
On Delete Relaxation in
Partial-Order Causal-Link Planning

Pascal Bercher, Thomas Geier, Felix Richter, Susanne Biundo
Institute of Artificial Intelligence

Ulm University
Ulm, Germany

e-mail: firstName.lastName@uni-ulm.de

Abstract—We prove a new complexity result for Partial-Order
Causal-Link (POCL) planning which shows the hardness of
refining a search node (i.e., a partial plan) to a valid solution
given a delete effect-free domain model. While the corresponding
decision problem is known to be polynomial in state-based search
(where search nodes are states), it turns out to be intractable
in the POCL setting. Since both of the currently best-informed
heuristics for POCL planning are based on delete relaxation, we
hope that our result sheds some new light on the problem of
designing heuristics for POCL planning.
Based on this result, we developed a new variant of one of these
heuristics which incorporates more information of the current
partial plan. We evaluate our heuristic on several domains of the
early International Planning Competitions and compare it with
other POCL heuristics from the literature.

I. INTRODUCTION

Partial-Order Causal-Link (POCL) planning [1], [2] is a
technique for solving classical planning problems via search
in the space of plans. The currently most prominent approach
for solving such problems is planning as search in the space
of states, although POCL planning has several advantages
compared to state-based planning: POCL planning follows a
least commitment principle, in which only necessary decisions
are performed like maintaining only a partial order on the plan
steps in a partial plan and maintaining only a partial variable
binding thereby avoiding unnecessary restrictions, which might
turn out as wrong later in the search. Since solutions are also
only partially ordered and all causal dependencies between
plan steps are explicitly represented, POCL planning allows
greater flexibility at plan execution time [3] and the explanation
of the structure of the solution at hand [4].

Despite these advantages, POCL planning has become
less attractive to many researchers, because planning systems
based on this approach are currently not competitive with
current state-of-the-art (state-based) planning systems in terms
of runtime. We assume this can be attributed to two main
reasons: first, there is a large number of highly informed
heuristics for state-based search [5], and, second, there is a
lot of theoretical work which helps designing new heuristics
or improving existing ones [5], [6]. For example, Bylander’s
result showing that the plan existence problem given a state
and a delete effect-free domain is polynomial [6] lead to the
development of several tractable heuristics based on delete re-
laxation. The probably most prominent one is the FF heuristic
as implemented in the Fast Forward (FF) planning system [7].
The success of these heuristically guided systems lead to a

paradigm shift from several approaches like POCL planning
and CSP-based approaches such as GraphPlan [8] to state-
based planning.

We are only aware of two well-informed heuristics for
domain-independent, non-temporal POCL planning: The Re-
lax heuristic [9] and the Additive heuristic for POCL plan-
ning [10]. Both heuristics are based on the same idea of
finding a solution using a delete-relaxed planning domain.
In contrast, heuristics used in state-based search also rely on
critical paths, abstractions, and landmarks [5]. We recently
developed an approach which enables the use of state-based
heuristics in POCL planning, but it did not yet result in a
system competitive with state-based planners [11]. We believe
that the small number of heuristics for POCL planning can
be attributed to the fact that it seems to be much more
complicated to estimate the goal distance for a partial plan
than to estimate the goal distance for a state. To shed some
light on that difficulty, we study the complexity of the plan
existence problem for POCL planning, when delete relaxation
is performed – analogously to the proposition of Bylander [6]
for state-based planning. Based on our results, we improve the
Relax Heuristic and present empirical results.

The remainder of the paper is structured as follows: Sec-
tion II is devoted to the formalization of POCL planning.
Section III shows our new complexity result. Section IV
presents our new heuristic including an empirical evaluation
and, finally, the last section concludes the paper.

II. PROBLEM FORMALIZATION

Although POCL planning is ordinarily done in a lifted
fashion [10], we base our formalization on a fully ground,
propositional representation.

A domain model 〈V,A〉 consists of a finite set of propo-
sitional state variables V implicitly defining the induced state
space S = 2V and a finite set of available actions A. Each
action a = 〈pre, add , del〉 ∈ A is a tuple from the set
2V × 2V × 2V and defines the action’s precondition pre, its
add list add , and its delete list del . It is applicable in a state
s ∈ S iff pre ⊆ s and, if applicable in that state, generates
the state (s \ del) ∪ add . The applicability and application of
action sequences is defined in the straight-forward way.

Partial plans are abstractions of totally ordered action
sequences in the sense of actions being only partially ordered;
furthermore, partial plans explicitly model effect/precondition
relations between different actions by means of so-called

causal links. More formally, a partial plan is a tuple
(PS ,≺, CL) with PS being a finite set of plan steps, l:a ∈ PS
consisting of an action a ∈ A ∪ {a0, a∞} and l being a
unique label symbol to identify the correct plan step in case the
partial plan contains multiple occurrences of a. The two special
actions a0 and a∞ encode the initial state of the problem
and its goal description, respectively. Thus, a0 has an empty
precondition, an empty delete list and the initial state as add
effect, and the action a∞ has an empty add and delete list, and
the goal description as precondition. The corresponding plan
steps l0:a0 and l∞:a∞ are called init and goal , respectively.
The ordering constraints are represented by the strict partial
order ≺ defined on the plan steps of PS . Every partial plan
satisfies (0,∞) ∈ ≺ and, furthermore, every plan step in PS
different from init and goal is ordered between these two plan
steps. The set CL specifies the causal links. A causal link l−→v l′
specifies that the precondition variable v ∈ V of the plan step
l′:a′ is provided by the add list of plan step l:a.

A POCL planning problem is a tuple π = 〈D, P 〉 with D
being a domain model and P being a partial plan. Typically, P
contains only the two plan steps init and goal without causal
links, since such a problem corresponds to an ordinary STRIPS
planning problem [12], where only an initial state and a goal
description is given in addition to the domain model.

A partial plan Psol = (PS sol ,≺sol , CLsol) is a solution to
a POCL planning problem π, called plan, if and only if:

(1) Psol is a refinement of P . That is, if P = (PS ,≺, CL),
then PS ⊆ PS sol , ≺ ⊆ ≺sol , and CL ⊆ CLsol .

(2) There are no open preconditions. That is, for every
plan step l:a ∈ PS sol , a = (pre, add , del) with v ∈ pre,
there is a causal link l′−→v l ∈ CLsol with l′:a′ ∈ PS sol , a′ =
(pre ′, add ′, del ′), and v ∈ add ′.

(3) There are no causal threats. That is, if there is a causal
link l−→v l′′ ∈ CLsol , then for all plan steps l′:a′ ∈ PS sol with
a′ = (pre ′, add ′, del ′) and v ∈ del ′ it holds that the set ≺sol ∪
{(l, l′), (l′, l′′)} is no strict partial order.

Criterion (1) relates solutions to the problem specification,
i.e., to the initial partial plan P . Criteria (2) and (3) ensure that
the solution is executable in the sense that any action sequence
induced by the ordering constraints is applicable in the initial
state and generates a state satisfying the goal condition.

POCL planning procedures perform plan-based search,
starting with the initial partial plan and refining it until a
solution is generated [10]. To that end, the violation of criteria
(2) and (3) is represented by so-called flaws; thus, a partial
plan is a solution iff it does not show any flaws. In a first
step, a most-promising partial plan is selected from a set of
candidates. For that partial plan, first, all its flaws are identified,
i.e., all its open preconditions and all causal threats. Then,
one of these flaws is selected and resolved using all available
possibilities (for instance, an open precondition flaw can be
resolved by inserting a causal link rooted either in a plan step
from the current partial plan or in a new plan step taken from
the domain). All resulting plans are then added to the set of
candidates and a new cycle starts over.

This procedure has two decision points: The selection of a
most promising partial plan and the selection of a flaw. In this
paper, we focus on the former by means of heuristics.

III. COMPLEXITY RESULTS

POCL procedures pick a most-promising partial plan from
a set of candidates based on some criteria; often, an informed
search procedure like A* using a heuristic function is chosen.
As noted in the introduction, several well-informed heuristics
have been developed for state-based planning [5], but we are
only aware of two heuristics for POCL planning: the Relax
heuristic [9] and the Additive heuristic for POCL planning [10]
(Add, for short). Both approximate the number of necessary
actions to solve a delete-relaxed version of the planning
problem. In state-based planning, ignoring delete lists is a
promising idea for constructing heuristics, as the plan existence
problem for a delete effect-free domain is known to be solvable
in polynomial time [6]. However, in POCL planning, that
problem has not yet been investigated in detail.

Let π = 〈D, P 〉 be a POCL planning problem with P being
an arbitrary partial plan, i.e., possibly containing more plan
steps than just init and goal and possibility containing causal
links and ordering constraints. Such problems are generated
during planning, as each search node is a new partial plan and
hence induces a new planning problem.

In state-based planning, performing delete-relaxation is
straight-forward, as simply all actions in the domain need to be
relaxed (although there are more elaborated approaches, which
ignore only some of the variables in the delete lists [13]).
However, in the POCL setting, in addition to the actions in the
domain, we have the actions/plan steps in the current partial
plan and the question arises whether these should be relaxed
as well. If not, the actions from the domain would still all be
delete-free, but the plan steps in P are not. We can motivate
leaving P unaltered by considering the analog question in
state-based planning: there, search nodes are states; hence,
every state completely reflects the entire information about the
search path from the initial state up to the current one. This
includes all applied actions leading to that state including their
negative effects. In POCL planning, this “planning progress”
is reflected in the current partial plan. Relaxing its actions
would mean to ignore information about the current progress
of the search. Thus, the question we would like to have
answered is: “Given P , how hard is it to refine it to a solution
given an easier planning domain?”. In the following, we study
the hardness of that problem where this “easier” domain is
obtained by performing delete relaxation.

Unfortunately, it turns out that relaxing only the actions
in the domain is NP−complete, whereas the problem is in
P, if also the actions in P are delete-relaxed. We prove the
first result formally, but omit a proof for the latter, since it is
trivially solvable in polynomial time in the size of |D|+ |P |.

Let us first define our notion of delete relaxation. We call a
POCL planning problem π = 〈D, P 〉 with D = 〈V,A〉 delete-
free, if and only if for each (pre, add , del) ∈ A, del = ∅. We
hence call a POCL planning problem π′ delete-relaxed if it is
obtained from a POCL planning problem π by ignoring the
delete lists of the actions in A (but leaving P unaltered).

The decision problem for determining whether a partial
plan has a solution using a delete-relaxed domain model is
then given by PLANSAT := {π|π is a delete-free POCL
planning problem and has a solution}.

Theorem 1. PLANSAT is NP−complete.

Proof: Membership. Fix an arbitrary delete-free POCL
planning problem 〈D, P 〉 with domain D = 〈V,A〉 and
P = (PS ,≺, CL). Guess a linearization of the plan steps in
PS , which respects the ordering constraints of P . We need
to show that it can be verified in polynomial time that such
a sequence init , l1:a1, . . . , ln:an, goal can be extended to an
applicable action sequence using (the delete-free) actions from
the domain. This is sufficient for membership, as a POCL
solution can be obtained from such a sequence by inserting
causal links, which can also be done in polynomial time.

First, we need to verify that the chosen linearization does
not violate any causal links present in P . This is the case if
and only if it does not have any causal threats, which can be
verified in polynomial time. Note that the causal links may
only be violated by the plan steps already present, but not by
the additional actions from the domain, as these actions do not
show delete lists and hence cannot cause new causal threats.

Afterwards, we build a saturated relaxed planning graph [8]
starting from init . This graph can be built in polynomial
time [7]. Furthermore, if the precondition of the plan step
l1:a1 is contained in the last fact layer L ⊆ V of this
planning graph, we have verified that we can find a sequence
of actions to support the precondition of that plan step (or
proved its non-existence, otherwise), since such a sequence
can be extracted from the planning graph without backtracking
due to the absence of negative effects [7]. Now, we apply
that plan step by removing the delete list from L and adding
its add list thereby generating a new state. From this state,
we build another saturated planning graph to test whether the
precondition of the plan step l2:a2 holds in its last fact layer.
We repeat that procedure thereby building |PS | − 1 planning
graphs, one between each tuple of two consecutive plan steps.
If the precondition of goal is contained in the last layer of
the last planning graph, we have verified that the chosen
linearization can be extended to an applicable action sequence
containing the plan steps of P in an order compatible with ≺
and respecting its causal links.

Hardness. To prove the hardness, we adapt a proof by
Nebel and Bäckström [14, Theorem 15], in which they proved
the NP completeness of deciding whether there exists an
applicable action sequence given a partial plan without causal
links and without the capability of inserting actions from the
domain; i.e., the problem studied was to find a suitable order
of the plan steps. We show that this problem does not become
easier when one is allowed to insert delete-relaxed actions,
independently of whether causal links are present or not. From
that observation follows hardness, since P can be refined1 to
a POCL solution if and only if there exists a linearization of
the plan steps in P which can be extended to an applicable
action sequence using actions from the domain.

The proof is done by reduction from CNF-SAT. Given a set
of boolean variables X = {x1, . . . , xn} and a set of clauses
C = {c1, . . . , cm}, each clause cj being a set of literals over
X representing a disjunction, we construct a delete-free POCL

1Please note that this question is different from verifying that P already
is a valid solution, which can be done in polynomial time using the POCL
solution criteria [14, Theorem 14].

init

. . .

xi?>

xi?⊥

. . .

in
it clear-C

¬c1
. . .

¬cm

A>i : xi 7→ >xi?>
¬xi?>
xi=>
¬xi=⊥

A⊥i : xi 7→ ⊥xi?⊥
¬xi?⊥
xi=⊥
¬xi=>

goal

c1

. . .

cm

goa
l

Fig. 1. The initial partial plan used by the hardness proof of Theorem 1.

planning problem, whose solutions are isomorphic to that of
the CNF-SAT problem. The general idea is that the initial
partial plan (depicted in Fig. 1) contains two plan steps/actions
A>i and A⊥i for each variable xi in X . The order in which these
plan steps occur in a solution encodes the truth assignment of
xi using the two state variables xi=> and xi=⊥.

For example, if A>i appears after A⊥i in a solution plan,
then xi=> does hold at the end of any action sequence derived
from that plan, and xi=⊥ does not. Note that every pair of two
actions A>i and A⊥i needs to be ordered w.r.t. each other, since
one plan step would threaten the other as soon as a causal link
is set over xi=> or xi=⊥, respectively.

Furthermore, adding the delete-relaxed variants of these
actions does not change which of these variables finally holds
for the following reasons: First, the delete-relaxed variant
of A>i , for example, cannot be applicable after A>i due its
precondition and delete effect xi?>, which encodes whether
this action has already been executed. Second, inserting it
before A>i does not change which of the variables xi=> and
xi=⊥ finally holds, because only the last applied non-relaxed
action determines the final outcome.

We still need to “use” these variables in order to determine
whether the resulting variable assignment satisfies the SAT
formula. To that end, the domain model contains one action for
each literal in any clause which serves the purpose of setting
a clause to true if one of its literals is true. Thus, if xi ∈ cj
and cj ∈ C, then C>ij := ({xi=>}, {cj}, ∅) ∈ A. The action
C⊥ij is defined analogously for ¬xi ∈ cj , cj ∈ C. Obviously,
these actions can be used to support the preconditions of the
goal plan step (and thus solve the SAT formula) if and only if
a satisfying variable assignment was chosen, i.e., if a correct
order of the actions A>i and A⊥i was found. However, since
these actions may be inserted at an arbitrary position in the
partial plan, and in every solution xi=> and xi=⊥ (which are
the preconditions of C>ij and C⊥ij , respectively) are both true
at some point, we need to ensure that the goal’s preconditions
are only supported by those actions C⊥ij and C>ij , which were
applied after the very last action from A := {A>i , A⊥i |i ∈
{1, . . . , n}}. We ensure this by means of the action clear-C,
which is ordered after the ones from A and deletes all state
variables cj . Since the actions C>ij and C⊥ij are already delete-
relaxed and the delete relaxation of clear-C is a no-op, there
are no further cases to consider.

See Appendix A for the formal problem specification.

The main result of our theorem is that performing delete-
relaxation only for the domain’s actions is not sufficient to
obtain a tractable problem class. Looking closer to the proof
reveals that the complexity lies in finding the correct order of
the plan steps. The possibility to insert delete-free actions into
a partial plan does not make this problem easier.

IV. SAMPLE-FF

In this section, we introduce Sample-FF, a heuristic greatly
inspired by the constructive proof of the NP membership
proof of Theorem 1 presented in the last section. Sample-
FF is based on the same ideas as the Relax heuristic [9],
which is an adaptation of the FF heuristic [7] for state-based
planning. However, Sample-FF incorporates more information
about the currently considered partial plan. In particular, it
does not ignore the negative effects of its plan steps and is
able to use the constraints implied by the causal links. Before
we explain how Sample-FF works in detail, we briefly review
the Relax heuristic to pinpoint the differences.

Given a partial plan P , the Relax heuristic estimates the
distance from the initial state (i.e., the postcondition of init) to
an “artificial” goal description, which is obtained by building
the union of all open preconditions of the plan steps of P . This
goal distance is obtained in the same way the FF heuristic
estimates the distance from a state to the goal description:
it solves a delete-relaxed version of the problem and uses the
number of actions of that solution as heuristic estimate2. Thus,
the Relax heuristic can be calculated very efficiently, since the
problems solved are in P. However, while tractable on the one
hand, the performed relaxation is quite severe on the other:
The heuristic uses only the set of open preconditions of the
plan steps in P , thereby ignoring their quantity, their negative
effects, and the constraints posed by the causal links.

However, although delete-relaxed planning with a non-
relaxed partial plan is NP−complete, there is no need to
ignore the negative effects and the causal links altogether. In
particular the causal links are of interest, since even a single
wrongly placed causal link can prevent that the respective
partial plan may be refined to a valid solution. Looking
at the NP membership part of the proof of Theorem 1
though, it becomes clear that the “hard” part of extracting a
solution is only guessing a suitable linearization. Given such a
linearization, the rest of the proof can be directly translated into
a deterministic polytime program consisting of the following
three phases.

First, we generate some linearizations of the partial plan
at hand. This is done using sampling and simulates the
“guessing” part of the NP membership proof.

Second, we estimate the cost of completing the lineariza-
tions sampled in the first phase into relaxed solution plans.
We look at each linearization separately and for each create a
sequence of relaxed planning graphs that reflect the argumen-
tation in the membership part of the proof of Theorem 1. The
number of required additional relaxed actions inserted in this
process yields a heuristic estimate for each linearization.

Last, we derive a heuristic estimate for a partial plan by
combining heuristic estimates for its linearizations, i.e., by
taking the minimum of the computed linearization estimates.
We will next take a closer look at the individual phases and
some possible optimizations of the basic idea.

2More precisely, only a subset of these actions is used: If an action in the
delete-relaxed solution corresponds to a (non-relaxed) plan step in the partial
plan, it does not count towards the cost estimate.

A. Sampling Linearizations

Since it is infeasible to consider all linearizations of a
given partial plan, we need to limit the number of consid-
ered linearizations to receive a practical heuristic, e.g., by a
constant. We also want to avoid choosing linearizations that
are too similar to each other to avoid introducing too much
bias into the heuristic. Therefore, we use a Markov Chain
Monte Carlo approach for approximately uniformly sampling
a constant number of linearizations [15].

We define a linearization graph whose nodes are lin-
earizations consistent with the partial order. There is an edge
between two nodes when their corresponding linearizations can
be converted into each other by swapping two adjacent plan
steps. Performing a random walk in the linearization graph thus
corresponds to a sequence of swappings thereby generating a
new linearization consistent with the ordering constraints. Let
d(z) be the degree of the node representing a linearization z
of the plan steps PS in the linearization graph. Thus, it holds
d(z) ≤ |PS |−1. We define the probability of proceeding from
a linearization z to its neighbor z′ as follows:

p(z, z′) =

1

2(|PS |−1) if z and z′ are adjacent,

1− d(z)
2(|PS |−1) if z = z′,

0 otherwise.

In other words, the fewer neighbors a linearization has (i.e.,
the lower the number of swaps consistent with the underlying
partial order), the more likely staying at the current lineariza-
tion becomes. It can be shown that a uniform distribution over
all linearizations is reached after polynomially many random
walks. By choosing an arbitrary consistent initial linearization
and doing enough random walks, we can thus uniformly
sample from the set of possible linearizations.

B. Estimating the Cost for Linearizations

Let z = init , l1:a1, . . . , ln:an, goal be a sampled lin-
earization of a partial plan which is not yet a solution. This
linearization represents a totally ordered partial plan with
”gaps” where some steps are still missing. Filling the gaps with
appropriate non-relaxed plan steps will create a solution plan.
Therefore, the number of relaxed plan steps required for filling
the gaps can serve as a heuristic estimate for that linearization.
We begin by building a saturated planning graph starting at the
postcondition of init . We then apply l1:a1 in its last fact layer,
yielding a ”state” s1. If l1:a1 cannot be applied in the last fact
layer, the linearization can be discarded, since it cannot be
completed into a solution. Otherwise a new saturated planning
graph is constructed starting in s1, in whose last layer l2:a2 is
applied, yielding s2, and so on. The last such planning graph is
built after applying ln:an. When goal is applicable in the last
fact layer of the last planning graph, we know that a relaxed
solution exists and we can proceed with extracting it.

For this, we traverse the constructed planning graphs last to
first. For the last graph, this amounts to doing standard relaxed
solution extraction in the same fashion of Relax. Then, the non-
relaxed plan step ln:an is applied in reverse, the second-last
graph is considered, and so on until the postcondition of init
is reached. The heuristic value for z is then defined as the
total number of relaxed plan steps required in all constructed
planning graphs.

C. Combining Estimates for Linearizations

The last phase is conceptually simple: take the minimum
of all estimates for the sampled linearizations.

An important corner case, however, is the situation where
none of the sampled linearizations can be completed to a
relaxed solution, because then the minimum of all estimates
does not represent a finite heuristic value. For other heuristics,
an infinite heuristic value does not pose a problem: It usually
means that a partial plan cannot be completed to a relaxed
solution, let alone a real solution, and can therefore be safely
discarded. In our setting, however, we cannot be sure of
this. It might just be coincidence that none of the sampled
linearizations could be completed to a relaxed solution, and
that the right linearization was missed in the sampling phase.
The question which value should be returned in this case is
hence not trivial. As pointed out, returning a high value might
be too pessimistic and, contrarily, returning zero might be too
optimistic; in fact, the partial plan might even be doomed
to become invalid, but given the non-exhaustive number of
samples, the heuristic was not able to prove that. Hence,
we choose a compromise and return the number of open
preconditions as estimate. Alternatively, we could return the
value of the Relax heuristic instead, but we did not evaluate
that variant.

D. Optimizations.

In the following, we present a few directions in which the
basic algorithm can be improved.

a) Enumerating all linearizations: In cases where the
number of linearizations is small, enumerating all of them
is desirable, as it yields more accurate heuristic values than
sampling. Additionally, this allows for safe pruning, as the
corner case described before cannot occur: A partial plan can
be discarded when all possible linearizations are proved un-
solvable in the relaxed setting, i.e., completeness is guaranteed.

We therefore want an estimate on the number of lin-
earizations a partial plan has and use it to decide whether
it is deemed feasible to look at all linearization for it. Un-
fortunately, determining the exact number of linearizations is
#P−complete [15], i.e., hard in the sense that there is
no known method substantially better than enumerating all
possible linearizations. Hence, we take the direct approach
and start enumerating linearizations until we have reached
a predefined maximum number of linearizations. If we have
not enumerated all linearizations at this point, we switch to
sampling, throwing away the linearizations enumerated thus
far. Experiments performed in a pre-evaluation indicate that
the benefits in precision and pruning power outweigh the effort
wasted for generating unused linearizations.

The impact of that optimization heavily depends on the
chosen flaw selection function. For example, always preferring
“old” flaws, i.e., flaws detected early in the given partial plan,
will produce partial plans with a high number of linearizations,
since new plan steps are inserted level-wise starting from goal ,
as the oldest flaws in the initial partial plan are the open
precondition flaws of goal (given that plan contains only the
representatives of the initial state and goal description, but no
other initial plan steps). If the converse strategy is applied, i.e.,

if always a flaw is preferred that was detected last, the number
of linearizations stays constantly 1 until a sequence of actions
has been found, which supports at least one state variable of
the goal description and roots in the initial state. Thus, up to
this point, enumerating n ≥ 1 linearizations will exhaustively
enumerate all possible linearizations.

b) Precomputing a fixed point for the initial state:
Since the forward phase of computing a heuristic value for
a linearization always starts at the initial state, the fixed point
reached by applying relaxed actions will always be the same.
This first fixed point can thus be precomputed once and be
reused each time the cost of a linearization is estimated. Note
that it is also likely that the extracted solutions contain more
relaxed steps before the first non-relaxed step than between
two later non-relaxed steps, because typically only a few
facts are deleted by applying a non-relaxed step. This makes
precomputing a fixed point for the initial state an attractive
idea for optimization.

c) Respecting causal links: We can also take a closer
look at the relaxed solutions generated for a given linearization.
It then becomes apparent that in many cases, these solutions
contain relaxed plan steps at places where the POCL planning
algorithm would not put non-relaxed plan steps due to the
presence of causal links. To illustrate this, let P be a partial
plan that contains a causal link l−→v l′ between l and l′ over
variable v. Let furthermore a be an action whose delete list
contains v. Adding a plan step l′′:a to P creates a causal threat
if l′′ can be ordered between l and l′ and thus prevents P from
being a solution. On the other hand, the relaxed version of a
can of course be inserted between l and l′ when a relaxed
solution is constructed. When this happens, the heuristic value
is a poor estimate of the true remaining search effort, as it is
certain that the relaxed solution conflicts with every potential
solution plan that can be generated from P .

We therefore modify the planning graph generation to re-
spect causal links. Let z = l0:a0, . . . , ln+1:an+1 with l0:a0 =
init and ln+1:an+1 = l∞:a∞ = goal be a linearization of
the plan steps of the partial plan P = (PS ,≺, CL). We
define the active causal links between li and li+1 to be the
set {ln−→v lm ∈ CL | n ≤ i and m ≥ i + 1}, i.e., the causal
links whose arcs cross an imaginary line drawn between li and
li+1 in a graphical representation of z. The set of active causal
links contains exactly the causal links that can potentially cause
a causal threat when an action is put between li and li+1.
To be more precise, an action put between li and li+1 will
lead to a causal threat if its delete list contains a variable
mentioned in an active causal link. Such actions are called
threatening, and we modify relaxed planning graph generation
to not use threatening actions. Identifying the active causal
links and filtering out actions which are threatening them can
obviously be done in polynomial time.

In summary, the improvement works by calculating the
set of threating actions each time before the relaxed planning
graph between two non-relaxed plan steps is built, and using
only non-threatening actions for building the relaxed planning
graph. Unfortunately, this optimization can not be used in
conjunction with precomputing the first fixed point: The causal
links that begin in init can change between linearizations for
different partial plans, and so can the computed fixed point
if only non-threatening actions are used. Our implementation

can therefore incorporate the causal links rooting in init
independently of the remaining causal links, s.t. one can
choose between the per-node runtime-improvement obtained
by precalculation of the first saturated planning graph versus
more informed heuristic values while still being able to incor-
porate the remaining causal links independently of that choice.

d) Reusing parent linearizations: In our early experi-
ments (before we implemented the following optimization), we
observed cases where linearizations with an estimated cost of
zero were found for some partial plan visited during search,
yet the planner was unable to generate a solution. This is an
undesirable and strange situation, since such a linearization
can easily be transformed into a POCL solution: Applying the
actions of the zero-cost linearization starting in the initial state
generates a state satisfying the goal description; that is, there
is no need to insert any additional action, neither relaxed nor
non-relaxed, only missing causal links and ordering constraints
need to be inserted, which can be done very efficiently.

The problem of that situation is the randomized nature of
the heuristic. Since in each node a fixed number of samples is
generated independently of the linearizations obtained by its
parent node, heuristic values may strongly vary between each
two consecutive partial plans. To obtain more “stable” heuristic
estimates, a partial plan P tries to reuse the best linearization
of its parent, “best” being defined as the first linearization for
which the smallest heuristic value was obtained. Whether such
a parent linearization z can be reused depends on the last
applied modification: In case of an insertion of an ordering
constraint or a causal link, it must be tested whether z is
compatible with the inserted ordering constraints. If it is, n+1
samples are used with n being the predefined fixed number of
samples, otherwise just n (new) samples are considered. In
case of an action insertion, the linearization z is extended to a
linearization of size |z|+ 1 by inserting the new action at an
arbitrary suitable position. Since z proved being successful for
the parent node, we do not only create one reused linearization,
but three – with randomly chosen positions for the new action.
Thus, in general, each partial plan uses n+m samples with n
new sampled linearizations and m ∈ {0, . . . , 3} linearizations
obtained from the best linearization of its parent node.

The described improvement “stabilizes” heuristic esti-
mates, since good linearizations remain being used for heuris-
tic estimation. Furthermore, it solves the problem concerning
the zero-cost linearizations: Since the POCL algorithm is
complete and zero-cost linearizations are applicable in the
initial state and satisfy the goal condition (otherwise, it would
not have cost zero), at least one modification m∗ compatible
with that linearization must exist for each remaining flaw.
Thus, reusing that linearization to compute the heuristic value
for the child plan created by applying m∗, the child plan
will in turn have a heuristic value of zero; hence, after a
partial plan with heuristic zero is found, a solution is obtained
shortly afterwards. Note that this does not mean that the
planner will return the linearization itself as a solution. Since
only a sufficiently small number of causal links and ordering
constraints is added in order to receive a solution, the least-
commitment principle of POCL planning is preserved.

E. Evaluation

We implemented the proposed heuristic within our POCL
planner, which is implemented in Java R©. As search strategy,
we used weighted A* using a weight of 2. That is, in each
cycle, a partial plan p is selected with minimal f value, f
given by f(p) = g(p) + 2 ∗ h(p), g being the unit cost of
the partial plan and h being its heuristic estimate. In case two
partial plans have the same f value, we break ties by preferring
a partial plan with higher cost, thereby preferring smaller
heuristic values. Remaining ties are broken using the LIFO
strategy thereby preferring newest partial plans. Concerning
the flaw selection strategy, we always select a newest flaw,
where all flaws detected in the same partial plan are regarded
equally new/old. Among these flaws, we break ties by pursuing
the Least Cost Flaw Repair selection [16], which prefers a
flaw for which there are the least number of modifications.
Remaining ties are broken by chance.

We compare the Sample-FF heuristic with the two cur-
rently best-informed heuristics for POCL planning: the Relax
heuristic [9] and the Additive heuristic for POCL planning
[10] (Add, for short). In addition to these heuristics from
the literature, we implemented a new variant of the Relax
heuristic. It only differs from the original version by a small
detail: All actions of a relaxed solution count towards the
heuristic estimate, whereas the original version ignores actions,
which already exist in the given partial plan. This variant,
called Relax∗ dominates the original version while being “more
inadmissible”. Performance is measured in terms of size of the
produced search space and number of solved problem instances
based on several benchmarks taken from the early International
Planning Competitions (IPCs).

The evaluated domains and problems are taken from the
IPC 1 to IPC 5 (cf. Tab. I). For each domain, we used n
consecutive problem instances, starting with the smallest ones.
We omitted domains for which all configurations timed out on
all problem instances. We used a time limit of 15 minutes CPU
time and a memory limit of 2 GB. We run our experiments
on a machine with two Intel Xeon R© processors, each having
8 physical cores running at 2,6 GHz.

When comparing the performance of Relax, Relax∗, and
Sample-FF with Add in terms of solved problems in total, we
see that Add clearly dominates all other heuristics. This comes
to our very surprise, as Add may heavily overestimate the
optimal relaxed goal distance. In fact, Relax can be regarded
as an improvement over Add, which avoids this overestimation.

As opposed to the other evaluated heuristics, Sample-FF
has parameters which need to be specified. To achieve a
polytime-bounded procedure, we fix the number of sampled
linearizations to a predefined constant. We evaluated 1, 3, 10,
and 30 samples per search node. The more samples are chosen,
the more accurate the heuristic becomes. However, clearly, the
calculation time becomes much more expensive as it scales
linearly with the number of samples. The optimizations of
trying to enumerate all linearizations and to reuse parent
linearizations are always turned on, as we observed a clear
improvement in terms of solved problem instances in a small
pre-evaluation. Concerning respecting causal links, the heuris-
tic features to respect no causal links at all, all causal links, or
just the ones which are not rooting in init (as was motivated in

TABLE I. THIS TABLE COMPARES THE DIFFERENTLY PARAMETRIZED VERSIONS OF Sample-FF. “front:” AND “end:” SPECIFY WHETHER CAUSAL LINKS
ROOTING IN init (OR not ROOTING IN init , RESPECTIVELY) WERE USED TO REDUCE THE SET OF APPLICABLE ACTIONS IN THE RESPECTIVE LAYERS OF THE

SAMPLED LINEARIZATIONS. THE DOMAINS ARE ORDERED BY THE IPC, IN WHICH THEY WERE FIRST USED. THE NUMBER n SPECIFIES THE NUMBER OF
USED PLANNING PROBLEMS IN THE RESPECTIVE DOMAIN. THE ENTRIES SPECIFY THE NUMBER OF SOLVED INSTANCES OF THE RESPECTIVE DOMAIN.

BOLD ENTRIES SPECIFY THE CONFIGURATION WITH THE LARGEST NUMBER AMONG ALL CONFIGURATIONS OF Sample-FF.

Domain n Add Relax∗ Relax
Sample-FF

front:⊥ end:⊥ front:⊥ end:> front:> end:>
1 3 10 30 1 3 10 30 1 3 10 30

grid 5 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
gripper 20 14 20 7 1 1 1 1 1 2 1 1 2 3 3 2
logistics 20 12 8 7 8 5 6 6 6 7 6 5 0 0 1 1
movie 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
mystery 20 8 8 9 10 11 9 9 10 11 10 9 12 12 11 11
mystery-prime 20 3 3 3 3 4 6 5 5 4 4 4 6 6 6 6

blocks 21 4 5 7 5 5 6 6 4 3 3 3 5 3 2 0
logistics 28 28 28 27 22 23 23 24 21 19 20 21 15 13 14 15
miconic 100 100 49 39 40 40 37 35 39 41 37 32 15 16 18 20

depot 22 2 2 1 1 1 1 1 0 1 1 1 2 2 3 2
driverlog 20 7 9 7 11 9 10 9 9 10 9 8 8 7 9 7
rover 20 20 18 19 13 14 15 15 11 11 12 11 7 9 9 9
zeno-travel 10 4 5 3 3 5 4 5 4 3 4 4 1 1 1 1

airport 20 18 15 9 10 11 11 11 7 10 10 10 7 8 6 4
pipesworld-noTankage 10 8 1 2 2 3 5 3 2 1 2 1 1 4 3 5
pipesworld-Tankage 10 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
satellite 20 16 7 7 7 5 6 6 5 5 7 5 1 2 3 3

pipesworld 10 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
storage 20 7 6 4 6 7 9 8 6 7 7 6 9 9 10 10
tpp 20 19 11 11 8 7 6 7 6 6 6 6 5 6 6 6

total 446 292 227 194 182 183 187 183 168 173 171 159 127 132 136 133

the last section). Again, we obtain a trade-off between accuracy
and calculation speed. While respecting all causal links is the
most informed variant, it is clearly the slowest one, as it has
to calculate the set of applicable actions between each two
plan steps in a sampled linearization, as explained in the last
section. We evaluated all possible combinations of the two
parameters leading to 12 variants of Sample-FF.

Investigating the use of causal links, our experiments seem
to suggest that the additional overhead incurred by respecting
them does not pay off in total: We clearly see that the variant
which does not respect causal links dominates the other two
configurations of Sample-FF. While this is true taking into
account the total number of solved problems, there are also
domains where the configuration respecting all causal links
solved more problems than all other heuristics. In one particu-
lar unsolvable problem instance, all Sample-FF configurations
respecting all causal links were able to prove that problem to
be unsolvable, whereas all other heuristics including Relax,
Relax∗ and Add incurred time-outs. Concerning the optimal
number of samples, there is not a clear result, but we can
observe that an optimal choice lies between 1 and 10.

Taking a look at the overall number of solved problems,
the best configuration is the one which does not respect
causal links and uses 10 samples. That configuration is clearly
competitive with Relax in terms of the number of solved
problems, as it solved 187 out of 446 problems, whereas Relax
solved 194 problems. Investigating the number of domains in

which one heuristic performed better than another, the data
reveals that the configuration using no causal links and just
a single sample is even better than Relax. In 6 out of 20
domains it solved strictly more problems than Relax, whereas
Relax strictly dominated Sample-FF in only 5 domains. While
it seems discouraging that using causal links seems not to pay
off, we see a potential in further improving the heuristic: We
evaluated the ratio of created partial plans to the ones for which
no heuristic value could be obtained due to infeasible samples.
As stated in the previous section, we return the number of open
preconditions in these cases to prevent being blind. That is, a
ratio of 100% would correspond to a heuristic which is entirely
based on the number of open preconditions. We discovered that
the mean ratio ranges from 4% to 1% (for increasing number
of samples) for the configurations which do not respect causal
links, from 7% to 3% for the configurations using only causal
links not rooting in init , and from astonishing 46% to 36% for
the configurations which respect all causal links. This clearly
indicates the impact of the constraints posed by the causal
links, as even for 30 samples, in 36% of all created nodes there
does not exist a delete-relaxed solution. While this proves our
assumption correct that causal links have a major impact on the
set of valid solutions which can be derived from partial plans,
we still need to find a way how to cope with these cases.
Note that it might also be that in many of these cases the
corresponding partial plans could actually have been pruned
from the search space given all linearizations but we cannot
decide this being the case in polynomial time.

Considering only the number of solved problem instances
does not tell how well-informed the respective heuristics are.
A larger number may also be attributed to the time a heuristic
needs to be evaluated, as faster heuristics allow for a larger
search space within the time limit. We hence investigated
the number of solved problem instances given the number of
generated search nodes. Heuristics which have a larger number
of solved instances given the same number of generated search
nodes can thus be regarded more accurate. Our data reveals that
adding more samples improves heuristic accuracy and that the
variant without respecting causal links is the most informed
one among all Sample-FF configurations. However, the last
result can be attributed to the large number of partial plans for
which no heuristic value could be calculated. If we figure out
how to solve this problem, the variant respecting causal links
will probably improve its performance significantly.

V. CONCLUSION

In this paper, we made two contributions to the field of
POCL planning: We proved that the plan existence prob-
lem given a search node in standard POCL planning (i.e.,
an arbitrary non-relaxed partial plan) and a delete-relaxed
planning domain is NP−complete. This is an interesting
observation, since the corresponding decision problem in state-
based planning is in P. Based on the constructive proof of
our main complexity result, we developed a new heuristic for
POCL planning and presented empirical results.

The presented heuristic can still be improved. In particular,
we want to solve the problem that for many plans no plan step
sequence was found that could be extended to a relaxed solu-
tion. Also, we want to adapt our heuristic to lifted planning,
s.t. it can evaluate partial plans which are not fully ground.

APPENDIX
PROBLEM FORMALIZATION OF HARDNESS PROOF

Given a CNF-SAT problem (i.e., a SAT formula given in
conjunctive normal form) with variables X = {x1, . . . , xn}
and a set of clauses C = {c1, . . . , cm}, we construct the delete-
free POCL planning problem π = 〈D, P 〉 with D = 〈V,A〉:
V = {xi?>, xi?⊥, xi=>, xi=⊥ | i ∈ {1, . . . , n}} ∪

{ci | i ∈ {1, . . . ,m}}
A = {dr-A>i , dr-A⊥i | i ∈ {1, . . . , n}} ∪ {dr-clear-C} ∪

{C>ij | cj ∈ C, xi ∈ cj} ∪ {C⊥ij | cj ∈ C,¬xi ∈ cj}
P = (PS ,≺, CL) and
PS = {l0:a0, l∞:a∞, lC :clear-C} ∪

{l>i :A>i , l⊥i :A⊥i | i ∈ {1, . . . , n}}
≺ = {(l>i , lC), (l⊥i , lC) | i ∈ {1, . . . , n}}
CL = ∅

The actions are given as follows:

a0 = (∅, {xi?>, xi?⊥ | i ∈ {1, . . . , n}}, ∅)
a∞ = ({ci | i ∈ {1, . . . ,m}}, ∅, ∅)
A>i = ({xi?>}, {xi=>}, {xi?>, xi=⊥})

dr-A>i = ({xi?>}, {xi=>}, ∅)
A⊥i = ({xi?⊥}, {xi=⊥}, {xi?⊥, xi=>})

dr-A⊥i = ({xi?⊥}, {xi=⊥}, ∅)

clear-C = (∅, ∅, {c1, . . . , cm})
dr-clear-C = (∅, ∅, ∅)

C>ij = ({xi=>}, {cj}, ∅)
C⊥ij = ({xi=⊥}, {cj}, ∅)

ACKNOWLEDGMENT

This work is done within the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems” funded by the German Research
Foundation (DFG).

REFERENCES

[1] D. McAllester and D. Rosenblitt, “Systematic nonlinear planning,” in
Proceedings of the Ninth National Conference on Artificial Intelligence
(AAAI 1991). AAAI Press, 1991, pp. 634–639.

[2] J. S. Penberthy and D. S. Weld, “UCPOP: A sound, complete, partial
order planner for ADL,” in Proceedings of the third International
Conference on Knowledge Representation and Reasoning. Morgan
Kaufmann, 1992, pp. 103–114.

[3] C. Muise, S. A. McIlraith, and J. C. Beck, “Monitoring the execution
of partial-order plans via regression,” in Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJCAI 2011).
AAAI Press, 2011, pp. 1975–1982.

[4] B. Seegebarth, F. Müller, B. Schattenberg, and S. Biundo, “Making
hybrid plans more clear to human users – a formal approach for gener-
ating sound explanations,” in Proceedings of the 22nd International
Conference on Automated Planning and Scheduling (ICAPS 2012).
AAAI Press, 6 2012, pp. 225–233.

[5] M. Helmert and C. Domshlak, “Landmarks, critical paths and ab-
stractions: What’s the difference anyway?” in Proceedings of the
19th International Conference on Automated Planning and Scheduling
(ICAPS 2009), vol. 9, 2009, pp. 162–169.

[6] T. Bylander, “The computational complexity of propositional STRIPS
planning,” Artificial Intelligence, vol. 94, no. 1-2, pp. 165–204, 1994.

[7] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan
generation through heuristic search,” Journal of Artificial Intelligence
Research (JAIR), vol. 14, pp. 253–302, May 2001.

[8] A. L. Blum and M. L. Furst, “Fast planning through planning graph
analysis,” Artificial Intelligence, vol. 90, pp. 281–300, 1997.

[9] X. Nguyen and S. Kambhampati, “Reviving partial order planning,”
in Proceedings of the 17th International Joint Conference on Artificial
Intelligence (IJCAI 2001). Morgan Kaufmann, 2001, pp. 459–466.

[10] H. L. S. Younes and R. G. Simmons, “VHPOP: Versatile heuristic
partial order planner,” Journal of Artificial Intelligence Research (JAIR),
vol. 20, pp. 405–430, 2003.

[11] P. Bercher, T. Geier, and S. Biundo, “Using state-based planning heuris-
tics for partial-order causal-link planning,” in Advances in Artificial
Intelligence, Proceedings of the 36nd German Conference on Artificial
Intelligence (KI 2013), 2013, pp. 1–12.

[12] R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the appli-
cation of theorem proving to problem solving,” Artificial Intelligence,
vol. 2, pp. 189–208, 1971.

[13] M. Katz, J. Hoffmann, and C. Domshlak, “Who said we need to relax
all variables?” in Proceedings of the 23d International Conference on
Automated Planning and Scheduling (ICAPS 2013), 2013.

[14] B. Nebel and C. Bäckström, “On the computational complexity of tem-
poral projection, planning, and plan validation,” Artificial Intelligence,
vol. 66, no. 1, pp. 125–160, 1994.

[15] G. Brightwell and P. Winkler, “Counting linear extensions,”
Order, vol. 8, no. 3, pp. 225–242, 1991. [Online]. Available:
http://dx.doi.org/10.1007/BF00383444

[16] D. Joslin and M. E. Pollack, “Least-cost flaw repair: A plan refinement
strategy for partial-order planning,” in Proceedings of the 12th National
Conference on Artificial Intelligence (AAAI 1994). AAAI Press, 1994,
pp. 1004–1009.

