a domain model,
sinit an initial state, g a goal state, and Pinit an initial
partial plan. As usual in the POCL paradigm, the initial
state specifies the situation supposed to be valid at the
beginning of plan execution while the goal describes the
requirements for the world state that has to be reached.
In addition to that, hybrid planning problems include in
an HTN fashion an initial (abstract) plan and require
the solution of the planning problem to be a refinement
of that plan. Applying a decomposition method to an
abstract task is an intuitive act of making a plan more
concrete, because it replaces the abstract task by one
of its predefined solutions. Hybrid planning, however,
distinguishes various classes of plan refinements. Besides
task expansion they include task insertion, causal link
insertion, the insertion of variable bindings, temporal
constraints, and the like. Details about plan refinement
in this context can be found in (Schattenberg (2009)).

More formally, a partial plan P = (PS,≺, V, C) is a solu-
tion to the hybrid planning problem Π = 〈D, sinit, Pinit, g〉
if and only if the following criteria are met:

• PS contains a plan step init that has the initial state
sinit as effects and a plan step goal that has the goal
state description g as precondition.
• P contains no abstract plan steps and can be obtained

from Pinit by repeated decomposition of plan steps
and insertion of plan steps, causal links, ordering, and
variable constraints.
• For every precondition literal φ of a plan step s ′ ∈ PS

there is a causal link (s →φ s ′) ∈ C such that s has φ
as an effect and s is ordered before s ′ by the ordering
constraints in ≺.
• No causal links are threatened, i.e., for each causal

link (s →φ s ′) ∈ C the ordering constraints ensure
that no plan step s ′′ ∈ PS with a literal ¬φ in the
effects can be ordered between s and s ′.

These solution criteria ensure that for every linearization
of ground instances of the plan steps in PS that are con-
sistent with V , a solution to a hybrid planning problem is
executable in the initial state, implements the initial plan,
and generates a state satisfying the goal description. Such
a solution P ist obtained from Π by search in the space

of partial plans: Starting in Pinit, the planning algorithm
systematically applies available refinements to the current
plan, thereby generating successor plans, which in turn
are then subject to refinement application, until a plan is
processed that does satisfy the solution criteria (Kamb-
hampati (1997); Nau et al. (2004); Biundo et al. (2011a)).
Since an exhaustive search in the plan space for all pos-
sible solutions is generally infeasible, dedicated planning
strategies focus on promising refinement candidates. They
typically sacrifice completeness of the search procedure for
the sake of finding “good” solutions and to find them very
efficiently, respectively. Their technical details are out of
the scope of this presentations, hence we refer the reader to
(Schattenberg et al. (2005, 2007)). It is however important
to point out that planning strategies can be designed to
operate on qualities of the examined plans as well as of the
refinements; we will draw on both in the sections below.

Reference Plan Construction: Let us come back to the
animal learning experiments: the following fragment of a
problem specification defines a small scenario in which a
trained subject performs one trial.

domainModel
// so r t d e f i n i t i o n s [ . . . ]
constants

volume , modulation : Feature ,
high , low , up , down , neu t ra l : Value ,
GO, NOGO: Decis ion ,
jump , s i tNwai t : Response ,
s t imu lu s 1 : Stimulus ,
f eedback 1 : Feedback

// r e l a t i on s , t a s k schemata , methods [ . . . ]
in it ia lState

ha sCha r a c t e r i s t i c ( s t imulus 1 , modulation , up )∧
ha sCha r a c t e r i s t i c ( s t imulus 1 , volume , high )∧
i sH i t ( s t imulus 1 , jump)∧ r e l evantFeature ( volume )∧
a s s o c i a t edDec i s i on ( volume , high ,GO)∧
a s s o c i a t edDec i s i on ( volume , low ,NOGO)∧
a s s o c i a t edDec i s i on ( modulation , neutra l ,NOGO)∧
a s s o c i a t edDec i s i on ( modulation , up ,NOGO)∧
a s s o c i a t edDec i s i on ( modulation , down ,NOGO)∧
assoc ia tedResponse (GO, jump)∧
assoc ia tedResponse (NOGO, s i tNwai t )

goalState
−−

init ialPlan
steps
t r i a l ( s t imulus 1 , f eedback 1 )

orderings
constraints
l inks

The initial state represents both the experimental setup
and the gerbil’s internal situation. The modelled stimulus
of the given characteristics is supposed to be answered
by a jump response. The animal has been trained and we
may assume that it regards the volume of a stimulus to be
the relevant feature and that it decides to recall the jump
behavior on high volume feature values, only. No goal state
is specified and hence all partial plans that are executable
in the initial state and accomplish the abstract task trial
under the given circumstances are eligible solutions.

With the decomposition method presented above, the ini-
tial plan can be refined into the three steps of stimulus pre-
sentation, subject performance and feedback generation.



trial: Stimulus x Feedback

subject-Trial-Performance: Stimulus x Response

detect: Stimulus

select: Feature x 
Stimulus x Value

analyze: Value X 
Feature x Stimulus

decide: Stimulus x 
Feature x Value x 

Decision

respond: Response 
x Decision x 

Stimulus

detected

selected

analyzed

decided

detected detected

detected
present: Stimulus

feedback: Feedback x 
Response x Stimulus

presented

responded

relevant feature

initial 
state

goal
state

associated decision

is hit / is miss

is positive / is negative

Fig. 1. A simplified implementation of the 1-trial scenario. Boxes depict abstract tasks, arrows causal links.

Fig. 1 outlines the result of applying one more decomposi-
tion refinement: the subject performance implementation,
shown in the inner box, consists of five primitive tasks
that constitute the subject’s cognitive process. First, the
presented stimulus is detected and its relevant feature
determined and evaluated. The arrows denote the most
important causal links, which, among others, preserve a
consistent treatment of the presented stimulus during the
process. In order to formulate a GO/NOGO decision on
the detected stimulus, the decision plan step acquires the
actual value of the stimulus from the preceding analy-
sis and the subject’s association from its memory. The
response step also relies on the Gerbil’s experience (a
corresponding causal link from the initial has been omitted
in the figure) when processing the decision and produces
as effect the articulation of a response, the state feature
responded(jump). The feedback step will be decomposed
in a subsequent plan refinement and finally compares the
response to the evaluation matrix and, in this case, conse-
quently generates a positive reaction.

Please note that the combinatorics in the sketched so-
lution to the 1-trial experiment scenario are solved by
exploring the space of plan refinements. The decision task-
parameter in plan step decide is bound by establish-
ing a causal link from the initial state over the ground
literal associatedDecision(volume, high, GO). Also, the
final feedback implementation depends on whether the
subject’s response is a hit, a false alarm, or a miss; the
initial state defines only neutral feedbacks.

As we did for a single trial scenario, we can now de-
fine a whole experiment, which typically comprises 30
to 100 trials. By solving this large planning problem,
our hybrid planning system generates what we call ref-
erence plan, basically a sequence of stimulus presenta-
tions, cognitive processes and responses, and feedbacks.
It is “a” reference plan, because the planning domain
model defines more tasks and methods than we present
in this paper, which allows for a variety of alternative
implementations of the cognitive processes. E.g., in ad-

dition to the presented standard method for the abstract
subject− Trial− Performance, we provide one with an
“inverse” decision task, thus mimicking explorative behav-
ior. As we will see in the repair phase below, the model
also contains tasks for manipulating the subject’s beliefs,
e.g., the planner can insert plan steps that explicitly rep-
resent learning by updating the decision association facts
if negative feedback has been received. In this way, we can
also relax the assumption that the animal is trained prior
to the first trial and generate a plan for bootstrapping the
cognitive processes in the experimental environment.

It is important to point out that the model per se does
neither guarantee nor even prefer successful trials. This
is because our task and method portfolio is explicitly
intended to allow for false alarm and miss responses,
and the plan generation process is only concerned with
constructing consistent solutions according to the problem
specifications. Generally speaking, the planning approach
resembles more an observation of what implication the
design of cognitive processes has on the subject’s coping
with the given experimental situation. At this point, the
planning strategy becomes an integral part of the model: in
the course of plan space exploration, it monitors the rate of
hit responses in each refinement and uses this information
to guide the search. The planning strategy, e.g., tolerates
a certain amount of negative feedback unless the subject’s
lack of success exceeds some threshold; it then prefers the
application of appropriate exploration implementations or
the inclusion of learning steps. In this way, the planning
system is capable of constructing reference plans that
comply with an expected behavior, either according to an
animal’s training phase or to predictions of RL models.

3. PLAN REPAIR

Repairing Hybrid Plans: It is a very common assumption
in automated planning that the only way in which the
environment changes is through the execution of plan
steps, exactly in the way they have been designed. In
many real-world scenario, this is obviously not always



the case and plan-execution may fail for many reasons,
ranging from unexpected events to errors in the problem
specification. One way to address this problem is by
repairing the failed plan such that it circumvents the
source of the execution problem while at the same time
staying as close as possible to the previously obtained
course of action. The rationale behind this procedure is
that we regard the domain model to remain a correct
representation of the world and that whatever caused
the current deficiency is an exceptional event. This is
also the case for experiencing contingency reversal: the
established way of reacting is invalidated, the biological
system however has to be convinced that this change is
really a permanent one.

Fig. 2 illustrates our approach: Let plan G in the left plan
space be a solution to a planning problem’s initial Plan A,
generated via the depicted refinements. Let furthermore
the execution of G fail for some known reason, say, a
causal requirement for a plan step is not found satisfied.
In the analysis of the planning process, we find, e.g., that
plan refinement 3 introduced the eventually faulty causal
link in order to obtain a plan D. Plan C is therefore
the best developed backtracking point on the way down
to solution G, which does not suffer from the execution
problem. Syntactic analysis shows that refinement 4 does
not depend on the application of 3, whereas 5 builds upon
the causal link again. Finally, refinement 6 is not related
to 3 and 5 and hence also not affected by the failure.

A

B

C

D

E

F

G

1

2

3

4

5

6

A

B

H

D

E

F

G

1

2

4

6

C

I

J

...

Fig. 2. An example for plan repair: the explored plan
space for a solution G (left) and its re-construction
for obtaining a repaired solution J (right).

The result of this analysis leads to a reconstructed plan
space as shown on the right-hand side: The “safe” plan
refinements 4 and 6 are re-applied to the “safe” plan C,
resulting in a new and unaffected plan I. This is a good
candidate for finally obtaining a new solution J by the
same hybrid planning methods that we have introduced in
the previous sections. J is also similar to the old solution
G in the sense that only small parts of the previous plan
have been changed by the repair procedure as far as they
have been affected by the execution failure. The search
process is thereby guided by the old plan development as
reference and at the same time aware of the problems that
have been experienced during G’s execution (Bidot et al.
(2008); Biundo et al. (2011a)).

Contingency Reversal: The reference plan has been con-
structed on the assumption of stable environmental con-
ditions, i.e., although the subject may receive a certain
amount of negative feedback, the interpretation of the
isHit relation remained constant. We may also assume
that either the experimental setup introduces a trained
subject or the Gerbil succeeds in correctly learning to dis-
criminate the relevant stimulus feature and in identifying
the correct decision/response associations.

We now introduce the contingency reversal, i.e., the defini-
tion of hits is inverted and consequently the causal support
for some of the concrete feedback plan steps becomes in-
valid. As shown in the repair procedure above, the system
undoes all unappropriate feedback implementations and
basically implies three repair options: First, the feedback
can be inverted, which will decrease the hit rate of the
subject. Second, the implementation of the subject’s trial
performance can be altered into an exploratory one, which
however implies at least undoing one more method decom-
position. Third, the system can insert single plan steps for
changing the associations of decisions and responses or the
relevance of features, which will imply a re-consideration
of many causal links in the plan. These briefly described
repair options are constantly under consideration by the
repair mechanism, while at the same time it develops a
consistent solution for the new circumstances that is as
similar to the original plan as possible. Fig. 3 illustrates the
situation for three trials after coping with a contingency.
Let trial B and C be affected by the induced change, trial
A is either executed before the contingency reversal takes
place or the feedback on the stimulus response remains
the same as before. The system undid the implementation
of the feedback in trial C to a negative feedback, which
is a prerequisite of a newly added explicit learning step
update− decision. This new step consumes the old de-
cision association (cf. initial state specification in Sec. 2),
together with the negative experience of C, and produces a
new state feature that represents the updated knowledge.
The implementation of B does not have to be changed, it
is only the causal linking of the decision step that has to
be re-established - the feedback remains the same.

It is easy to see that the amount of change the repair pro-
cess induces on the reference plan highly depends on the
model of the cognitive processes as well as on the structure
of the acquired knowledge about the environment. Both
aspects are currently under examination: which processes
should be modelled as abstract tasks with implementation
alternatives, which are realistic conditions for knowledge
update operations. The actual values for repair operations
are also under debate: while it is very natural to measure
an exchange of implementation in terms of the number
of nested (sub-) implementations, there is no clear cor-
responding notion between the number of re-established
causal links and new task insertions.

4. CONCLUSION

The AI planning model has two particularly interesting
properties in the context of this work: First, the causal
structure of the model explicitly conveys all interdepen-
dencies of the subject’s acquired knowledge as well as its
cognitive processes. Second, the strategy concept allows for



A:trial
A:subject-Trial-Performance

A:detect

A:select

A:analyze A:decide

A:respond

A:present

A:feedback

relevant feature

goal
state

associated decision

is hit / is miss

is positive / is negative

B:trial

B:subject-Trial-Performance
B:detect

B:select

B:analyze B:decide

B:respond

B:present

B:feedback

associated decision

associated decision

relevant feature
is hit / is miss

is positive / is negative

is given

C:trial

initial 
state

update-
decision

Fig. 3. Three repaired trial implementations after coping with a contingency reversal.

a natural representation of principles like introducing min-
imal change, avoiding negative feedback, and the like. Our
hybrid planning and plan repair approach thereby demon-
strates that the empirically found relationships between
initial learning and reversal learning could be motivated
from a consistent theoretical framework.

It is our ongoing work to quantify the induced change
to the reference plan as an adequate estimate for the
effort a gerbil has in coping with contingency reversal. The
results will be used for experiment design and comparison
of cognitive process models. Future work also aims at
more integrated models of RL and planning (including
probabilistic approaches) and at investigating details of
the conceptualization like the complexity of the subject’s
feature selection mechanism or the granularity of the
knowledge update and decision processes.
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