
Experimenting with ELK Reasoner on Android

Yevgeny Kazakov and Pavel Klinov

The University of Ulm, Germany
{yevgeny.kazakov, pavel.klinov}@uni-ulm.de

Abstract. This paper presents results of a preliminary evaluation of the OWL
EL reasoner ELK running on a Google Nexus 4 cell phone under Android 4.2
OS. The results show that economic and well-engineered ontology reasoners can
demonstrate acceptable performance when classifying ontologies with thousands
of axioms and take advantage of multi-core CPUs of modern mobile devices. The
paper emphasizes the engineering aspects of ELK’s design and implementation
which make this performance possible.

1 Introduction and Motivation

Mobile computing has been on the rise for the last decade and the Semantic Web ap-
plications are no exception. Increasingly many mobile applications can benefit from se-
mantic technologies, especially when it comes to context-aware information processing
[1]. Specifically, it is desirable to be able to combine data obtained by various mobile IO
devices (sensors), such as GPS devices, Wifi or cellular networks, etc., with background
information supplied by ontologies. For example, an intelligent application can use an
ontology representing various kinds of businesses, e.g., restaurants, grocery stores, etc.,
with facts determining the user’s location to suggest places to go. Or a medical appli-
cation can use a medical ontology in conjunction with private user’s medical data to
provide counselling or other services. Such applications require reasoning to make use
of implicit knowledge and sometimes may require reasoning to happen on the device
itself (rather than on a remote server or in the cloud) for reasons such as privacy [2].

Recently there has been interest in ontology reasoners designed specifically for mo-
bile platforms. Some researchers claim that mobile devices, being resource-constrained,
require reasoner developers design their reasoning engines specifically for mobile com-
puting environments [3]. Few such reasoner implementation and evaluation reports are
available, for example, Delta reasoner [3] and Pocket KR Hyper [2]. At the same time
we are not aware of any experience of porting existing reasoners to mobile platforms.
This is a little surprising since modern devices boast substantial computational power.
Having the same reasoning core working for both desktop/server and mobile devices
with minimal changes would be attractive from the maintainability point of view.

This paper is a step in that direction. It presents an evaluation of ELK, a concurrent
reasoner for OWL EL profile [4] implemented in Java, on Google’s Nexus 4 phone un-
der Android 4.2 operating system. The results demonstrate that ELK is able to provide
acceptable classification performance on mid-to-large sized ontologies (up to tens of
thousands of axioms) and is even able to classify SNOMED CT, one of the largest med-
ical ontologies, which remains a challenge for many OWL reasoners even on desktops.

R0
C v C

: C occurs in O

R>
C v > : C and > occur in O

Rv
C v D

C v E
: D v E ∈ O

R−u
C v D1 uD2

C v D1 C v D2

R+
u

C v D1 C v D2

C v D1 uD2
: D1 uD2 occurs in O

R∃
E v ∃R.C C v D

E v ∃S.D :
∃S.D occurs in O
R v∗O S

R◦
E v ∃R1.C C v ∃R2.D

E v ∃S.D :
S1 ◦ S2 v S ∈ O
R1 v∗O S1

R2 v∗O S2

Fig. 1. The inference rules for reasoning in EL+

Importantly, the changes between the standard and mobile versions of ELK are negli-
gible. This work is preliminary, in particular, it does not aim at comparing performance
of ELK on a mobile device to that of other existing OWL reasoners (or across different
mobile devices).

2 Preliminaries

In this paper, we will focus on the DL EL+ [5], which can be seen as EL++ [6] without
nominals, datatypes, and the bottom concept ⊥. EL+ concepts are defined using the
grammar C ::= A | > | C1 u C2 | ∃R.C, where A is an atomic concept, R an
atomic role, and C, C1, C2 ∈ C. EL+ axiom is either a concept inclusion C1 v C2

for C1, C2 ∈ C, a role inclusion R v S, or a role composition R1 ◦ R2 v S, where
R, R1, R2, S are role names. EL+ ontology O is a finite set of EL+ axioms. Given an
ontology O, we write v∗O for the smallest reflexive transitive binary relation over roles
such that R v∗O S holds for all R v S ∈ O.

Entailment of axioms by an ontology is defined in a usual way; a formal definition
can be found, e.g., in [5]. A concept C is subsumed by D w.r.t. O if O |= C v D.
In this case, we call C v D an entailed subsumption. The ontology classification task
requires to compute all entailed subsumptions between atomic concepts occurring inO.

The EL+ reasoning procedure implemented in ELK works by applying inference
rules to derive subsumptions between concepts. Figure 1 shows the rules from EL++

[6] restricted to EL+, but presents them in a way that does not require the normaliza-
tion stage [4]. Some rules have side conditions given after the colon that restrict the
expressions to which the rules are applicable. For example, rule R+

u applies to each
C,D1, D2, such that D1 uD2 occurs inO with premises {C v D1, C v D2}, and the
conclusion C v D1 uD2. Note that the axioms in the ontologyO are only used in side
conditions of the rules and never used as premises of the rules.

The rules in Figure 1 are complete for deriving subsumptions between the concepts
occurring in the ontology. That is, if O |= C v D for C and D occurring in O, then
C v D can be derived using the rules in Figure 1 [6]. Therefore, in order to classify
the ontology, it is sufficient to compute the closure under the rules and take the derived
subsumptions between atomic concepts.

Computing the closure under inference rules, such as in Figure 1, can be performed
using a well-known forward chaining procedure presented in Algorithm 1 in an abstract

Algorithm 1: Abstract rule-based classification procedure
input : C: the set of named concepts from O, R: a set of inference rules
output : Closure: a set of inferences closed under R

1 Closure, Todo← ∅;
2 for A ∈ C do /* initialize */
3 Todo← Todo ∪ apply(R0[A]) ∪ apply(R>[A]);

4 while (exp← Todo.poll()6= null) do /* compute closure */
5 if exp /∈ Closure then
6 Closure← Closure ∪ exp;
7 for r ∈ R[exp,Closure] do
8 Todo← Todo ∪ apply(r);

9 return Closure;

way. The algorithm works with expressions of the form C v D or C v ∃R.D, where
C and D are concepts and R is a role. It derives expressions by applying rules R in
Figure 1. It collects those expressions to which all rules have been applied in a set
Closure and the remaining ones in a queue Todo. The algorithm first initializes Todo
with conclusions of the initialization rule R0, see lines 2–3. Then it repeatedly takes
the next expression exp ∈ Todo, inserts it into Closure if it does not occur there, and
applies all applicable rules to it (lines 4–8). Informally, we use R[. . .] to denote selection
of rules for specific premises and/or side conditions. The conclusions derived by the
applied rules are then inserted in Todo.

ELK implements a concurrent version of Algorithm 1 which maintains a context
for each concept that occurs on the left hand-side of an axiom in O. Contexts maintain
their own Todo queues and are processed in parallel threads of execution (referred to as
workers). Details can be found in [4].

3 Evaluation on Google Nexus 4

This section present the results of a preliminary evaluation of ELK’s classification per-
formance on a Google Nexus 4 cell phone. The device runs under Android 4 OS and
features a Qualcomm SnapdragonTM S4 Pro CPU (4 cores, 1.7 GHz) and 2 GB RAM,
of which 500 MB was allocated to JVM. To put the results into a perspective, we also
ran ELK on a PC with Intel Core i5-2520M 2.50GHz CPU with 8 GB RAM (JVM was
allocated the same 500 MB).

Five EL ontologies often used for benchmarking EL reasoners have been selected
for the experiments (the number of logical axioms given in parenthesis): Chemical Enti-
ties of Biological Interest (ChEBI, 67,182), the e-Mouse Atlas Project (EMAP, 13,730),
and the Fly Anatomy (19,137) are some of large OBO Foundry1 and Ontobee2 ontolo-
gies that also include some non-atomic concepts. GO (28,896) is the older version of the

1http://www.obofoundry.org/
2http://www.ontobee.org/

Gene Ontology published in 2006. EL-GALEN (36,547) is an EL+-restricted version
of the GALEN ontology. All ontologies are freely available from the ELK website.3

Each ontology was classified with different, from 1 to 6, number of workers and
the results are presented in Table 1. The most obvious experimental outcome is that
classification on the cell phone is about two orders of magnitude slower than on a PC,
i.e., the difference appears larger than in the mere computational power of the two
systems (at least, if the latter is compared in terms of just CPU rate and the amount of
RAM). Comparison of the “LI Ratio” columns reveals that the relative difference during
the classification stage (CPU-bound processing) is larger than during the loading and
indexing stage (mostly IO-bound). One possible explanation is that CPU caches, for
which ELK’s data structures are optimized (see the next section), are more effective on
PC than on this cell phone. Difference in the RAM speed may have also played a role.

It can be noted that ELK’s concurrent classification algorithm brings benefits on the
cell phone just as well as on PC. The difference is especially visible between 1 worker
and 2 (or more) workers. It is only visible for the classification stage because during
indexing most time is spent on loading axioms from external memory and parsing.

Finally, we attempted to classify the official January 2013 release of SNOMED CT,
one of the largest medical ontologies (296,529 axioms).4 The intent was to push ELK
(and the phone) to its limits. Tad surprisingly, ELK still managed to complete classifi-
cation in 1h and 20m, out of which nearly 10m was spent on loading/indexing and the
rest on reasoning. It has used nearly all (475 MB) memory available to JVM. For refer-
ence, it takes about 10s to classify SNOMED CT on a laptop with Intel Core i5-2520M
2.50GHz CPU and 4GB of RAM available to JVM.

4 Implementation Notes

This section provides some engineering details on implementation of ELK. The meth-
ods listed below are not specific to a particular computational platform. However, they
are particularly relevant to mobile devices since they seek to reduce the memory foot-
print of the reasoner.

Entity filtering: In large ontologies it is often the case that some OWL entities
(concept (sub)expressions or roles) appear in many axioms. ELK’s internal entity filter
guarantees that each entity is represented by precisely one Java object. This has two
advantages: First, it reduces memory consumption and thus reduces the number of GC
cycles. Second, it allows for fast equality checking by comparing references (basically,
memory pointers). The latter is especially important for searching for an object in col-
lections, e.g., sets or arrays.

Economic data structures: The ELK’s classification algorithm operates with many
collections of objects representing OWL entities, such as subsumers for a given con-
cept, conjuncts in a given conjunctive concept expression, etc. The important thing is
that most of those collections are small, i.e. usually up to hundred elements. ELK pro-
vides a custom array-based, cache-friendly hashtable implementation with linear prob-

3https://code.google.com/p/elk-reasoner/wiki/TestOntologies
4We did not include it in the main experiment since it would take too much time to vary the

number of workers for it.

Table 1. Time (in ms) and memory usage (in MB) results for loading/indexing and classification
on a Google Nexus 4 and a PC. The LI Ratio column shows the proportion of total time (in %)
spent for loading and indexing the ontology.

Google Nexus 4 PC
Ontology Workers Load./Index. Classif. LI Ratio Memory Load./Index. Classif. LI Ratio
ChEBI 1 31,370 207,020 13 67 351 1,055 25
ChEBI 2 29,423 160,334 16 72 323 715 31
ChEBI 3 32,213 148,369 18 72 337 611 36
ChEBI 4 32,443 147,868 18 68 324 646 33
ChEBI 5 32,900 114,054 22 65 362 570 39
ChEBI 6 29,997 107,033 22 72 341 597 36
EMAP 1 20,667 6,970 75 23 366 93 80
EMAP 2 19,580 4,337 82 24 389 83 82
EMAP 3 20,311 3,750 84 25 413 72 85
EMAP 4 19,081 3,508 84 24 396 68 85
EMAP 5 19,921 3,467 85 23 383 73 84
EMAP 6 19,949 3,390 95 25 360 86 81
Fly Anatomy 1 7,882 31,478 20 22 195 276 39
Fly Anatomy 2 8,231 18,953 30 23 248 252 52
Fly Anatomy 3 9,143 16,951 35 24 256 223 51
Fly Anatomy 4 8,483 16,041 35 24 225 275 45
Fly Anatomy 5 7,743 15,439 33 26 278 253 52
Fly Anatomy 6 8,462 15,992 34 25 283 250 53
GO 1 30,745 33,441 48 38 518 214 71
GO 2 33,856 20,503 62 38 651 217 75
GO 3 31,395 15,752 67 38 639 236 73
GO 4 31,348 15,516 67 38 581 217 73
GO 5 31,419 18,721 63 39 713 222 76
GO 6 30,464 17,055 64 38 714 232 75
EL-GALEN 1 21,319 211,839 9 76 403 1,582 20
EL-GALEN 2 21,053 145,657 12 76 389 979 28
EL-GALEN 3 21,230 129,322 14 76 394 922 30
EL-GALEN 4 21,702 176,283 11 76 444 841 35
EL-GALEN 5 21,996 157,872 12 80 385 867 31
EL-GALEN 6 22,259 114,014 16 85 409 897 31

ing which is fine-tuned for small sets and supports very fast lookup and iteration (as,
consequently, intersection) operations.

Optimized class taxonomy: ELK’s implementation of taxonomy is specifically op-
timized for ontology class hierarchies, which are mostly shallow trees (or DAGs) with a
possible large branching factor. For example, the bottom node which represents unsat-
isfiable concepts (⊥ and others) does not store references to its parent nodes (satisfiable
concepts with no subsumees) and neither do its parents store a reference to⊥. Also, the
taxonomy supports concurrent updates and can be built incrementally, i.e., new nodes
can be added as soon as all subsumers for a given concept have been inferred.

Indexing: ELK does not explicitly store axioms after the ontology has been loaded.
Instead, it creates instances of the rules in Figure 1 as it loads the axioms and stores
them in the objects which represent entities occurring in the axiom. This is done to,
first, avoid the cost of storing potentially a large number of complex axioms, second,
enable a fast implementation of the R[. . .] operator for finding applicable rules, and
finally, group together different rules applicable to the same premises. For example, if
O contains axioms A v B, A v C, and A v D, they can be grouped into a threefold
instance of Rv : A 7→ {B,C,D}, which derives X v B, X v C, and X v D in one
go when applying to X v A (for some concept X). In addition, such indexing ensures
that if some construct, e.g., role composition axioms, never occurs in the ontology, then
the corresponding rule, e.g., Ro, will never even be considered for selection. Finally, the
rule instances can be quickly updated if some axioms are added or deleted without the
need to reload the ontology from external memory.

5 Conclusion

ELK has not been designed for mobile platforms. However, it has been heavily engi-
neered to minimize memory consumption and take advantage of multi-core CPUs. This
paper provides some insight into what happens when such a reasoner is run on a mobile
device. Our experimental results are preliminary but they suggest that well-engineered
reasoners can provide acceptable performance on modern cell phones, and can even
classify some of the largest available ontologies. It is worth mentioning that ELK does
not depend on external libraries (other than for logging) and thus runs nearly out-of-the-
box under the Android’s JVM. Therefore, mobile users can immediately benefit from
all improvements being made in the main ELK’s development branch.

In the future it would make sense to perform a more detailed evaluation on multiple
devices, including a comparison between existing reasoners (at least those which can
work on multiple platforms out-of-the-box). Also, more fine-grained experiments and
thorough profiling are required to understand the reasons why reasoning is that much
slower on a cell phone. This may lead not only to faster mobile reasoning but also
improve performance on desktops and servers.

References

1. Specht, G., Weithöner, T.: Context-aware processing of ontologies in mobile environments.
In: Mobile Data Management Conference. (2006) 86–89

2. Kleemann, T.: Towards mobile reasoning. In Parsia, B., Sattler, U., Toman, D., eds.: Proc. 19th
Int. Workshop on Description Logics (DL’06). Volume 189 of CEUR Workshop Proceedings.,
CEUR-WS.org (2006)

3. Motik, B., Horrocks, I., Kim, S.M.: Delta-reasoner: a semantic web reasoner for an intelligent
mobile platform. In: World Wide Web Conference (Companion Volume). (2012) 63–72

4. Kazakov, Y., Krötzsch, M., Simančík, F.: Concurrent classification of EL ontologies. In
Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E.,
eds.: Proc. 10th Int. Semantic Web Conf. (ISWC’11). Volume 7032 of LNCS., Springer (2011)
305–320

5. Baader, F., Lutz, C., Suntisrivaraporn, B.: Efficient reasoning in EL+. In Parsia, B., Sattler,
U., Toman, D., eds.: Proc. 19th Int. Workshop on Description Logics (DL’06). Volume 189 of
CEUR Workshop Proceedings., CEUR-WS.org (2006)

6. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In Kaelbling, L., Saffiotti, A., eds.:
Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05). (2005) 364–369

