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Abstract. This paper studies how to solve classical planning problems
with preferences by means of a partial-order causal-link (POCL) planning
algorithm. Preferences are given by soft goals – optional goals which
increase a plan’s benefit if satisfied at the end of a plan. Thus, we aim
at finding a plan with the best net-benefit, which is the difference of the
achieved preferences’ benefit minus the cost of all actions in the plan
that achieves them.
While many approaches compile soft goals away, we study how they can
be addressed natively by a POCL planning system. We propose novel
search and flaw selection strategies for that problem class and evaluate
them empirically.

1 Introduction

Partial-order causal-link (POCL) planning in the tradition of SNLP [16] and
UCPOP [17] provides plans as partially ordered sets of actions where causal
dependencies between the actions are explicitly shown. This allows for flexibility
with respect to the order in which actions can finally be executed. Moreover, it
enables a human user to grasp the causal structure of the plan and to understand
why certain actions are part of it [22]. Therefore, POCL planning is particularly
suitable when plans have to be generated that are not to be carried out by
machines or systems, but by humans. This appears, for example, in applications
that realize support of the elderly [1,7,19] or provide assistance in some daily
routines [5,6]. Plan quality is of particular importance in this kind of applications,
since plans have to be “accepted” by the user which is more likely if they respect
the individual’s personal preferences.

In this paper, we address POCL planning with preferences by optimizing
the net-benefit of solutions. In net-benefit planning [11], a classical planning
problem is augmented by a set of soft goals: state features one would like to
see satisfied in the final state produced by a solution plan, but if they are not,
the plan is still regarded a valid solution. Each soft goal has a certain benefit
which has a positive impact on the solution quality; every action contained in the
solution decrements the respective quality, however. Thus, the goal is to find a
solution to a planning problem that satisfies the preferences to the largest extent
while taking into account the negative impact, like costs or time consumption,
of the actions necessary to achieve them. This way, individual user preferences
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can be defined through soft goals with a corresponding (individual) benefit. We
describe these preferences by arbitrary formulae over state features, so-called
simple preferences.

In the literature, several kinds of preferences like simple preferences, state
trajectory constraints, and action occurrences have been addressed. Many plan-
ning systems exist capable of handling such preferences and implementing vari-
ous paradigms and search algorithms including hierarchical task network (HTN)
planning [15,24], search in the space of states [2,3,8], and search using binary de-
cision diagrams [10]. While several of these approaches keep the explicit represen-
tation of the preferences, other approaches suggest to compile them away [9,14].
This allows to use any planning system without making any changes due to the
presence of preferences. If one does not compile the preferences away, one can
either select a subset of the optional planning goals before the planning process
and regard all of them as non-optional [23], or one keeps the preferences and
decides during the planning process on which preference to work on, as it is
done in this work. Not compiling away preferences but addressing them natively
allows to incorporate a human user into the planning process, s.t. he can actively
influence the planning process [21].

In our setting, a problem specification is given in terms of a POCL problem.
The preferences are specified by so-called at-end preferences, as described in
pddl3 [11], the language for the fifth International Planning Competition (IPC-
5). An at-end preference (or simple preference) is an arbitrary formula over
state features which should hold at the end of a plan if possible. We developed a
POCL planning algorithm that is capable of solving this kind of problems. Each
preference is transformed into disjunctive normal form (DNF). Our algorithm
employs two different strategies to handle disjunctive preferences. Furthermore,
several flaw selection strategies for planning with preferences were implemented.
We evaluated these strategies on a large number of problems and show how they
influence planning performance.

2 Problem Setting

POCL planning performs search in the space of plans. A plan P in POCL plan-
ning is a tuple (PS, V, C,≺). PS is a set of labeled plan steps, i.e., each plan
step l:o consists of a (partially) instantiated operator o and a label l ∈ L to dif-
ferentiate between multiple occurrences of the same operator, L being an infinite
set of label symbols. For the sake of simplicity, we refer to a plan step l:o by l.
Operators are defined as usual, consisting of a precondition and an effect, each
of which is a conjunction of literals. A ground operator is called an action and
every action a has an associated cost, denoted by cost(a). V is a set of variable
constraints v ◦ x with v being a variable and ◦ ∈ {=, 6=} denoting a co- or a
non-co-designation with x, x being an object or another variable. Please note
that the variable constraints V can be interpreted as a constraint satisfaction
problem (CSP) in which domains of the variables are the available objects. C is
a set of causal links. A causal link (l, φ, l′) denotes that the precondition literal
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φ of plan step l′ is an effect of plan step l and that φ is supported or protected
that way. Causal links are used to ensure that all preconditions of all plan steps
in a plan are satisfied in the state in which they are to be executed. The set ≺ of
ordering constraints (l, l′), l, l′ ∈ L is used to resolve conflicts occurring during
search.

A POCL planning problem π is a tuple (O, Pinit), where O is the set of
available operators and Pinit is the initial plan. The initial plan contains two
artificial actions l0:init and l∞:goal which encode the initial state and the goal
description, respectively: l0 has no precondition and the initial state as effect,
whereas l∞ has no effect and the goal description as precondition. Initially,
(l0, l∞) ∈ ≺ and during planning all inserted plan steps are inserted between
these two actions.

A plan Psol = (PS, V, C,≺) is called a solution of π if and only if the following
criteria hold:

1. Psol is a refinement of Pinit = (PS′, V ′, C ′,≺′), i.e., PS ⊇ PS′, V ⊇ V ′, C ⊇
C ′, and ≺ ⊇ ≺′,

2. every precondition is protected by a causal link, i.e., for every precondition
literal φ of any plan step l:o ∈ PS there is a plan step l′:o′ ∈ PS, s.t.
(l, φ, l′) ∈ C,

3. no causal links are threatened, i.e., for each causal link (l, φ, l′) ∈ C the
ordering constraints ≺ and variable constraints V ensure that no plan step
l′′:o′′ ∈ PS with an effect ¬ψ can be ordered between l and l′, s.t. ¬φ is
unifiable with ¬ψ,

4. the ordering constraints and causal links are free of contradiction, i.e., ≺ does
not contradict the ordering induced by C and ≺ does not induce cycles, and

5. Psol is ground, i.e., each variable in V has a domain of size 1.

Please note that these syntactical solution criteria ensure that every lineariza-
tion of the plan steps in Psol that is compatible with its ordering constraints is
an action sequence that is executable in the initial state and leads to a state
satisfying the goal description.

In addition to a planning problem π, we are given a set of preferences P, each
of which is an arbitrary formula over state features. The function b : P → R maps
each preference p to its benefit b(p). The preferences follow the semantics of the
at-end preferences described in pddl3. Thus, a solution Psol satisfies a preference
p if and only if every linearization of the actions in Psol that is compatible with
its ordering constraints generates a state s such that s satisfies p.

Let Psol = (PS, V, C,≺) be a solution to the planning problem π. We are
interested in finding good solutions w.r.t. action costs and satisfied preferences.
To that end, the solution quality is defined by its net-benefit netBen(Psol) :=∑
p∈P(Psol )

b(p) −
∑
a∈PS cost(a), where P(Psol) denotes the set of preferences

satisfied by Psol .
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3 A POCL Algorithm for Planning with Preferences

In this section, we introduce our POCL planning algorithm (cf. Alg. 1) that is
capable of solving problems containing simple preferences.

Algorithm 1: Preference-based POCL algorithm

Input : The fringe fringe = {(Pinit , flawsh(Pinit), flawss(Pinit))}.
Output : A plan or fail.

1 best-netBen := −∞
2 best-P := fail

3 while fringe 6= ∅ and “no timeout” do
4 N := (P, flawsh(P ), flawss(P )) := planSel(fringe)
5 if flawsh(P ) = ∅ and netBen(P) > best-netBen then
6 best-netBen := netBen(P)
7 best-P := P

8 f := flawSel(flawsh(P ) ∪ flawss(P ))
9 fringe := (fringe \ {N}) ∪ resolveFlaw(N, f)

10 return best-P

Alg. 1 is a standard flaw-based POCL algorithm, meaning that every violation
of a solution criterion is represented by a so-called flaw. More precisely, for every
plan component that is involved in the violation of solution criteria 2. to 5. (cf.
previous section), like a precondition of a plan step that is not yet protected
by a causal link, one flaw is introduced to the set of all flaws of the current
plan. Hence, a plan is a solution if there are no flaws. The main procedure
consequently follows the idea of (1) selecting a promising search node/plan from
a search fringe, (2) select a flaw for the current plan, and (3) resolve the selected
flaw using all possible plan modifications and insert the resulting successor plans
into the fringe; this is also the step, where new flaws are calculated. This loop
is continued until the search space is exhausted or some timeout criterion is
satisfied (cf. line 3).

Our algorithm still follows that basic procedure; however, there are important
additional considerations one has to make, since we want to search for a solution
with the best net-benefit, which imposes certain problems to standard flaw-based
POCL algorithms.

To be able to search for plans which satisfy preferences, we need to include
them in the plan structure. To that end, we first normalize the preferences by
transforming them into DNFs. Then, we alter the structure of the artificial goal
action l∞, s.t. it additionally contains all preferences. As our POCL planning
algorithm is based on the concept of flaws, we include additional flaws for the
unsatisfied preferences. However, since these flaws do not violate a solution crite-
rion, they must be distinguishable from the “ordinary” ones. Hence, we differen-
tiate between two classes of flaws: hard flaws, as they were already described in
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the beginning of this section, and soft flaws, which indicate the non-satisfaction
of a preference. The test for a solution is then performed purely based on the
set of hard flaws (cf. line 5).

Alg. 1 has two “decision” points: (1) which search node/plan to work on and
(2) given a search node, which flaw should be resolved next and how will it be
resolved. The implementation of the first decision point defines the main search
strategy. A reasonable strategy is A* with some heuristic judging the quality
or goal distance of a plan. Hence, this heuristic should incorporate both action
costs and preferences. We developed such a heuristic in previous work [4] and
thus focus on the second decision point in this paper: the flaw selection in the
presence of preferences (cf. line 8).

The question which flaw to resolve next is of major importance for the per-
formance of any POCL planner, as the order in which flaws are selected directly
influences the produced search space. Hence, several papers address the problem
of finding appropriate flaw selection functions in POCL planning [12,13,18,20],
but none is tailored to the selection of soft goals. The specification and empirical
evaluation of flaw selection strategies for POCL systems in the presence of soft
flaws is thus one of our main contributions.

The question how to resolve soft goals rises from two sources: First, a soft
flaw does not need to be resolved and must consequently be treated differently
than a hard flaw. Second, since soft flaws are represented as a DNF of literals in
this work, many standard flaw selection strategies are not applicable anymore,
since they are based on flaws being single literals.

4 Soft Flaw Resolution Strategies

The function resolveFlaw(N, f) in line 9 of Algorithm 1 calculates all successor
plans that resulted from addressing and/or resolving the previously selected flaw
f in the plan P of the current search node N = (P, flawsh(P ), flawss(P )).

An important observation when planning in the presence of soft flaws is
that it is not sufficient to alter the POCL solution criterion from “there are
no flaws” to “there are no hard flaws” (cf. line 5). Note that the flaw selec-
tion is not a backtrack point, as in standard POCL planning (without op-
tional goals), all flaws need to be resolved and hence the actual order is ir-
relevant for completeness. Since working on a preference is optional, select-
ing and resolving a soft might invalidate completeness; hence, one must be
able to ignore a soft flaw in order to maintain completeness. Thus, given a
search node N = (P, flawsh(P ), flawss(P )) and a soft flaw f , the function
resolveFlaw(N, f) must also include (P, flawsh(P ), flawss(P ) \ {f}). Other-
wise, the choice to work on the soft flaw f could have the effect that certain
solutions might not be found. Please note that this observation generalizes to
POCL planning with soft flaws and is thus not specific to the case in which a
preference is an at-end preference in DNF.
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Given an unsatisfied preference p in DNF, there are several possibilities how
to work on p, i.e., how to define the function resolveFlaw(N, f) for a search
node N containing the soft flaw f , which represents p.

We evaluated two approaches called the split strategy and the no-split strat-
egy. The general idea of the split strategy is to prevent the system from working
on different disjuncts within the same preference. The no-split strategy, on the
other hand, does allow to work on different disjuncts within the same plan.

4.1 The Split Strategy

The idea behind this strategy is to prevent the search process to work on different
disjuncts in order to safe unnecessary search effort, as a preference in DNF is
satisfied is a single disjuncts satisfied – protecting literals in other disjuncts is
thus unnecessary search effort.

Let p = ϕ1∨· · ·∨ϕn with ϕi = ψi1 ∧· · ·∧ψim be a preference that has never
been addressed before, i.e., the corresponding soft flaw f has never been selected
by the flaw selection function flawSel. Let N = (P, flawsh(P ), flawss(P )) and
f ∈ flawss(P ).

When f is selected the first time, resolveFlaw(N, f) = {N ′, N1, . . . Nn},
where N ′ = (P, flawsh(P ), flawss(P ) \ {f}) for the reason of completeness,
and Ni = (Pi, flawsh(P ), flawss(P )), and Pi being P with p being set to ϕi.

When f is selected, but not for the first time, resolveFlaw(N, f) produces
all possibilities to protect an unprotected literal of the conjunction ϕi = ψi1 ∧
· · · ∧ ψim . The literal to be protected is chosen by the flaw selection function
defined in the next section. The flaw f is removed from the current plan under
consideration as soon as every literal in ϕi is protected by a causal link.

4.2 The No-Split Strategy

As opposed to the last strategy, this one does allow to work different disjuncts
within the same preference. While this strategy does allow for plans containing
redundant plan steps and causal links, it shows advantages in terms of flexibility.

Let p be in DNF and f be the corresponding soft flaw. When we do not
perform splitting into different conjunctions, N ′ = (P, flawsh(P ), flawss(P ) \
{f}) ∈ resolveFlaw(N, f) for N = (P, flawsh(P ), flawss(P )) and f being
selected for the first time is not a sufficient criterion for completeness. Although
it is still a necessary criterion, we also have to take into account p’s disjunctive
structure as follows: Let f and, in particular, the literal ψij be selected by the
flaw selection function. Now, we distinguish two cases: Either some literal in the
disjunct ϕi in which ψij occurs1 was already selected before or ψij is the first
literal selected in ϕi. In the former case, resolveFlaw(N, f) contains all plans
resulting from protecting ψij . In the latter case, this set additionally contains P
but with p modified by ϕi set to false.

1 For the sake of simplicity we assume that there is exactly one disjunct in p containing
ψij . The described procedure is easily adapted to the general case.
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Example Let p = ψ11 ∨ (ψ21 ∧ψ22) be a preference in the solution plan P with
none of its literals being protected by a causal link. Further, let f be the soft flaw
representation of p. Let us assume that P can not be developed into a solution
if ψ21 is protected by a causal link, but there are solutions if protecting ψ11 . Let
us further assume the flaw selection function flawSel estimates ψ21 to be the
most promising literal hence selecting f and, in particular, ψ21 . By assumption,
none of the successor plans of P can be developed to a solution. However, we lose
completeness, since there are solutions if protecting only ψ11 , but not protecting
ψ21 . To solve that problem it is sufficient to allow ignoring disjuncts in the same
way as we allow ignoring a complete preference: When addressing the disjunct
(ψ21 ∧ ψ22) the first time, we additionally add P ′ to the search fringe in which
p is replaced by p′ = ψ11 .

5 Flaw Selection Functions

In line 8 of Algorithm 1, the function flawSel selects a flaw from the current set
of hard and soft flaws. In our experiments we observed the hard flaw selection
strategy Least-Cost Flaw Repair (LCFR) [13] being one of the best performing
strategies. It always selects a flaw f with a minimal number of refinement op-
tions |resolveFlaw(N, f)|. When selecting a soft flaw, we followed that idea and
implemented a strategy selecting a soft flaw with a minimal estimated branch-
ing factor taking into account that each preference is a disjunction (possibly
with exactly one disjunct if the split strategy is used) of conjuncts. We call the
resulting strategies LCFRDNF -

∑
, LCFRDNF -

∏
, and LCFRDNF - min, which

estimate the branching factor based on the “cheapest” disjunct of a preference
based on summarizing, multiplying or taking the minimal number of refinement
options for each literal in that disjunct.

Let p = ϕ1∨· · ·∨ϕn with ϕi = ψi1∧· · ·∧ψim and f the soft flaw representing
p in plan P . For ◦ ∈ {

∑
,
∏
,min}, we define the preference-based Least-Cost

Flaw Repair strategy as follows:

LCFRDNF - ◦ (N, f) := min
ϕi

◦
ψij

|resolveFlaw(N, f(ψij ))|

where f(ψij ) is the flaw representation of the literal ψij assuming only unpro-
tected literals are taken into account.

Example LCFRDNF - min always selects a soft flaw for which there is a literal
with a minimal number of supporters. However, it completely ignores the size of
the conjuncts. For example, let p = ψ11∨(ψ21∧ψ22) and |resolveFlaw(N, f(ψ))|
be 2, 1, and 3 for ψ := ψ11 , ψ21 , and ψ22 , respectively. Then, LCFRDNF - min = 1
selecting its argmin ψ21 ignoring that ψ22 also has to be supported afterwards in
order to fulfill p. The other two strategies try to address that overly optimistic
estimate of LCFRDNF - min by taking into account all conjuncts. In the previous
example, LCFRDNF -◦ = 2 for ◦ ∈ {

∑
,
∏
} and the argmin ψ11 .
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6 Evaluation

In this section, we evaluate the POCL algorithm using the presented strategies.
Our evaluation focuses on three different questions:

– Does one of the two proposed soft-flaw-resolution techniques perform better
than the other?

– In which order should hard and soft flaws be addressed, i.e., is it beneficial
to work on preferences before a plan is a solution?

– Is there a soft flaw selection strategy that outperforms the others?

6.1 System Configuration

Since we want to maximize the net-benefit, we define our plan selection strategy
planSel to prefer a plan P with maximal value of netBen(P) − h(P ), where
h(P ) is a heuristic function estimating the action costs necessary to achieve all
hard goals of the current partial plan P . To be more precise, h is a variant of the
additive heuristic for POCL planning, as described by Younes and Simmons [25].
Our heuristic guidance is thus limited to action costs ignoring the benefit of
satisfied preferences. Although we developed a heuristic for POCL which takes
into account optional goals [4], we did not yet implement that heuristic.

We observed that our plan selection strategy planSel selects a unique plan
in only 45% to 70% of all cases. To avoid a random plan selection among the
plans with an identical value of netBen(P)− h(P ), we can define an arbitrarily
long sequence of tie-breakers. In all experiments, the following sequence was
used: Maximize Benefit (MB) → Minimize Costs (MC) → Minimize # Ignored
Preferences (MIP). MB maximizes the sum of the fulfilled preferences’ benefit
thus ignoring action costs, whereas MC minimizes these costs. MIP minimizes
the number of ignored preferences to favor plans which still have the potential
to fulfill more preferences. If a unique plan was still not found, a plan is picked
at random.

The function flawSel consists of two parts: a sequence responsible for se-
lecting a hard flaw and a sequence for selecting soft flaws, respectively. The hard
flaw selection sequence flawSelh is always given by Prefer Hard Flaw (PHF) →
LCFR → Earliest Flaws (EF) → Select Hard Flaw (SHF). PHF always favors
a hard flaw before a soft flaw. As a consequence, a soft flaw can only be selected
by a subsequent flaw selection if the current plan has no more hard flaws. LCFR
minimizes the branching factor as explained in the previous section. EF favors
flaws which were introduced earlier to a plan and SHF finally ensures that some
(random) hard flaw is selected if the choice is still invariant. For the selection
of soft flaws, we use the flaw selection sequence flawSels given by Prefer Soft
Flaw (PSF) → LCFRDNF -◦ → Select Soft Flaw (SHF). PSF and SSF behave
exactly as PHF and SHF , but for soft instead of hard flaws. LCFRDNF -◦ is one
of the three strategies as described in the last section.

In the empirical evaluation, we tested the system configuration with the
planSel function as described above and all of the following combinations:
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– For f being a soft flaw, resolveFlaw(P, f) implements the Split Strategy or
the No-Split Strategy.

– The flaw selection strategy flawSel is one of the sequences flawSelhs :=
flawSelh → flawSels and flawSelsh := flawSels → flawSelh

Note that there are actually six flaw selection sequences, as each soft flaw
selection sequence contains the LCFRDNF -◦ strategy which is parametrized by
◦ ∈ {

∑
,
∏
,min}. In total, we thus evaluated twelve different configurations for

every problem instance.

6.2 Benchmarks and Empirical Results

To compare our proposed strategies we evaluated two very different domains.
The first domain is a randomly generated domain to obtain a very large

set of problem instances containing many preferences. The problems specify a
goal description (which is not mandatory in preference-based planning) and 100
preferences consisting of 2 to 5 disjuncts, each of which being a conjunction of
size 2 to 6.

The second domain is from an ongoing research project in which we want
to assist a human user in every-day life situations like making appointments
and going shopping. The domain is still rather small and only a few problem
instances are modeled, yet. Each of them specifies certain mandatory goals as
well as between 5 and 12 preferences in DNF.

Random Domain In the random domain, we evaluated 120 problem instances
and report the net-benefit of the best plan found by each configuration within a
search space limit of 10,000 plans.

We visualize our results by means of a histogram (Fig. 1a) and a boxplot
(Fig. 1b). Please note that we only include 6 of the 12 tested configurations
in the diagrams because we observed one configuration parameter to cause the
search to fail consistently: In only two problem instances our system was able
to find a solution if the flaw selection sequence flawSelsh is chosen, in which
soft flaws are resolved first. This perfectly meets our expectations, as it is more
important to have any valid solution than to have a plan that satisfies many
preferences but does not respect the solution criteria.

Comparing the remaining configurations, we clearly notice that using the
split strategy in combination with LCFRDNF - min is dominated by all other
configurations (Fig. 1b). In almost 100 of all 120 instances it produced only
plans with a net-benefit of up to 250, the mean being close to zero and 2200
being the maximal net-benefit achieved by any configuration/problem instance
combination (Fig. 1a). This result is not surprising, since further investigation
shows that both the split strategy as well as the LCFRDNF - min strategy perform
worse than their respective counterparts.

When we compare the different versions of the soft flaw selection strategy,
the results clearly show that LCFRDNF - min is dominated by LCFRDNF -

∑
and

LCFRDNF -
∏

(Fig. 1b). While the latter two strategies mostly find solutions of
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similar quality (Fig. 1a), the respective difference between these two strategies
and LCFRDNF - min is quite large. This observation is quite plausible as the
LCFRDNF - min strategy completely ignores the size of the conjunctions upon
which it bases its decision.

The last remaining comparison is the one between the two flaw resolution
strategies split and no-split. We observe that the no-split strategy clearly domi-
nates the split strategy. We do not know the cause of that behavior and regard
this result as the most interesting one. A possible cause of the advantage of the
split strategy might be its flexibility to switch to some disjunct after the planner
already worked on another. Consider the following example for clarification: Let
P be a solution and p = ψ11 ∨ (ψ21 ∧ψ22) one of its preferences. Further, let ψ22

be the literal selected by the flaw selection function. Let us assume protecting
ψ22 introduced new hard flaws which need be to be resolved first before the
planning system can continue working on p. Let P ′ be the resulting solution in
which ψ11 and ψ21 are still unprotected. Assuming that no solution exists if ψ21

is protected by a causal link, the only possibility for the split strategy to protect
ψ11 is to refine P which might take longer than refining P ′ or a plan along the
path from P to P ′.
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Fig. 1: Fig. 1a shows the impact of the chosen configurations on plan quality
while Fig. 1b shows the distribution and mean value of the net-benefit of the best
solution found by the different configurations. s stands for the split strategy, no-s
for the no-split strategy and min, +, and ∗ stand for corresponding LCFRDNF -◦
soft flaw selection strategies, ◦ being min,

∑
, and

∏
, respectively.
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User Assistance Domain Because our domain models and corresponding
problem instances are quite small, optimal solutions can be found very fast.
Thus, we set a timeout of only 1.5 minutes and report the best net-benefit of
any solution and the current search space size when that solution was found.
Tab. 1 shows the results obtained by two runs taking the mean values.

Table 1: This table shows the impact of the different configurations (rows) on
different problem instances (columns) in the user assistance domain. netBen

denotes the net benefit of the best found solution and SS the size of the search
space when it was found. Configurations are named as in Fig. 1. hs stands for
the flaw selection function flawSelhs and sh for flawSelsh.

#1 #2 #3 #4 #5
netBen SS netBen SS netBen SS netBen SS netBen SS

s/min
hs 25 64194 10 786 7 184 2 5079 31 121
sh -42 1 0 1 7 294 0 1 0 1

s/+
hs 26 15908 20 658 12 272687 2 2223 31 125
sh -42 1 0 1 7 153 0 1 0 1

s/∗ hs 13 177 13 4705 12 418678 2 2223 31 123
sh -42 1 0 1 7 133 0 1 0 1

no-s/min
hs 28 1466 10 144 9 82561 2 1768 31 619
sh -42 1 0 1 7 76 0 1 15 285942

no-s/+
hs 17 134 20 442 7 94 2 1215 31 701
sh -42 1 0 1 7 100 0 1 0 1

no-s/*
hs 32 1776 15 243 7 82901 2 1215 31 116
sh -42 1 0 1 7 60 0 1 0 1

In the evaluation of the previous domain we were able to identify five very
clear observations. The results of the user assistance domain do not reproduce
these observations that clearly. In this domain, almost all configurations can
find optimal solutions; there are only a few deviations which can not justify any
conclusion.

However, our results do not contradict the previous observations as well, since
all configuration comparisons result more or less in a tie. Furthermore, there is
one observation that we can confirm very clearly. Preferring soft flaws before
hard flaws (strategy flawSelsh) is strongly dominated by the reverse ordering.
In almost all cases the best quality is significantly worse compared to the opposite
ordering. There is only one instance (cf. instance 3, last configuration), in which
flawSelsh explores less nodes than flawSelhs.

7 Conclusion & Future Work

In this paper, we introduced a POCL algorithm capable of solving problems
with (simple) preferences while optimizing their net-benefit. For selecting and
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satisfying a preference during planning, we developed three novel flaw selection
functions, which are based on a successful strategy known from (standard) POCL
planning without preferences. Furthermore, we addressed the question of how to
address preferences when they are represented in terms of a disjunctive normal
form. We evaluated these strategies empirically on two different domains.

Our empirical evaluation is still preliminary: So far, the plan selection strat-
egy does not take into account the preferences; future work will thus include an
empirical evaluation with a plan selection function guided by the preferences.
Furthermore, we did not evaluate problems from the IPC which also remains
future work.
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