
Incremental Reasoning in EL+

without Bookkeeping

Yevgeny Kazakov and Pavel Klinov

The University of Ulm, Germany
{yevgeny.kazakov, pavel.klinov}@uni-ulm.de

Abstract. We describe a method for updating the classification of ontologies ex-
pressed in the EL family of Description Logics after some axioms have been
added or deleted. While incremental classification modulo additions is relatively
straightforward, handling deletions is more problematic since it requires retract-
ing logical consequences that no longer hold. Known algorithms address this
problem using various forms of bookkeeping to trace the consequences back to
premises. But such additional data can consume memory and place an extra bur-
den on the reasoner during application of inferences. In this paper, we present a
technique, which avoids this extra cost while being still very efficient for small
incremental changes in ontologies.

1 Introduction and Motivation

The EL family of Description Logics (DLs) are tractable extensions of the DL EL fea-
turing conjunction and existential restriction. Despite a limited number of constructors,
EL became the language of choice in many applications, especially in Biology and
Medicine, which require management of large terminologies. The DL EL++ [1]—an
extension of EL with other features such as complex role inclusion axioms, nominals,
and datatypes—became the basis of the OWL EL profile [2] of the Web ontology lan-
guage OWL 2 specifically aimed at such applications.

Ontology classification is one of the main reasoning tasks. It requires computing
all entailed (implicit) subsumption relations between atomic concepts. Specialized EL
reasoners, such as CEL [3], ELK [4], jcel [5], and Snorocket [6] are able to compute the
classification for ontologies as large as SNOMED CT [7] with about 300,000 axioms.
Classification plays the key role during ontology development, e.g., for detecting mod-
eling errors that result in mismatches between terms. But even with fast classification
procedures, frequent re-classification of ontologies can introduce significant delays in
the development workflow, especially as ontologies grow over time.

Several incremental reasoning procedures have been proposed to optimize frequent
ontology re-classification after small changes. Most procedures maintain extra infor-
mation to trace conclusions back to the axioms in order to deal with axiom deletions
(see Section 2). Although managing this information typically incurs only a linear over-
head, it can be a high cost for large ontologies such as SNOMED CT. In this paper, we
propose an incremental reasoning method which does not require computing any such
information. The main idea is to split the derived conclusions into several partitions.

When some inference used to produce a conclusion in some partition is no longer valid
as a result of a deletion, we simply re-compute all conclusions in this partition. Our
hypothesis is that, if the number of partitions is sufficiently large and changes are rela-
tively small, the proportion of the partitions affected by changes is small enough, so that
re-computation of conclusions is not expensive. We describe a particular partitioning
method for EL that does not require storing any additional information, and verify our
hypothesis experimentally. Our experiments demonstrate that for large ontologies, such
as SNOMED CT, incremental classification can be 10-40 times faster than the (highly
optimized) full classification, thus making re-classification almost instantaneous.

In this paper we focus on the DL EL+, which covers most of the existing OWL EL
ontologies, and for simplicity, consider only additions and deletions of concept axioms,
but not of role axioms. Although the method can be extended to changes in role axioms,
it is unlikely to pay off in practice, because such changes are more likely to cause a
significant impact on the result of the classification.

2 Related Work

Directly relevant to this work are various extensions to DL reasoning algorithms to
support incremental changes.

Incremental classification in ELmodulo additions implemented in the CEL system,
comes closest [8]. The procedure works, essentially, by applying new inferences corre-
sponding to the added axioms and closing the set of old and new conclusions under all
inference rules. Deletion of axioms is not supported.

Known algorithms that support deletions require a form of bookkeeping to trace
conclusions back to the premises. The Pellet reasoner [9] implements a technique called
tableau tracing to keep track of the axioms used in tableau inferences [10]. Tracing
maps tableau elements (nodes, labels, and relations) to the responsible axioms. Upon
deletion of axioms, the corresponding elements get deleted. This method is memory-
intensive for large tableaux and currently supports only ABox changes.

The module-based incremental reasoning method does not perform full tracing of
inferences, but instead maintains a collection of modules for derived conclusions [11].
The modules consist of axioms in the ontology that entail the respective conclusion,
but they are not necessarily minimal. If no axiom in the module was deleted then the
entailment is still valid. Unlike tracing, the method does not require changes to the
reasoning algorithm, but still incurs the cost of computing and storing the collection of
modules.

The approach presented in this paper is closely related to the classical DRed (over-
delete, re-derive) strategy for incremental maintenance of recursive views in databases
[12]. In the context of ontologies, this method was applied, e.g., for incremental updates
of assertions materialized using datalog rules [13], and for stream reasoning in RDF
[14]. Just like in DRed, we over-delete conclusions that were derived using deleted
axioms (to be on the safe side), but instead of checking which deleted conclusions are
still derivable using remaining axioms (which would require additional bookkeeping
information), we re-compute some well-defined subset of ‘broken’ conclusions.

3 Preliminaries

3.1 The Description Logic EL+

In this paper, we will focus on the DL EL+ [3], which can be seen as EL++ [1] with-
out nominals, datatypes, and the bottom concept ⊥. EL+ concepts are defined using
the grammar C ::= A | > | C1 u C2 | ∃R.C, where A is an atomic concept, R an
atomic role, and C, C1, C2 ∈ C. EL+ axiom is either a concept inclusion C1 v C2

for C1, C2 ∈ C, a role inclusion R v S, or a role composition R1 ◦ R2 v S, where
R, R1, R2, S are atomic roles. EL+ ontology O is a finite set of EL+ axioms. Entail-
ment of axioms by an ontology is defined in a usual way; a formal definition can be
found in Appendix A. A concept C is subsumed by D w.r.t. O if O |= C v D. In this
case, we call C v D an entailed subsumption. The ontology classification task requires
to compute all entailed subsumptions between atomic concepts occurring in O.

3.2 Inferences and Inference Rules

Let Exp be a fixed countable set of expressions. An inference over Exp is an object inf
which is assigned with a finite set of premises inf.Premises ⊆ Exp and a conclusion
inf.conclusion ∈ Exp. When inf.Premises = ∅, we say that inf is an initialization
inference. An inference rule R over Exp is a countable set of inferences over Exp; it is
an initialization rule if all these inferences are initialization inferences. The cardinality
of the rule R (notation ||R||) is the number of inferences inf ∈ R. Within this paper, we
commonly view an inference system as one inference rule R representing all of their
inferences.

We say that a set of expressions Exp ⊆ Exp is closed under an inference inf if
inf.Premises ⊆ Exp implies inf.conclusion ∈ Exp. Exp is closed under an inference
rule R if Exp is closed under every inference inf ∈ R. The closure under R is the
smallest set of expressions closed under R. Note that the closure is always empty if R
does not contain initialization inferences.

We will often restrict inference rules to subsets of premises. Let Exp ⊆ Exp be
a set of expressions, and R an inference rule. By R(Exp) (R[Exp]) we denote the rule
consisting of all inferences inf ∈ R such that inf.Premises ⊆ Exp (respectively Exp ⊆
inf.Premises). We can combine these operators: for example, R[Exp1](Exp2) consists
of those inferences in R whose premises contain all expressions from Exp1 and are a
subset of Exp2. Note that this is the same as R(Exp2)[Exp1]. For simplicity, we write
R(), R[], R(exp), and R[exp] instead of R(∅), R[∅], R({exp}), and R[{exp}] respectively.
Note that R[] = R and R() consists of all initialization inferences in R.

3.3 The Reasoning Procedure for EL+

The EL+ reasoning procedure works by applying inference rules to derive subsump-
tions between concepts. In this paper, we use the rules from EL++ [1] restricted to
EL+, but present them in a way that does not require the normalization stage [4].

The rules for EL+ are given in Figure 1, where the premises (if any) are given
above the horizontal line, and the conclusions below. Some rules have side conditions

R0
C v C : C occurs in O

R>
C v > : C and > occur in O

Rv
C v D
C v E : D v E ∈ O

R−u
C v D1 uD2

C v D1 C v D2

R+
u
C v D1 C v D2

C v D1 uD2
: D1 uD2 occurs in O

R∃
E v ∃R.C C v D

E v ∃S.D :
∃S.D occurs in O
R v∗O S

R◦
E v ∃R1.C C v ∃R2.D

E v ∃S.D :
S1 ◦ S2 v S ∈ O
R1 v∗O S1

R2 v∗O S2

Fig. 1. The inference rules for reasoning in EL+

Algorithm 1: Computing the inference closure
input : R: a set of inferences
output : Closure: the closure under R

1 Closure, Todo← ∅;
2 for inf ∈ R() do /* initialize */
3 Todo.add(inf.conclusion);

4 while Todo 6= ∅ do /* close */
5 exp← Todo.takeNext();
6 if exp /∈ Closure then
7 Closure.add(exp);
8 for inf ∈ R[exp](Closure) do
9 Todo.add(inf.conclusion);

10 return Closure;

given after the colon that restrict the expressions to which the rules are applicable.
For example, rule R+

u contains one inference inf for each C,D1, D2, such thatD1uD2

occurs inO with inf.Premises = {C v D1, C v D2}, inf.conclusion = C v D1uD2.
Note that the axioms in the ontologyO are only used in side conditions of the rules and
never used as premises of the rules.

The rules in Figure 1 are complete for deriving subsumptions between the concepts
occurring in the ontology. That is, if O |= C v D for C and D occurring in O, then
C v D can be derived using the rules in Figure 1 [1]. Therefore, in order to classify
the ontology, it is sufficient to compute the closure under the rules and take the derived
subsumptions between atomic concepts. Example 1 in Appendix C demonstrates how
to apply the rules in Figure 1 to compute the classification.

3.4 Computing the Closure under Inference Rules

Computing the closure under inference rules, such as in Figure 1, can be performed
using a well-known forward chaining procedure presented in Algorithm 1. The algo-
rithm derives expressions by applying inferences in R and collects those expressions
between which all inferences are applied in a set Closure and the remaining ones in a
queue Todo. The algorithm first initializes Todo with conclusions of the initialization

Algorithm 2: Update modulo additions
input : R, R+: sets of inferences, Closure: the closure under R
output : Closure: the closure under R ∪ R+

1 Todo← ∅;
2 for inf ∈ (R+ \ R)(Closure) do /* initialize */
3 Todo.add(inf.conclusion);

4 R← R ∪ R+;
5 while Todo 6= ∅ do /* close */
6 exp← Todo.takeNext();
7 if exp /∈ Closure then
8 Closure.add(exp);
9 for inf ∈ R[exp](Closure) do

10 Todo.add(inf.conclusion);

11 return Closure;

inferences R() ⊆ R (lines 2–3), and then in a cycle (lines 4–9), repeatedly takes the
next expression exp ∈ Todo, if any, inserts it into Closure if it does not occur there,
and applies all inferences inf ∈ R[exp](Closure) having this expression as one of the
premises and other premises from Closure. The conclusions of such inferences are then
inserted into Todo. Please see Example 2 in Appendix C illustrating an execution of
Algorithm 1.

Let Closure′ be the set computed by Algorithm 1. Note that the algorithm performs
as many insertions into Todo as there are inferences in R(Closure′) because every infer-
ence inf ∈ R(Closure′) is eventually applied, and an inference cannot apply more than
once because of line 6. Therefore, the running time of Algorithm 1 can be estimated
as O(||R(Closure′)||), provided that the initialization inferences inf ∈ R() in line 2 and
matching inferences inf ∈ R[exp](Closure) in line 8 can be effectively enumerated.

4 Incremental Deductive Closure Computation

In this section, we discuss algorithms for updating the deductive closure under a set of
inferences after the set of inferences has changed. Just like in Section 3.4, the material
in this section is not specific to any particular inference system, i.e., does not rely on
the EL+ classification procedure described in Section 3.3.

The problem of incremental computation of the deductive closure can be formulated
as follows. Let R, R+ and R− be sets of inferences, and Closure the closure under R.
The objective is to compute the closure under the inferences in (R \ R−) ∪ R+, using
Closure, R, R+, or R−, if necessary.

4.1 Additions are Easy

If there are no deletions (R− = ∅), the closure under R ∪ R+ can be computed by
Algorithm 2. Starting from Closure, the closure under R, the algorithm first initializes

Algorithm 3: Update modulo deletions (incomplete)
input : R, R−: sets of inferences, Closure: the closure under R
output : Closure: a subset of the closure under (R \ R−)(Closure)

1 Todo← ∅;
2 for inf ∈ R−(Closure) do /* initialize */
3 Todo.add(inf.conclusion);

4 R← R \ R−;
5 while Todo 6= ∅ do /* close */
6 exp← Todo.takeNext();
7 if exp ∈ Closure then
8 for inf ∈ R[exp](Closure) do
9 Todo.add(inf.conclusion);

10 Closure.remove(exp);

11 return Closure;

Todo with conclusions of new inferences inf ∈ (R+ \ R) applicable to Closure, and
then processes this queue with respect to the union of all inferences R ∪ R+ as it is
done in Algorithm 1. Note that Algorithm 1 is just a special case of Algorithm 2 when
Closure = ∅ and the initial set of inferences R is empty.

Let Closure be the set in the input of Algorithm 2, and Closure′ the set obtained in
the output. Intuitively, the algorithm applies all inferences in (R∪R+)(Closure′) that are
not in R(Closure) because those should have been already applied. Therefore, the run-
ning time of Algorithm 2 can be estimated asO(||(R∪R+)(Closure′)||− ||R(Closure)||),
which saves us O(||R(Closure)||) operations compared to applying Algorithm 1 from
scratch. Note that it is essential that we start with the closure under R. If we start with
a set that is not closed under R, we may lose conclusions because the inferences in
R(Closure) are never applied by the algorithm.

4.2 Deletions are Difficult

Let us now see how to update the closure under deletions, i.e., when R+ = ∅. Consider
Algorithm 3, which works analogously to Algorithm 2, but removes conclusions instead
of adding them. In this algorithm, the queue Todo is used to buffer expressions that
should be removed from Closure. We first initialize Todo with consequences of the
removed inferences inf ∈ R−(Closure) (lines 2–3), and then remove such elements
together with conclusions of inferences from Closure in which they participate (lines
5–10). Note that in this loop, it is sufficient to consider only consequences under the
resulting R = R \ R− because all consequences under R− are already added in Todo
during the initialization (lines 2–3).

Unfortunately, Algorithm 3 might not produce the closure under R \ R−: it may
delete expressions that are still derivable in R \ R−. For example, for the input R =
{/a, a/b, b/a} (x/y is an inference with the premise x and conclusion y), R− =
{b/a}, and Closure = {a, b}, Algorithm 3 removes both a since it is a conclusion

of R−(Closure), and b since it is a conclusion of (R \ R−)[a](Closure), yet both a and
b are still derivable by the remaining inferences R \ R− = {/a, a/b}.

A common solution to this problem, is to check, which of the removed expressions
are conclusions of the remaining inferences in R(Closure), put them back in Todo, and
re-apply the inferences for them like in the main loop of Algorithm 2 (lines 5–10). This
is known as the DRed (over-delete, re-derive) strategy in logic programming [12]. But to
efficiently check whether an expression is a conclusion of some inference from Closure,
one either needs to record how conclusions where produced, or build indexes that help
to identify matching premises in Closure by conclusions. Storing this information for
everything derived can consume a lot of memory and slow down the inference process.

Note that it makes little sense to ‘simply re-apply’ the remaining inferences in
R to the set Closure produced by Algorithm 3. This would require O(||R(Closure)||)
operations—the same as for computing Closure from scratch using Algorithm 1. Most
of the inferences are likely to be already applied to Closure, so, even if it is not ‘fully’
closed under R, it may be ‘almost’ closed. The main idea behind our method presented
in the next section, is to identify a large enough subset of expressions Closure1 ⊆
Closure and a large enough subset of inferences R1 ⊆ R, such that Closure1 is al-
ready closed under R1. We can then re-compute the closure under R incrementally from
Closure1 using Algorithm 2 for R+ = R \ R1. As has been shown, this approach saves
us ||R1(Closure1)|| rule applications compared to computing the closure from scratch.

Let Closure be the set in the input of Algorithm 3, and Closure′ the set obtained in
the output. Similarly to Algorithm 2, we can estimate the running time of Algorithm 3
as O(||R(Closure)|| − ||(R \ R−)(Closure′)||). Indeed, during initialization (lines 2–3)
the algorithm applies all inferences in R−(Closure), and in the main loop (lines 5–10) it
applies each inference in (R \ R−)(Closure) that is not in (R \ R−)(Closure′)—exactly
those inferences that have at least one premise in Closure \ Closure′. The conclusion of
every such inference is removed from Closure, i.e., it is an element of Closure\Closure′.
Although, as has been pointed out, the output Closure′ is not necessarily the closure
under R \ R−, it is, nevertheless, a subset of this closure:

Lemma 1. Let Closure be the set in the input of Algorithm 3, and Closure′ the set
obtained in the output. Then Closure′ is a subset of the closure under (R\R−)(Closure′).

The proof of Lemma 1 can be found in Appendix D.
Note that Lemma 1 claims something stronger than just that Closure′ is a subset of

the closure under R\R−. It is, in fact, a subset of the closure under (R\R−)(Closure′) ⊆
R \ R−. Not every subset of the closure under R \ R− has this property. Intuitively, this
property means that every expression in Closure′ can be derived by inferences in R\R−
using only expressions in Closure′ as intermediate conclusions. This property will be
important for correctness of our method.

4.3 Incremental Updates using Partitions

Our new method for updating the closure under deletions can be described as follows.
We partition the set of expressions in Closure on disjoint subsets and modify Algo-
rithm 3 such that whenever an expression is removed from Closure, its partition is

Algorithm 4: Repair of over-deletions
input : R: a set of inferences, Closure: a subset of the closure under R (Closure),

Broken: a set of partitions such that if inf ∈ R(Closure) and
inf.conclusion /∈ Closure then inf.conclusion.partition ∈ Broken

output : Todo: the conclusions of inferences in R (Closure) that do not occur in Closure

1 Todo, ToRepair, Repaired← ∅;
2 for inf ∈ R〈Broken〉(Closure) do /* initialize */
3 if inf.conclusion /∈ Closure then
4 Todo.add(inf.conclusion);
5 else
6 ToRepair.add(inf.conclusion);

7 while ToRepair 6= ∅ do /* close */
8 exp← ToRepair.takeNext();
9 if exp /∈ Repaired then

10 for inf ∈ R[exp](Closure) do
11 if inf.conclusion.partition ∈ Broken then
12 if inf.conclusion /∈ Closure then
13 Todo.add(inf.conclusion);
14 else
15 ToRepair.add(inf.conclusion);

16 Repaired.add(exp);

17 return Todo;

marked as ‘broken’. We then re-apply inferences that can produce conclusions in broken
partitions to ‘repair’ the closure.

Formally, let Pts be a fixed countable set of partition identifiers (short partitions),
and every expression exp ∈ Exp be assigned with exactly one partition exp.partition ∈
Pts. For an inference rule R and a set of partitions Pts ⊆ Pts, let R〈Pts〉 be the set of
inferences inf ∈ R such that inf.conclusion.partition ∈ Pts and exp.partition /∈ Pts for
every exp ∈ inf.Premises. Intuitively, these are all inferences in R that can derive an
expression whose partition is in Pts from expressions whose partitions are not in Pts.

We modify Algorithm 3 such that whenever an expression exp is removed from
Closure in line 10, we add exp.partition to a special set of partitions Broken. This set
is then used to repair Closure in Algorithm 4. The goal of the algorithm is to collect in
the queue Todo the conclusions of inferences in R(Closure) that are missing in Closure.
This is done by applying all possible inferences inf ∈ R(Closure) that can produce such
conclusions. There can be two types of such inferences: those whose premises do not
belong to any partition in Broken, and those that have at least one such premise. The
inferences of the first type are R〈Broken〉(Closure); they are applied in initialization
(lines 2–6). The inferences of the second type are applied in the main loop of the algo-
rithm (lines 7–16) to the respective expression in Closure whose partition is in Broken.

Whenever an inference inf is applied and inf.conclusion belongs to a partition in
Broken (note that it is always the case for inf ∈ R〈Broken〉(Closure), see also line 11),

we check if inf.conclusion occurs in Closure or not. If it does not occur, then we put the
conclusion in the output Todo (lines 4, 13). Otherwise, we put it into a special queue
ToRepair (lines 6, 15), and repeatedly apply for each exp ∈ ToRepair the inferences
inf ∈ R[exp](Closure) of the second type in the main loop of the algorithm (lines 7–16).
After applying all inferences, we move exp into a special set Repaired (line 16), which
is there to make sure that we never consider exp again (see line 9).

Lemma 2. Let R, Closure, and Broken be the inputs of Algorithm 4, and Todo the
output. Then Todo = {inf.conclusion | inf ∈ R(Closure)} \ Closure.

The proof of Lemma 2 can be found in Appendix D.
After computing the repair Todo of the set Closure using Algorithm 4, we can com-

pute the rest of the closure as in Algorithm 2 using the partially initialized Todo. The
correctness of the algorithm follows from Lemma 1, Lemma 2, and the correctness
of our modification of Algorithm 2 when Todo is initialized with missing conclusions
of R(Closure). The complete algorithm for updating the closure can be found in Ap-
pendix B, and its detailed correctness proof in Appendix D.

Algorithm 4 does not impose any restrictions on the assignment of partitions to
expressions. Its performance in terms of the number of operations, however, can sub-
stantially depend on this assignment. If we assign, for example, the same partition to
every expression, then in the main loop (lines 7–16) we have to re-apply all inferences in
R(Closure). Thus, it is beneficial to have many different partitions. At another extreme,
if we assign a unique partition to every expression, then R〈Broken〉 would consist of
all inferences producing the deleted expressions, and we face the problem of identify-
ing deleted expressions that are still derivable (the conclusions of R〈Broken〉(Closure)
in lines 2–6). Next, we present a specific partition assignment for the EL+ rules in
Figure 1, which circumvents both of these problems.

5 Incremental Reasoning in EL+

In this section, we apply our method for updating the classification of EL+ ontologies
computed using the rules in Figure 1. We only consider changes in concept inclusion
axioms while resorting to full classification for changes in role inclusions and com-
positions. We first describe our strategy of partitioning the derived subsumptions, then
discuss some issues related to optimizations, and, finally, present an empirical evalua-
tion measuring the performance of our incremental procedure on existing ontologies.

5.1 Partitioning of Derived EL+ Subsumptions

The inferences R in Figure 1 operate with concept subsumptions of the form C v D.
We partition them into sets of subsumptions having the same left-hand side. Formally,
the set of partition identifiers Pts is the set of all EL+ concepts, and every subsumption
C v D is assigned to the partition corresponding to its left-hand side C. This assign-
ment provides sufficiently many different partitions (as many as there are concepts in
the input ontology) and also has the advantage that the inferences R〈Pts〉 for any set
Pts of partitions can be easily identified. Indeed, note that every conclusion of a rule in

Table 1. Number of inferences and running times (in ms.) for test ontologies. The results for
each incremental stage are averaged (for GO the results are only averaged over changes with a
non-empty set of deleted axioms). Time (resp. number of inferences) for initial classification is:
GO (r560): 543 (2,224,812); GALEN: 648 (2,017,601); SNOMED CT: 10,133 (24,257,209)

Ontology Changes Deletion Repair Addition Total
add.+del. # infer. |Broken| time # infer. time # infer. time # infer. time

GO (r560) 84+26 62,384 560 48 17,628 8 58,933 66 138,945 134
GALEN 1+1 3,444 36 18 4,321 4 3,055 13 10,820 39
(EL+ version) 10+10 68,794 473 66 37,583 17 49,662 52 156,039 147

100+100 594,420 4,508 214 314,666 96 426,462 168 1,335,548 515
SNOMED CT 1+1 4,022 64 120 423 1 2,886 68 7,331 232
(Jan 2013) 10+10 42,026 251 420 8,343 4 31,966 349 82,335 789

100+100 564,004 3,577 662 138,633 56 414,255 545 1,116,892 1,376

Figure 1, except for the initialization rules R0 and R>, has the same left-hand side as
one of the premises of the rule. Therefore, R〈Pts〉 consists of exactly those inferences
in R0 and R> of R for which C ∈ Pts.

5.2 Dealing with Rule Optimizations

The approach described in Section 4 can be used with any EL+ classification procedure
that implements the inference rules in Figure 1 as they are. Existing implementations,
however, include a range of further optimizations that avoid unnecessary applications
of some rules. For example, it is not necessary to apply R−u to conclusions of R+

u , and
it is not necessary to apply R∃ and R◦ if its existential premises were obtained by R∃
[15]. Even though the closure computed by Algorithm 1 does not change under such
optimizations (the algorithm just derives fewer duplicate conclusions), if the same opti-
mizations are used for deletions in Algorithm 3, some deletions could be missed. Intu-
itively, this happens because the inferences for deleting conclusions in Algorithm 3 can
be applied in a different order than they were applied in Algorithm 1 for deriving these
conclusions. Please refer to Example 4 in Appendix C demonstrating this situation.

To fix this problem, we do not use rule optimizations for deletions in Algorithm 3.
To repair the closure using Algorithm 4, we also need to avoid optimizations to make
sure that all expressions in broken partitions of Closure are encountered, but it is suffi-
cient to insert only conclusions of optimized inferences into Todo.

5.3 Experimental Evaluation

We have implemented the procedure described in Section 4.3 in the OWL EL reasoner
ELK,1 and performed some preliminary experiments to evaluate its performance. We
used three large OWL EL ontologies listed in Table 1 which are frequently used in
evaluations of EL reasoners [3–6]: the Gene Ontology GO [16] with 84, 955 axioms, an

1The incremental classification procedure is enabled by default in the latest nightly builds:
http://code.google.com/p/elk-reasoner/wiki/GettingElk

EL+-restricted version of the GALEN ontology with 36, 547 axioms,2 and the January
2013 release of SNOMED CT with 296, 529 axioms.3

The recent change history of GO is readily available from the public SVN repos-
itory.4 We took the last (as of April 2013) 342 changes of GO (the first at r560 with
74, 708 axioms and the last at r7991 with 84, 955 axioms). Each change is represented
as sets of added and deleted axioms (an axiom modification counts as one deletion
plus one addition). Out of the 9 role axioms in GO, none was modified. Unfortunately,
similar data was not available for GALEN or SNOMED CT. We used the approach of
Cuenca Grau et.al [11] to generate 250 versions of each ontology with n random ad-
ditions and deletions (n = 1, 10, 100). For each change history we classified the first
version of the ontology and then classified the remaining versions incrementally. All ex-
periments were performed on a PC with Intel Core i5-2520M 2.50GHz CPU, running
Java 1.6 with 4GB of RAM available to JVM.

The results of the initial and incremental classifications are given in Table 1 (more
details can be found in Appendix E). For GO we have only included results for changes
that involve deletions (otherwise the averages for deletion and repair would be artifi-
cially lower). First note, that in each case, the incremental procedure makes substan-
tially fewer inferences and takes less time than the initial classification. Unsurprisingly,
the difference is most pronounced for larger ontologies and smaller values of n. Also
note that the number of inferences in each stage and the number of partitions |Broken|
affected by deletions, depend almost linearly on n, but not the running times. This is
because applying several inferences at once is more efficient than separately. Finally,
the repair stage takes a relatively small fraction of the total time.

6 Summary and Future Research

In this paper we have presented a new method for incremental classification of EL+

ontologies. It is simple, supports both additions and deletions, and does not require
deep modification of the base reasoning procedure (for example, it is implemented in
the same concurrent way as the base procedure in ELK [4]). Our experiments, though
being preliminary due to the shortage of revision histories for real-life EL ontologies,
show that its performance enables nearly real-time incremental updates. Potential appli-
cations of the method range from background classification of ontologies in editors to
stream reasoning and query answering. The method could also be used to handle ABox
changes (via a TBox encoding) or easily extended to consequence-based reasoning pro-
cedures for more expressive Description Logics [17, 18].

The main idea of the method is exploiting the granularity of the EL+ reasoning
procedure. Specifically, subsumers of concepts can often be computed independently of
each other. This property is a corner stone for the concurrent EL classification algorithm
used in ELK where contexts are similar to our partitions [4]. In the future, we intend
to further exploit this property for on-demand proof generation (for explanation and
debugging) and distributed EL reasoning.

2http://www.co-ode.org/galen/
3http://www.ihtsdo.org/snomed-ct/
4svn://ext.geneontology.org/trunk/ontology/

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In Kaelbling, L., Saffiotti, A., eds.:
Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05), Professional Book Center
(2005) 364–369

2. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C., eds.: OWL 2
Web Ontology Language: Profiles. W3C Recommendation (27 October 2009) Available
at http://www.w3.org/TR/owl2-profiles/.

3. Baader, F., Lutz, C., Suntisrivaraporn, B.: Efficient reasoning in EL+. In Parsia, B., Sattler,
U., Toman, D., eds.: Proc. 19th Int. Workshop on Description Logics (DL’06). Volume 189
of CEUR Workshop Proceedings., CEUR-WS.org (2006)

4. Kazakov, Y., Krötzsch, M., Simančík, F.: Concurrent classification of EL ontologies. In
Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist,
E., eds.: Proc. 10th Int. Semantic Web Conf. (ISWC’11). Volume 7032 of LNCS., Springer
(2011) 305–320

5. Mendez, J., Ecke, A., Turhan, A.Y.: Implementing completion-based inferences for the EL-
family. In Rosati, R., Rudolph, S., Zakharyaschev, M., eds.: Proc. 24th Int. Workshop on
Description Logics (DL’11). Volume 745 of CEUR Workshop Proceedings., CEUR-WS.org
(2011) 334–344

6. Lawley, M.J., Bousquet, C.: Fast classification in Protégé: Snorocket as an OWL 2 EL rea-
soner. In Taylor, K., Meyer, T., Orgun, M., eds.: Proc. 6th Australasian Ontology Workshop
(IAOA’10). Volume 122 of Conferences in Research and Practice in Information Technol-
ogy., Australian Computer Society Inc. (2010) 45–49

7. Schulz, S., Cornet, R., Spackman, K.A.: Consolidating SNOMED CT’s ontological commit-
ment. Applied Ontology 6(1) (2011) 1–11

8. Suntisrivaraporn, B.: Module extraction and incremental classification: A pragmatic ap-
proach for ontologies. In Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M., eds.:
ESWC. Volume 5021 of LNCS., Springer (June 1-5 2008) 230–244

9. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL
reasoner. J. of Web Semantics 5(2) (2007) 51–53

10. Halaschek-Wiener, C., Parsia, B., Sirin, E.: Description logic reasoning with syntactic up-
dates. In: OTM Conferences (1). (2006) 722–737

11. Cuenca Grau, B., Halaschek-Wiener, C., Kazakov, Y., Suntisrivaraporn, B.: Incremental
classification of description logics ontologies. J. of Automated Reasoning 44(4) (2010) 337–
369

12. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally. In Bune-
man, P., Jajodia, S., eds.: Proc. 1993 ACM SIGMOD Int. Conf. on Management of Data,
Washington, D.C., ACM Press (May 26-28 1993) 157–166

13. Volz, R., Staab, S., Motik, B.: Incrementally maintaining materializations of ontologies
stored in logic databases. J. of Data Semantics 2 (2005) 1–34

14. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Incremental reasoning on
streams and rich background knowledge. In: European Semantic Web Conference. (2010)
1–15

15. Kazakov, Y., Krötzsch, M., Simančík, F.: ELK: a reasoner for OWL EL ontologies. Techni-
cal report, University of Oxford (2012) available from http://code.google.com/p/
elk-reasoner/wiki/Publications.

16. Mungall, C.J., Bada, M., Berardini, T.Z., Deegan, J.I., Ireland, A., Harris, M.A., Hill, D.P.,
Lomax, J.: Cross-product extensions of the gene ontology. J. of Biomedical Informatics
44(1) (2011) 80–86

17. Kazakov, Y.: Consequence-driven reasoning for Horn SHIQ ontologies. In Boutilier, C.,
ed.: Proc. 21st Int. Joint Conf. on Artificial Intelligence (IJCAI’09), IJCAI (2009) 2040–2045

18. Simančík, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond Horn on-
tologies. In Walsh, T., ed.: Proc. 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI’11),
AAAI Press/IJCAI (2011) 1093–1098

Table 2. The syntax and semantics of EL+

Syntax Semantics
Roles:

atomic role R RI

Concepts:
atomic concept A AI

top > ∆I

conjunction C uD CI ∩DI
existential restriction ∃R.C {x | ∃y ∈ CI : 〈x, y〉 ∈ RI}

Axioms:
concept inclusion C v D CI ⊆ DI
role inclusion R v S RI ⊆ SI
role composition R1 ◦R2 v S RI1 ◦RI2 ⊆ SI

A Definitions

This section gives a detailed definition of syntax and semantics of EL+ introduced in
Section 3.1. EL+ is defined w.r.t. a vocabulary consisting of countably infinite sets of
(atomic) roles and atomic concepts. Complex concepts and axioms are defined recur-
sively in Table 2. We use the letters R,S for roles, C,D,E for concepts, and A,B for
atomic concepts. An ontology is a finite set of axioms. Given an ontology O, we write
v∗O for the smallest reflexive transitive binary relation over roles such that R v∗O S
holds for all R v S ∈ O.

An interpretation I consists of a nonempty set ∆I called the domain of I and an
interpretation function ·I that assigns to each role R a binary relation RI ⊆ ∆I ×
∆I , and to each atomic concept A a set AI ⊆ ∆I . This assignment is extended to
complex concepts as shown in Table 2. I satisfies an axiom α (written I |= α) if
the corresponding condition in Table 2 holds. I is a model of an ontology O (written
I |= O) if I satisfies all axioms in O. We say that O entails an axiom α (written
O |= α), if every model of O satisfies α.

B Algorithms

This section presents a detailed description of the method for incremental deductive
closure computation using partitions presented in Section 4.3. The method is described
by Algorithm 5, which consists of three stages:

1. Deletion (lines 2–11): This stage is almost identical to Algorithm 3 except that we
additionally collect in Broken the partitions of the removed expressions (line 11).

2. Repair (12–26): As we have discussed in Section 4.2, after deletions, the resulting
set Closure might not be closed under R = R \ R−. The goal of this stage is to
‘repair’ this defect by computing in Todo those conclusions of R(Closure) that do
not occur in Closure. We know that such conclusions must have been deleted in the
previous stage, so their partitions are saved in Broken. We find such conclusions by

Algorithm 5: Incremental Update of Deductive Closure using Partitions
input : R, R+, R−: sets of inferences, Closure: the closure under R
output : Closure: the closure under (R \ R−) ∪ R+

1 Todo, Broken, ToRepair, Repaired← ∅;
/* ====================== Deletion ====================== */

2 for inf ∈ R−(Closure) do /* initialize */
3 Todo.add(inf.conclusion);

4 R← R \ R−;
5 while Todo 6= ∅ do /* close */
6 exp← Todo.takeNext();
7 if exp ∈ Closure then
8 for inf ∈ R[exp](Closure) do
9 Todo.add(inf.conclusion);

10 Closure.remove(exp);
11 Broken.add(exp.partition); /* add a broken partition */

/* ======================= Repair ======================= */
12 for inf ∈ R〈Broken〉(Closure) do /* initialize */
13 if inf.conclusion /∈ Closure then
14 Todo.add(inf.conclusion);
15 else
16 ToRepair.add(inf.conclusion);

17 while ToRepair 6= ∅ do /* close */
18 exp← ToRepair.takeNext();
19 if exp /∈ Repaired then
20 for inf ∈ R[exp](Closure) do
21 if inf.conclusion.partition ∈ Broken then
22 if inf.conclusion /∈ Closure then
23 Todo.add(inf.conclusion);
24 else
25 ToRepair.add(inf.conclusion);

26 Repaired.add(exp);

/* ====================== Addition ====================== */
27 for inf ∈ (R+ \ R)(Closure) do /* initialize */
28 Todo.add(inf.conclusion);

29 R← R ∪ R+;
30 while Todo 6= ∅ do /* close */
31 exp← Todo.takeNext();
32 if exp /∈ Closure then
33 Closure.add(exp);
34 for inf ∈ R[exp](Closure) do
35 Todo.add(inf.conclusion);

36 return Closure;

applying inferences in R(Closure) producing expressions with partitions in Broken.
There can be two types of such inferences: those whose premises do not belong to
partitions in Broken, and those that have some premises belonging to partitions
in Broken. The former inferences will be applied during initialization (lines 12–
16). To implement the latter inferences, we use the queue ToRepair to iterate over
those expressions in Closure whose partition is in Broken. Whenever we apply
inferences to such expressions, we add them into the set Repaired to make sure we
do not consider them again. Every time we derive a conclusion whose partition is in
Broken, we either add it into Todo if it does not occur in Closure, or otherwise add
it into ToRepair. We then process expressions exp in ToRepair that are not yet in
Repaired in a loop (lines 17–26), in which we apply inferences in R[exp](Closure),
and insert those conclusions whose partitions are in Broken into Todo or ToRepair
similarly as above.

3. Addition (lines 27–35): This stage is identical to Algorithm 2, except that the initial
set Closure is not closed under R. But since Todo contains all those conclusions
of R(Closure) that do not occur in Closure as ensured by the repair stage, it is
guaranteed that all inferences in (R ∪ R+) will be applied to Closure.

Please see Example 3 in Appendix C illustrating an execution of Algorithm 5 with
the partition assignment for EL+ described in Section 5.

C Examples

The following example illustrates the application of rules in Figure 1 for deriving the
entailed subsumption relations.

Example 1. Consider the following EL+ ontology O:
(ax1): A v ∃R.B (ax2):∃H.B v C (ax3):R v H
(ax4):B v ∃S.A (ax5): ∃S.C v C
The subsumptions below can be derived via rules in Figure 1:

A v A by R0 since A occurs in O, (1)
B v B by R0 since B occurs in O, (2)
C v C by R0 since C occurs in O, (3)

∃R.B v ∃R.B by R0 since ∃R.B occurs in O, (4)
∃S.A v ∃S.A by R0 since ∃S.A occurs in O, (5)
∃H.B v ∃H.B by R0 since ∃H.B occurs in O, (6)
∃S.C v ∃S.C by R0 since ∃S.C occurs in O, (7)

A v ∃R.B by Rv to (1) using (ax1), (8)
B v ∃S.A by Rv to (2) using (ax4), (9)

∃R.B v ∃H.B by R∃ to (4) and (2) using (ax3), (10)
∃H.B v C by Rv to (6) using (ax2), (11)
∃S.C v C by Rv to (7) using (ax5), (12)

A v ∃H.B by R∃ to (8) and (2) using (ax3), (13)
∃R.B v C by Rv to (10) using (ax2), (14)

A v C by Rv to (13) using (ax2), (15)
∃S.A v ∃S.C by R∃ to (5) and (15), (16)

B v ∃S.C by R∃ to (9) and (15), (17)
∃S.A v C by Rv to (16) using (ax5), (18)

B v C by Rv to (17) using (ax5). (19)

The subsumptions (1)–(19) are closed under these rules so, by completeness, A v A,
B v B, C v C, A v C, B v C are all subsumptions between atomic concepts
entailed by O.

The following examples illustrate the execution of Algorithm 1 for computing the
deductive closure under inferences in Figure 1.

Example 2 (Example 1 continued). The axioms (1)–(19) in Example 1 are already listed
in the order in which they would be inserted into Todo by Algorithm 1. When an axiom
is inserted into Closure, all inferences involving this axiom and the previous axioms are
applied. For example, when axiom (10) is inserted into Closure, the previous axioms
(1)–(9) are already in Closure, so axiom (14) is derived and added into Todo after the
previously derived axioms (11)–(13).

The following example illustrates the execution of Algorithm 5 for updating the
deductive closure under inferences in Figure 1 using the partition-based approach de-
scribed in Section 4.3.

Example 3 (Example 1 continued). Let us see how the closure (1)–(19) is updated using
Algorithm 5 after deletions of the axiom (ax5) from the ontologyO. The deletion of this
axiom results in R− consisting of R0 and R∃ for ∃S.C since ∃S.C does not occur in O
anymore, and Rv for ∃S.C v C since this axiom was deleted fromO. These inferences
produce the conclusions (7), (12), and (16)–(19) in Todo during the initialization of
deletions (lines 2–3). Only these conclusions will be removed during closure (lines 5–
11), and their partitions will be collected in Broken = {∃S.C, ∃S.A, B}.

During the repair stage, we first need to apply the inferences in R〈Broken〉 to
Closure (lines 12–16), that is, the instances of R0 for all concepts in Broken except
for ∃S.C, which does not occur in O anymore. This adds (2) and (5) into ToRepair
since they still occur in Closure. When processing these conclusions during closure
(lines 17–26), the conclusion (9) of an inference from (2) is added into ToRepair be-
cause its partitionB ∈ Broken and it still occurs in Closure. Note that other conclusions
(10) and (13) of inferences from (2) are ignored because their partitions ∃R.B and A
are not in Broken. Also, rule R∃ is no longer applied to (9) and (15) since ∃S.C does
not occur in O anymore. So, no further conclusions are added into ToRepair or into
Todo. At the end of this stage, therefore, Repaired contains (2), (5), and (9), and Todo
remains empty.

During the addition stage, no inferences will be applied since Todo is empty and
there were no axiom additions. The updated closure, thus, consists of subsumptions
(1)–(6), (8)–(11), and (13)–(15).

The following example demonstrates why some rule optimizations cannot be ap-
plied in Algorithm 3 as discussed in Section 5.2.

Example 4. Consider the following EL+ ontology O:
(ax1):A v ∃R.B (ax2):B v C (ax3):C v B (ax4):∃R.C v ∃R.C
Let us apply an optimized version of Algorithm 1 for rules in Figure 1, in which we do
not apply rule R∃ if its left premise is obtained by rule R∃:

A v A by R0 since A occurs in O, (20)
B v B by R0 since B occurs in O, (21)
C v C by R0 since C occurs in O, (22)

∃R.B v ∃R.B by R0 since ∃R.B occurs in O, (23)
∃R.C v ∃R.C by R0 since ∃R.C occurs in O, (24)

A v ∃R.B by Rv to (20) using (ax1), (25)
B v C by Rv to (21) using (ax2), (26)
C v B by Rv to (22) using (ax3), (27)

∃R.B v ∃R.C by R∃ to (23) and (26) using (ax4), (28)
∃R.C v ∃R.B by R∃ to (24) and (27) using (ax1), (29)

A v ∃R.C by R∃ to (25) and (26) using (ax4). (30)

Rule Rv can be further applied to (26) using (ax3), to (27) using (ax2), to (24) using
(ax4), and to (28) using (ax4), producing respectively (21), (22), (24), and (28) that
have been already derived. Note that (28), (29), and (30) cannot be further used as
the left premise of rule R∃ because they have been obtained using R∃ and we use the
optimization that prevents such inferences. But even if we apply such inferences, they
produce only subsumptions that are already derived; that is why this optimization does
not have any effect on the resulting closure (except for performing fewer inferences).

Assume now that axioms (ax2) and (ax3) are deleted and let us apply Algorithm 3
for the computed set Closure (20)–(30) using the same optimized inference rules. Dur-
ing initialization (lines 2–3) the following inferences for (ax2) and (ax3) will be applied:

B v C by Rv to (21) using (ax2), (31)
C v C by Rv to (27) using (ax2), (32)
C v B by Rv to (22) using (ax3), (33)
B v B by Rv to (26) using (ax3). (34)

In the main loop (lines 5–10) for each resulting conclusion that occurs in Closure, the
inferences are applied, and the conclusion is deleted from Closure. Assume that this
happens in the following order (so far the order in which elements are taken from Todo
was not important for correctness of the algorithm): first we process (33):

∃R.C v ∃R.B by R∃ to (24) and (33) using (ax1), (35)
∃R.B v ∃R.B by R∃ to (28) and (33) using (ax1), (36)

A v ∃R.B by R∃ to (30) and (33) using (ax1), (37)

after that we process (35), (36), (37), (31), (32), and finally (34).
Note that when processing (35), rule R∃ is not applied to (35) and (26) using (ax4)

because (35) was obtained using rule R∃. Therefore, (24) does not get deleted. Sim-
ilarly, rule R∃ is not applied when processing (36) and (37), so (28) and (30) do not
get deleted as well. Since (28) and (30) can only be obtained by rule R∃ from (36) and
(37), both of which get deleted after processing, the subsumptions (28) and (30) remain
in Closure, even though they are not implied by the remaining axioms (ax1) and (ax4).
The problem takes place because (28) and (30) were initially obtained by rule R∃ from
the same premises (23) and (25), but which were derived using different rules (R0 and
Rv respectively), to which the existential optimization did not apply.

D Proofs

This section presents the omitted proofs of Lemma 1 and Lemma 2, and the correctness
proof of Algorithm 5.

Proof of Lemma 1. Let Closure′′ be the closure under (R \ R−)(Closure′). We need to
prove that Closure′ ⊆ Closure′′. Clearly, Closure′ ⊆ Closure and Closure′′ ⊆ Closure.
Define Closure1 := (Closure \Closure′)∪Closure′′ ⊆ Closure. We claim that Closure1
is closed under R. Indeed, take any inf ∈ R(Closure1). Then there are two possibilities:

1. inf ∈ R(Closure)\(R\R−)(Closure′): Then inf was applied in Algorithm 3. There-
fore, inf.conclusion ∈ Closure \ Closure′ ⊆ Closure1.

2. inf ∈ (R \ R−)(Closure′): Since inf ∈ R(Closure1) and Closure′ ∩ Closure1 ⊆
Closure′′, we have inf ∈ (R \ R−)(Closure′′). Since Closure′′ ⊆ Closure1 and
Closure′′ is closed under (R \ R−)(Closure1), then Closure′′ is closed under inf ∈
(R \ R−)(Closure′′). Therefore inf.conclusion ∈ Closure′′ ⊆ Closure1.

Now, since Closure1 ⊆ Closure is closed under R and Closure is the smallest set
closed under R, we have Closure1 = Closure. Therefore, ∅ = Closure \ Closure1 =
Closure′ \ Closure′′, and so, Closure′ ⊆ Closure′′, as required.

Proof of Lemma 2. Let Closure′ = {inf.conclusion | inf ∈ R(Closure)}. We need to
demonstrate that Todo = Closure′ \ Closure. Since Todo ⊆ Closure′ and Closure ∩
Todo = ∅, it is sufficient to prove that Closure′ \ Closure ⊆ Todo.

First, note that Closure′ is the closure under R(Closure). Indeed, if Closure′′ is the
closure under R(Closure), then Closure ⊆ Closure′′ by the assumption of Algorithm 4.
Hence, for every inf ∈ R(Closure) ⊆ R(Closure′′), we have inf.conclusion ∈ Closure′′.
Therefore, Closure′ ⊆ Closure′′, and since Closure′ is closed under R(Closure), we
have Closure′ = Closure′′.

Let Closure1 = {exp ∈ Closure | exp.partition /∈ Broken}. Then it is easy to see
from Algorithm 4 that for every inf ∈ R(Closure1∪Repaired), we have inf.conclusion ∈
Closure1 ∪ Repaired ∪ Todo. Indeed, if inf.conclusion.partition /∈ Broken then by
assumption of Algorithm 4, since inf ∈ R(Closure) and inf.conclusion.partition /∈
Broken, we must have inf.conclusion ∈ Closure, and thus inf.conclusion ∈ Closure1.

If inf.conclusion.partition ∈ Broken, there are two cases possible. Either inf ∈
R(Closure1), thus, inf ∈ R〈Broken〉(Closure). In this case inf is applied in Algorithm 4
during initialization (lines 2–6). Or, otherwise, inf has at least one premise in Repaired,
and hence, it is applied in the main loop of Algorithm 4 (lines 7–16). In both cases the
algorithm ensures that inf.conclusion ∈ Repaired ∪ Todo.

Now, since Closure1 ∪ Repaired ∪ Todo is closed under R(Closure1 ∪ Repaired)
and Closure ∩ Todo = ∅, it is also closed under R(Closure). Since Closure′ is the
closure under R(Closure), we therefore, have Closure′ = Closure1∪Repaired∪Todo ⊆
Closure ∪ Todo. Hence, Closure′ \ Closure ⊆ Todo, as required.

Theorem 1. Let R, R+, R− be the input of Algorithm 5, and Closure3 the set obtained
in the output. Then Closure3 is the closure under (R \ R−) ∪ R+.

Proof. Let Closure1 and Broken be the sets obtained after the deletion stage of the algo-
rithm. Then by Lemma 1, for Closure′ the closure under (R \R−), we have Closure1 ⊆
Closure′. Furthermore, it is easy to see that Broken contains the partitions for all ex-
pressions in Closure \Closure1, and, in particular, of those in Closure′ \Closure1 since,
obviously, Closure′ ⊆ Closure.

Let Closure2 and Todo2 be contents of Closure and Todo after the repair stage of
Algorithm 5. Clearly, Closure2 = Closure1 since Closure does not change in this stage.
Then by Lemma 2, Todo2 consists of all conclusions of (R \R−)(Closure2) that do not
occur in Closure2. In particular, Todo2 ⊆ Closure′.

Let Closure′′ be the closure under (R \ R−) ∪ R+. Clearly, Closure2 ∪ Todo2 ⊆
Closure′ ⊆ Closure′′. Let Closure3 be the content of Closure after the addition stage of
Algorithm 5. We need to prove that Closure3 = Closure′′. Since in the addition stage,
Closure is extended only with content of Todo, which, in turn, can contain only elements
of Todo2 or consequences of inferences in R(Closure), we have Closure3 ⊆ Closure′′.
We now show that Closure3 is closed under (R \R−)∪R+. For this, take any inference
inf ∈ ((R \ R−) ∪ R+)(Closure3). We need to prove that inf.conclusion ∈ Closure3.
There are three cases possible:

1. inf ∈ (R \ R−)(Closure2). Then inf.conclusion ∈ Todo2 ⊆ Closure3.
2. inf ∈ (R+ \ (R \ R−))(Closure2). Then inf.conclusion ∈ Closure3 due to the ini-

tialization stage of additions (lines 27–28).
3. inf ∈ ((R \ R−) ∪ R+)(Closure3) \ ((R \ R−) ∪ R+)(Closure2). That is, inf has at

least one premise in Closure3 \ Closure2. Then inf should be applied in the main
loop of the addition stage (lines 30–35). Therefore, inf.conclusion ∈ Closure3.

Since Closure3 ⊆ Closure′′ is closed under (R \ R−) ∪ R+ and Closure′′ is the closure
under (R \ R−) ∪ R+, we have Closure3 = Closure′′, as required.

E Detailed Experimental Results

Table 3 presents the detailed view of the results summarized in Table 1. For each per-
formance metric, the number of inferences or time, it shows the average value as well
as the [min–max] interval. In addition, the table presents numbers for the initialization

parts of the deletion and addition stages of Algorithm 5 separately since initialization
often takes longer than closure. The main reason is that enumeration of all inferences
in R−(Closure) (resp. (R+ \R)(Closure)) is currently not very efficient. We are investi-
gating some further optimizations of these parts. For the repair stage, initialization and
closure are implemented in one loop, as there is only a limited interaction between these
parts. Hence we present only the overall figures for this stage.

It can be seen that all three stages (deletion, repair, and addition) exhibit substantial
variability in terms of the number of inferences. For the case of GO, this can partly be
explained by the varying number of changes, as shown in the first column. For GALEN
and SNOMED CT it is explained by the randomness of the change generation algorithm
which sometimes picks axioms which affect frequently used concepts in the ontology
(and, thus, require more effort during the incremental updates). One can speculate that
such changes are less likely to occur during real-life editing process (though to justify
this we would need more ontology version data). Also, observe that the dependency of
the running time on the number of inferences is non-linear since many inferences are
grouped and applied together for performance reasons.

Table 3. Detailed number of inferences and running times. The results for each incremental stage
are averaged over all incremental changes (for GO only over changes with a non-empty set of
deletions). The min and max values over all changes are presented as intervals.

Averaged performance metrics
Ontology Stage # inferences Time (ms)

GO (r560) del. init. 641 [1–18,935] 39 [6–383]
(+add. -del.): del. closure 61,743 [2–1,739,034] 9 [0–227]

+84 [2–1,495] repair 17,628 [1–537,095] 6 [0–149]
-26 [1–409] add. init. 721 [2–17,855] 59 [7–320]
|Broken|: add. closure 58,212 [38–1,571,624] 7 [0–232]

560 [1–15,928] total 138,945 [66–3,875,225] 134 [26–767]
GALEN del. init. 16 [1, 961] 16 [3–115]

(+add. -del.): del. closure 3,428 [1–125,580] 2 [0–77]
± 1 repair 4,321 [0–190,271] 4 [0–370]

|Broken|: add. init. 9 [1–479] 12 [3–423]
36 [1–956] add. closure 3,046 [1–83,464] 1 [0–25]

total 10,820 [11–346,939] 39 [12–413]
GALEN del. init. 219 [13–8,688] 50 [15–392]

(+add. -del.): del. closure 68,575 [528–2,196,705] 16 [0–542]
± 10 repair 37,583 [118–790,776] 17 [0–196]

|Broken|: add. init. 137 [10–8,329] 39 [14–97]
473 [8–12,822] add. closure 49,525 [967–1,241,359] 13 [0–516]

total 156,039 [3358–3,648,026] 147 [55–1,266]
GALEN del. init. 3,753 [379–43,094] 82 [25–181]

(+add. -del.): del. closure 590,667 [28,684–2,171,376] 132 [7–707]
± 100 repair 314,666 [53,804–2,720,553] 96 [23–997]

|Broken|: add. init. 1,777 [198–32,425] 57 [18–147]
4,508 [374–25,704] add. closure 424,685 [43,170–1,344,674] 109 [10–594]

total 1,335,548 [168,293–4,453,413] 515 [177–1,895]
SNOMED CT del. init. 45 [1–3,378] 119 [37–2,186]
(+add. -del.): del. closure 3,977 [2–342,960] 1 [0–112]

± 1 repair 423 [0–23,010] 1 [0–15]
|Broken|: add. init. 20 [1–1,135] 67 [35–1,993]

64 [1–1,136] add. closure 2,867 [3–226,842] 1 [0–72]
total 7,331 [8–596,525] 232 [81–2,724]

SNOMED CT del. init. 600 [11–42,705] 411 [197–2,194]
(+add. -del.): del. closure 41,426 [443–2,703,165] 9 [0–587]

± 10 repair 8,343 [6–767,567] 4 [0–216]
|Broken|: add. init. 207 [10–12,724] 341 [138–2,395]

251 [2–9,971] add. closure 31,759 [514–1,808,499] 8 [0–409]
total 82,335 [1,503–4,760,242] 789 [408–3,009]

SNOMED CT del. init. 4,968 [428–105,150] 542 [375–3,169]
(+add. -del.): del. closure 559,036 [20,654–9,425,976] 120 [5–4,651]

± 100 repair 138,633 [2,086–8,113,134] 56 [1–2,970]
|Broken|: add. init. 2,280 [206–45,670] 445 [284–2,782]

3,577 [133–58,090] add. closure 411,975 [20,201–7,000,073] 100 [5–1,960]
total 1,116,892 [51,266–19,314,629] 1,376 [901–7,762]

