
Copyright (c) Universität Ulm
Pavel Klinov1 Bijan Parsia2

1University of Ulm 2University of Manchester |

August 5, 2013

Practical Reasoning in DL
(Introduction)

2/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

What’s in this course?
1. Introduction (today)

I Origins, syntax and semantics of basic DLs (ALC)
I Basic reasoning problems, inter-reducibility
I Anatomy of a reasoner

2. Tableau algorithms
3. Classification and realization (Bijan)
4. Consequence-based reasoning for lightweight DL (EL)
5. Dealing with data (ontology-based access to databases, Bijan)

We’ll pay special attention to practicality
I Essential optimization techniques
I Performance evaluation techniques

2/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

What’s in this course?
1. Introduction (today)

I Origins, syntax and semantics of basic DLs (ALC)
I Basic reasoning problems, inter-reducibility
I Anatomy of a reasoner

2. Tableau algorithms
3. Classification and realization (Bijan)
4. Consequence-based reasoning for lightweight DL (EL)
5. Dealing with data (ontology-based access to databases, Bijan)

We’ll pay special attention to practicality
I Essential optimization techniques
I Performance evaluation techniques

3/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Welcome!

Let us know if you
I have questions; do ask them at any time
I have difficulties understanding
I find this course too slow/boring
I find this course too fast/difficult

In this course, we will:
I ask you to think a lot
I ask you to work through numerous examples

4/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Origins of Description Logics

Basics: Syntax, Semantics, Reasoning Problems

Anatomy of a Reasoner

5/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

DLs: Where They Come From

DLs are logic-based knowledge representation (KR) formalisms

I Common perception: logic is difficult for human conception
I e.g., how long does it take you to read
∀x∃y∀z((r(x, y) ∧ s(y, z))⇒ (¬s(a, y) ∨ r(x, z)))

I or check that it is equivalent to
∀x∃y∀z(r(x, z) ∨ ¬r(x, y) ∨ ¬s(y, z) ∨ ¬s(a, y))

I Also not-so-easy for machines (only semi-decidable)

Are there better suited alternatives?
I Can we help users learn/speak/interact with logic?
I Or perhaps not use logic at all?

5/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

DLs: Where They Come From

DLs are logic-based knowledge representation (KR) formalisms
I Common perception: logic is difficult for human conception

I e.g., how long does it take you to read
∀x∃y∀z((r(x, y) ∧ s(y, z))⇒ (¬s(a, y) ∨ r(x, z)))

I or check that it is equivalent to
∀x∃y∀z(r(x, z) ∨ ¬r(x, y) ∨ ¬s(y, z) ∨ ¬s(a, y))

I Also not-so-easy for machines (only semi-decidable)

Are there better suited alternatives?
I Can we help users learn/speak/interact with logic?
I Or perhaps not use logic at all?

5/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

DLs: Where They Come From

DLs are logic-based knowledge representation (KR) formalisms
I Common perception: logic is difficult for human conception

I e.g., how long does it take you to read
∀x∃y∀z((r(x, y) ∧ s(y, z))⇒ (¬s(a, y) ∨ r(x, z)))

I or check that it is equivalent to
∀x∃y∀z(r(x, z) ∨ ¬r(x, y) ∨ ¬s(y, z) ∨ ¬s(a, y))

I Also not-so-easy for machines (only semi-decidable)

Are there better suited alternatives?
I Can we help users learn/speak/interact with logic?
I Or perhaps not use logic at all?

5/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

DLs: Where They Come From

DLs are logic-based knowledge representation (KR) formalisms
I Common perception: logic is difficult for human conception

I e.g., how long does it take you to read
∀x∃y∀z((r(x, y) ∧ s(y, z))⇒ (¬s(a, y) ∨ r(x, z)))

I or check that it is equivalent to
∀x∃y∀z(r(x, z) ∨ ¬r(x, y) ∨ ¬s(y, z) ∨ ¬s(a, y))

I Also not-so-easy for machines (only semi-decidable)

Are there better suited alternatives?
I Can we help users learn/speak/interact with logic?
I Or perhaps not use logic at all?

6/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Early KR Formalisms

Were mostly graphical because pictures are:
I easier to grasp:

“A picture says more than a thousand words.”
I close to how knowledge is represented in human beings (?)

Most graphical KR formalisms represent knowledge as graphs with
I labeled nodes

mostly representing concepts, classes, individuals etc.
I labeled edges

mostly representing properties, relationships etc.

6/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Early KR Formalisms

Were mostly graphical because pictures are:
I easier to grasp:

“A picture says more than a thousand words.”
I close to how knowledge is represented in human beings (?)

Most graphical KR formalisms represent knowledge as graphs with
I labeled nodes

mostly representing concepts, classes, individuals etc.
I labeled edges

mostly representing properties, relationships etc.

7/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Semantic Networks

Person

Teacher

Student

Professor

TA

Course

University

is a
is a

is a is a
is a

a7ends

teaches
offers

Mary

is a

Be7y

is a
CS6001

teaches

a7ends

What does this graph say exactly? Is Betty a Student?
Problem: it is unclear. Semantics is missing or implicit.
Remedy: base your picture on logic or use logic directly

7/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Semantic Networks

Person

Teacher

Student

Professor

TA

Course

University

is a
is a

is a is a
is a

a7ends

teaches
offers

Mary

is a

Be7y

is a
CS6001

teaches

a7ends

What does this graph say exactly? Is Betty a Student?

Problem: it is unclear. Semantics is missing or implicit.
Remedy: base your picture on logic or use logic directly

7/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Semantic Networks

Person

Teacher

Student

Professor

TA

Course

University

is a
is a

is a is a
is a

a7ends

teaches
offers

Mary

is a

Be7y

is a
CS6001

teaches

a7ends

What does this graph say exactly? Is Betty a Student?
Problem: it is unclear. Semantics is missing or implicit.

Remedy: base your picture on logic or use logic directly

7/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Semantic Networks

Person

Teacher

Student

Professor

TA

Course

University

is a
is a

is a is a
is a

a7ends

teaches
offers

Mary

is a

Be7y

is a
CS6001

teaches

a7ends

What does this graph say exactly? Is Betty a Student?
Problem: it is unclear. Semantics is missing or implicit.
Remedy: base your picture on logic or use logic directly

8/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Simplicty of Semantic Networks is Problematic

1975, What’s in a Link (Woods):
“I think we must begin with the realization that there is currently
no theory of semantic networks.”

1983, What IS-A is and isn’t (Brachman):
“There are almost as many meanings for the IS-A link as there are
knowledge representation systems.”
17 distinct interpretations of IS-A!

Instead we need a KR formalism which
I has a well-defined semantics
I is reasonably accessible to users
I balances expressivity and computational practicality

DLs came out of the effort to design such formalism

8/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Simplicty of Semantic Networks is Problematic

1975, What’s in a Link (Woods):
“I think we must begin with the realization that there is currently
no theory of semantic networks.”

1983, What IS-A is and isn’t (Brachman):
“There are almost as many meanings for the IS-A link as there are
knowledge representation systems.”
17 distinct interpretations of IS-A!

Instead we need a KR formalism which
I has a well-defined semantics
I is reasonably accessible to users
I balances expressivity and computational practicality

DLs came out of the effort to design such formalism

8/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Simplicty of Semantic Networks is Problematic

1975, What’s in a Link (Woods):
“I think we must begin with the realization that there is currently
no theory of semantic networks.”

1983, What IS-A is and isn’t (Brachman):
“There are almost as many meanings for the IS-A link as there are
knowledge representation systems.”
17 distinct interpretations of IS-A!

Instead we need a KR formalism which
I has a well-defined semantics
I is reasonably accessible to users
I balances expressivity and computational practicality

DLs came out of the effort to design such formalism

8/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Simplicty of Semantic Networks is Problematic

1975, What’s in a Link (Woods):
“I think we must begin with the realization that there is currently
no theory of semantic networks.”

1983, What IS-A is and isn’t (Brachman):
“There are almost as many meanings for the IS-A link as there are
knowledge representation systems.”
17 distinct interpretations of IS-A!

Instead we need a KR formalism which
I has a well-defined semantics
I is reasonably accessible to users
I balances expressivity and computational practicality

DLs came out of the effort to design such formalism

9/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Terminological Knowledge and Facts

DLs: designed to represent terminological or conceptual knowledge

Goals:
I Formalise basic terminology of an application domain;
I Enable reasoning about concepts:

I Can there be Mammals?
I Is every Mammal an Animal?
I Are Frogs Reptiles?

I Represent facts about individuals
I Enable reasoning about individuals and concepts:

I Are my facts consistent with my terminology?
I Is Kermit a Frog?

9/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Terminological Knowledge and Facts

DLs: designed to represent terminological or conceptual knowledge

Goals:
I Formalise basic terminology of an application domain;
I Enable reasoning about concepts:

I Can there be Mammals?
I Is every Mammal an Animal?
I Are Frogs Reptiles?

I Represent facts about individuals
I Enable reasoning about individuals and concepts:

I Are my facts consistent with my terminology?
I Is Kermit a Frog?

9/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Terminological Knowledge and Facts

DLs: designed to represent terminological or conceptual knowledge

Goals:
I Formalise basic terminology of an application domain;
I Enable reasoning about concepts:

I Can there be Mammals?
I Is every Mammal an Animal?
I Are Frogs Reptiles?

I Represent facts about individuals
I Enable reasoning about individuals and concepts:

I Are my facts consistent with my terminology?
I Is Kermit a Frog?

10/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Reasoning

By “reasoning” we understand deductive inference
I From general knowledge to specific conclusions
I All results are necessarily true

If α follows from Σ, then ¬α is inconsistent with Σ

Σ : ESSLLI attendants are students. John attends ESSLLI.
α : John is a student

We never induce relationships from examples

John attends ESSLLI, Mary attends ESSLLI, Jim attends ESSLLI,
Maria attends ESSLLI,. . .
α : ESSLLI attendants are students

10/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Reasoning

By “reasoning” we understand deductive inference
I From general knowledge to specific conclusions
I All results are necessarily true

If α follows from Σ, then ¬α is inconsistent with Σ

Σ : ESSLLI attendants are students. John attends ESSLLI.
α : John is a student

We never induce relationships from examples

John attends ESSLLI, Mary attends ESSLLI, Jim attends ESSLLI,
Maria attends ESSLLI,. . .
α : ESSLLI attendants are students

10/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Reasoning

By “reasoning” we understand deductive inference
I From general knowledge to specific conclusions
I All results are necessarily true

If α follows from Σ, then ¬α is inconsistent with Σ

Σ : ESSLLI attendants are students. John attends ESSLLI.
α : John is a student

We never induce relationships from examples

John attends ESSLLI, Mary attends ESSLLI, Jim attends ESSLLI,
Maria attends ESSLLI,. . .
α : ESSLLI attendants are students

11/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Applications of Description Logics

Medical Informatics

I SNOMED CT
Systematized Nomenclature of Medicine – Clinical Terms
clinical terminology (used for EHR, clinical DSS, etc.)
>300,000 classes (diseases, conditions, etc.)

I NCI Thesaurus (NCI = National Cancer Institute of the USA)
vocabulary for clinical care, translational and basic research,
public information, administrative activities
Information on >10,000 cancers

I ICD 11 (International Classification of Diseases)
used worldwide for health statistics
when someone dies, there’s always a code from ICD 11

11/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Applications of Description Logics

Medical Informatics
I SNOMED CT

Systematized Nomenclature of Medicine – Clinical Terms
clinical terminology (used for EHR, clinical DSS, etc.)
>300,000 classes (diseases, conditions, etc.)

I NCI Thesaurus (NCI = National Cancer Institute of the USA)
vocabulary for clinical care, translational and basic research,
public information, administrative activities
Information on >10,000 cancers

I ICD 11 (International Classification of Diseases)
used worldwide for health statistics
when someone dies, there’s always a code from ICD 11

12/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Applications of Description Logics

Bioinformatics
I GO (Gene Ontology)

controlled vocabulary of terms for gene product characteristics
and gene product annotation data

I Bioportal
REST/Web UI access to 255 bio-health ontologies

Semantic Web
I Supply meaning to (linked open) data
I Use TBox when querying data (Lecture 5 will cover this)

I ontology-based data access
I data intergration

12/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Applications of Description Logics

Bioinformatics
I GO (Gene Ontology)

controlled vocabulary of terms for gene product characteristics
and gene product annotation data

I Bioportal
REST/Web UI access to 255 bio-health ontologies

Semantic Web
I Supply meaning to (linked open) data
I Use TBox when querying data (Lecture 5 will cover this)

I ontology-based data access
I data intergration

13/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Why Reasoning is Important?

Helps to avoid or fix errors during ontology development or use:

I Inconsistencies: “protein P1 is located in L1, protein P2 is
located in L2 disjoint with L1, interaction I was recorded
between P1 and P2”

I Wrong conclusions:
“Flu is inferred to be a sub-concept of Cancer”

I Missing conclusions:
“Flu is not inferred to be a sub-concept of ViralDisease”

Reasoning enables definition-oriented development
I User does not assert relations, only writes definitions
I Reasoning infers the concept hierarchy

Reasoning can be used to explain the errors

13/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Why Reasoning is Important?

Helps to avoid or fix errors during ontology development or use:
I Inconsistencies: “protein P1 is located in L1, protein P2 is

located in L2 disjoint with L1, interaction I was recorded
between P1 and P2”

I Wrong conclusions:
“Flu is inferred to be a sub-concept of Cancer”

I Missing conclusions:
“Flu is not inferred to be a sub-concept of ViralDisease”

Reasoning enables definition-oriented development
I User does not assert relations, only writes definitions
I Reasoning infers the concept hierarchy

Reasoning can be used to explain the errors

13/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Why Reasoning is Important?

Helps to avoid or fix errors during ontology development or use:
I Inconsistencies: “protein P1 is located in L1, protein P2 is

located in L2 disjoint with L1, interaction I was recorded
between P1 and P2”

I Wrong conclusions:
“Flu is inferred to be a sub-concept of Cancer”

I Missing conclusions:
“Flu is not inferred to be a sub-concept of ViralDisease”

Reasoning enables definition-oriented development
I User does not assert relations, only writes definitions
I Reasoning infers the concept hierarchy

Reasoning can be used to explain the errors

13/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Why Reasoning is Important?

Helps to avoid or fix errors during ontology development or use:
I Inconsistencies: “protein P1 is located in L1, protein P2 is

located in L2 disjoint with L1, interaction I was recorded
between P1 and P2”

I Wrong conclusions:
“Flu is inferred to be a sub-concept of Cancer”

I Missing conclusions:
“Flu is not inferred to be a sub-concept of ViralDisease”

Reasoning enables definition-oriented development
I User does not assert relations, only writes definitions
I Reasoning infers the concept hierarchy

Reasoning can be used to explain the errors

13/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Why Reasoning is Important?

Helps to avoid or fix errors during ontology development or use:
I Inconsistencies: “protein P1 is located in L1, protein P2 is

located in L2 disjoint with L1, interaction I was recorded
between P1 and P2”

I Wrong conclusions:
“Flu is inferred to be a sub-concept of Cancer”

I Missing conclusions:
“Flu is not inferred to be a sub-concept of ViralDisease”

Reasoning enables definition-oriented development
I User does not assert relations, only writes definitions
I Reasoning infers the concept hierarchy

Reasoning can be used to explain the errors

13/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Why Reasoning is Important?

Helps to avoid or fix errors during ontology development or use:
I Inconsistencies: “protein P1 is located in L1, protein P2 is

located in L2 disjoint with L1, interaction I was recorded
between P1 and P2”

I Wrong conclusions:
“Flu is inferred to be a sub-concept of Cancer”

I Missing conclusions:
“Flu is not inferred to be a sub-concept of ViralDisease”

Reasoning enables definition-oriented development
I User does not assert relations, only writes definitions
I Reasoning infers the concept hierarchy

Reasoning can be used to explain the errors

14/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Origins of Description Logics

Basics: Syntax, Semantics, Reasoning Problems

Anatomy of a Reasoner

15/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Syntax and Semantics

What you should remember from your logic class!

Any logic has two key components:
I Syntax: formal language used to write formulas of the logic
I Semantics: specifies how to interpret those formulas

Why?
I Syntax: machines can parse/reject formulas

specified using a formal grammar (EBNF, etc)
I Semantics: machines can understand them

specified using the language of the Set Theory
I Programming language analogy:

Syntax and semantics specified in the Standard (e.g., C++)

15/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Syntax and Semantics

What you should remember from your logic class!

Any logic has two key components:
I Syntax: formal language used to write formulas of the logic
I Semantics: specifies how to interpret those formulas

Why?
I Syntax: machines can parse/reject formulas

specified using a formal grammar (EBNF, etc)
I Semantics: machines can understand them

specified using the language of the Set Theory
I Programming language analogy:

Syntax and semantics specified in the Standard (e.g., C++)

16/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Concept Language

Core part of a DL: its concept language, e.g.:

Animal u ∃hasPart.Feather

describes all animals that are related via hasPart to a feather

Syntactic components of a concept language:
I Concept names: stand for sets of elements, e.g., Animal
I Role names: stand for binary relations between elements,

e.g., hasPart
I Constructors: used to build concept expressions:
u,t,∃,∀

16/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Concept Language

Core part of a DL: its concept language, e.g.:

Animal u ∃hasPart.Feather

describes all animals that are related via hasPart to a feather

Syntactic components of a concept language:
I Concept names: stand for sets of elements, e.g., Animal
I Role names: stand for binary relations between elements,

e.g., hasPart
I Constructors: used to build concept expressions:
u,t,∃,∀

17/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Syntax of ALC

ALC is one of the basic/earliest description logics
I properly contains propositional logic
I enough expressivity for conceptual graphs
I notational variant of well-studied modal logic KN

The set of concepts in ALC is defined recursively as follows:
I Every concept name is a concept
I >,⊥ are concepts (pronounced “top” and “bottom”)
I C u D, C t D, and ¬C are concepts if C and D are
I Role restrictions are concepts if C is a concept and R is a role

∃R.C existential restriction
∀R.C universal restriction

17/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Syntax of ALC

ALC is one of the basic/earliest description logics
I properly contains propositional logic
I enough expressivity for conceptual graphs
I notational variant of well-studied modal logic KN

The set of concepts in ALC is defined recursively as follows:
I Every concept name is a concept
I >,⊥ are concepts (pronounced “top” and “bottom”)
I C u D, C t D, and ¬C are concepts if C and D are
I Role restrictions are concepts if C is a concept and R is a role

∃R.C existential restriction
∀R.C universal restriction

18/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Semantics of ALC

Semantics given via interpretation I = (∆I , ·I), where:
I ∆I is a non-empty set (the domain),
I ·I is a mapping (the interpretation function)

, defined as:

Constructor Syntax Example Semantics
concept name A Human AI ⊆ ∆I

role name R likes RI ⊆ ∆I ×∆I

Top concept > >I ≡ ∆I

Bottom concept ⊥ ⊥I ≡ ∅
conjunction C u D Human u Male C I ∩DI

disjunction C t D Nice t Rich C I ∪DI

negation ¬C ¬Meat ∆I \ C I

restrictions:
existential ∃R.C ∃hasChild.Human {x | ∃y.(x, y) ∈ RI ∧ y ∈ C I}
universal ∀R.C ∀hasChild.Blond {x | ∀y.(x, y) ∈ RI ⇒ y ∈ C I}

18/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Semantics of ALC

Semantics given via interpretation I = (∆I , ·I), where:
I ∆I is a non-empty set (the domain),
I ·I is a mapping (the interpretation function), defined as:

Constructor Syntax Example Semantics
concept name A Human AI ⊆ ∆I

role name R likes RI ⊆ ∆I ×∆I

Top concept > >I ≡ ∆I

Bottom concept ⊥ ⊥I ≡ ∅

conjunction C u D Human u Male C I ∩DI

disjunction C t D Nice t Rich C I ∪DI

negation ¬C ¬Meat ∆I \ C I

restrictions:
existential ∃R.C ∃hasChild.Human {x | ∃y.(x, y) ∈ RI ∧ y ∈ C I}
universal ∀R.C ∀hasChild.Blond {x | ∀y.(x, y) ∈ RI ⇒ y ∈ C I}

18/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Semantics of ALC

Semantics given via interpretation I = (∆I , ·I), where:
I ∆I is a non-empty set (the domain),
I ·I is a mapping (the interpretation function), defined as:

Constructor Syntax Example Semantics
concept name A Human AI ⊆ ∆I

role name R likes RI ⊆ ∆I ×∆I

Top concept > >I ≡ ∆I

Bottom concept ⊥ ⊥I ≡ ∅
conjunction C u D Human u Male C I ∩DI

disjunction C t D Nice t Rich C I ∪DI

negation ¬C ¬Meat ∆I \ C I

restrictions:
existential ∃R.C ∃hasChild.Human {x | ∃y.(x, y) ∈ RI ∧ y ∈ C I}
universal ∀R.C ∀hasChild.Blond {x | ∀y.(x, y) ∈ RI ⇒ y ∈ C I}

19/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

The Griffin Family

Look at interpretations on some real example

Lois

Brian

Stewie

Peter

Meg

Chris

19/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

The Griffin Family

Look at interpretations on some real example

Lois

Brian

Stewie

Peter

Meg

Chris

19/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

The Griffin Family

Look at interpretations on some real example

Lois

Brian

Stewie

Peter

Meg

Chris

20/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

The Griffin Family

We pick some I. It fixes the interpretation of base terms:

20/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

The Griffin Family

We pick some I. It fixes the interpretation of base terms:
HumanI :

20/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

The Griffin Family

We pick some I. It fixes the interpretation of base terms:
HumanI :

MaleI :

20/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

The Griffin Family

We pick some I. It fixes the interpretation of base terms:
HumanI :

MaleI :

ParentI :

20/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

The Griffin Family

We pick some I. It fixes the interpretation of base terms:
HumanI :

MaleI :

ParentI :

hasChildI : {(Barbara,Lois), (Peter, Chris), (Peter, Meg),
(Peter, Stewie), (Lois, Chris), (Lois, Meg), (Lois, Stewie)}

21/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Boolean Connectives Are Easy

ALC is a propositionally complete language

FemaleI ParentI

Lois is an instance of (Female u Parent)I

21/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Boolean Connectives Are Easy

ALC is a propositionally complete language

FemaleI ParentI

Lois is an instance of (Female u Parent)I

22/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Existential Restrictions

∃hasChild.Male means the set of those who are in hasChildI

relation with an instance of MaleI

hasChildI hasChildI

hasChildI
MaleI

(∃hasChild.Male)I

22/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Existential Restrictions

∃hasChild.Male means the set of those who are in hasChildI

relation with an instance of MaleI

hasChildI hasChildI

hasChildI
MaleI

(∃hasChild.Male)I

22/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Existential Restrictions

∃hasChild.Male means the set of those who are in hasChildI

relation with an instance of MaleI

hasChildI hasChildI

hasChildI
MaleI

(∃hasChild.Male)I

23/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Universal Restrictions

∀hasChild.Female means the set of those who are in hasChildI

relation with only instances of FemaleI :
{x | ∀y.(x, y) ∈ hasChildI ⇒ y ∈ FemaleI}

hasChildI

hasChildIhasChildI

FemaleI

instances of (∀hasChild.Female)I

Question: what are the instances of (∀hasChild.Female)I

23/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Universal Restrictions

∀hasChild.Female means the set of those who are in hasChildI

relation with only instances of FemaleI :
{x | ∀y.(x, y) ∈ hasChildI ⇒ y ∈ FemaleI}

hasChildI

hasChildIhasChildI

FemaleI

instances of (∀hasChild.Female)I

Question: what are the instances of (∀hasChild.Female)I

23/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Universal Restrictions

∀hasChild.Female means the set of those who are in hasChildI

relation with only instances of FemaleI :
{x | ∀y.(x, y) ∈ hasChildI ⇒ y ∈ FemaleI}

hasChildI

hasChildIhasChildI

FemaleI

instances of (∀hasChild.Female)I

Question: what are the instances of (∀hasChild.Female)I

23/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Universal Restrictions

∀hasChild.Female means the set of those who are in hasChildI

relation with only instances of FemaleI :
{x | ∀y.(x, y) ∈ hasChildI ⇒ y ∈ FemaleI}

hasChildI

hasChildIhasChildI

FemaleI

instances of (∀hasChild.Female)I

Question: what are the instances of (∀hasChild.Female)I

24/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

ALC Concept Interpretations

C I can be visualized as a labeled graph GCI = 〈V ,E〉, where
I V is a non-empty set of domain elements where v0 ∈ C I

I D ∈ L(v) if v ∈ DI

I (x, y) is a R-labeled edge if (x, y) ∈ RI

Example: Male u ∃hasChild.(Nerd u ∃hasSibling.Female)

Peter

Stewie

hasChild

MeghasSibling

Male u ∃hasChild.(Nerd u ∃hasSibling.Female)

Nerd u ∃hasSibling.Female

Female

24/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

ALC Concept Interpretations

C I can be visualized as a labeled graph GCI = 〈V ,E〉, where
I V is a non-empty set of domain elements where v0 ∈ C I

I D ∈ L(v) if v ∈ DI

I (x, y) is a R-labeled edge if (x, y) ∈ RI

Example: Male u ∃hasChild.(Nerd u ∃hasSibling.Female)

Peter

Stewie

hasChild

MeghasSibling

Male u ∃hasChild.(Nerd u ∃hasSibling.Female)

Nerd u ∃hasSibling.Female

Female

24/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

ALC Concept Interpretations

C I can be visualized as a labeled graph GCI = 〈V ,E〉, where
I V is a non-empty set of domain elements where v0 ∈ C I

I D ∈ L(v) if v ∈ DI

I (x, y) is a R-labeled edge if (x, y) ∈ RI

Example: Male u ∃hasChild.(Nerd u ∃hasSibling.Female)

Peter

Stewie

hasChild

MeghasSibling

Male u ∃hasChild.(Nerd u ∃hasSibling.Female)

Nerd u ∃hasSibling.Female

Female

25/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Basic Reasoning Problems

Definition: let C ,D be ALC concepts. We say that
I C is satisfiable if there exists some I such that C I 6= ∅.
I C is subsumed by D (written ∅ |= C I v DI) if for every

interpretation I, it is true that C I ⊆ DI .

Question: Which of the following concepts is satisfiable?
Which is subsumed by which?

(1) ∃R.(A u B) (2) ∃R.(A t B)
(3) ∀R.(A u B) (4) ∃R.(A u ¬A)

(5) ∃R.A u ∀R.B (6) ∃R.A
(7) ∃R.A u ∀R.¬A (8) ∃R.A u ∀S.¬A

25/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Basic Reasoning Problems

Definition: let C ,D be ALC concepts. We say that
I C is satisfiable if there exists some I such that C I 6= ∅.
I C is subsumed by D (written ∅ |= C I v DI) if for every

interpretation I, it is true that C I ⊆ DI .

Question: Which of the following concepts is satisfiable?
Which is subsumed by which?

(1) ∃R.(A u B) (2) ∃R.(A t B)
(3) ∀R.(A u B) (4) ∃R.(A u ¬A)

(5) ∃R.A u ∀R.B (6) ∃R.A
(7) ∃R.A u ∀R.¬A (8) ∃R.A u ∀S.¬A

26/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

The TBox (Terminology)

Definition
I A general concept inclusion (GCI) is a statement of the form

C v D, where C ,D are (possibly complex) concepts
I A (general) TBox is a finite set of GCIs:
T = {Ci v Di | 1 6 i 6 n}

I I satisfies C v D if C I ⊆ DI (written I |= C v D)
I I is a model of TBox T if I satisfies every Ci v Di
I We use C ≡ D to abbreviate C v D, D v C

Example: { Father ≡ Man u ∃hasChild.Human ,
Human ≡ Mammal u ∀hasParent.Human ,

∃favourite.Brewery v ∃drinks.Beer }

26/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

The TBox (Terminology)

Definition
I A general concept inclusion (GCI) is a statement of the form

C v D, where C ,D are (possibly complex) concepts
I A (general) TBox is a finite set of GCIs:
T = {Ci v Di | 1 6 i 6 n}

I I satisfies C v D if C I ⊆ DI (written I |= C v D)
I I is a model of TBox T if I satisfies every Ci v Di
I We use C ≡ D to abbreviate C v D, D v C

Example: { Father ≡ Man u ∃hasChild.Human ,
Human ≡ Mammal u ∀hasParent.Human ,

∃favourite.Brewery v ∃drinks.Beer }

26/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

The TBox (Terminology)

Definition
I A general concept inclusion (GCI) is a statement of the form

C v D, where C ,D are (possibly complex) concepts
I A (general) TBox is a finite set of GCIs:
T = {Ci v Di | 1 6 i 6 n}

I I satisfies C v D if C I ⊆ DI (written I |= C v D)
I I is a model of TBox T if I satisfies every Ci v Di
I We use C ≡ D to abbreviate C v D, D v C

Example: { Father ≡ Man u ∃hasChild.Human ,
Human ≡ Mammal u ∀hasParent.Human ,

∃favourite.Brewery v ∃drinks.Beer }

27/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

ALC TBox Interpretations

T I can be visualized just as C I , as GT I = 〈V ,E〉, where
I D ∈ L(v) if v ∈ DI

I (x, y) is a R-labeled edge if (x, y) ∈ RI

I one may start with one node for each concept name in T

Example: { Father ≡ Man u ∃hasChild.Human ,
Human ≡ Mammal u ∀hasParent.Human ,

∃favourite.Brewery v ∃drinks.Beer }

Exercise:
1. Draw one model of this TBox
2. Draw one non-model of this TBox

27/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

ALC TBox Interpretations

T I can be visualized just as C I , as GT I = 〈V ,E〉, where
I D ∈ L(v) if v ∈ DI

I (x, y) is a R-labeled edge if (x, y) ∈ RI

I one may start with one node for each concept name in T

Example: { Father ≡ Man u ∃hasChild.Human ,
Human ≡ Mammal u ∀hasParent.Human ,

∃favourite.Brewery v ∃drinks.Beer }

Exercise:
1. Draw one model of this TBox
2. Draw one non-model of this TBox

28/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Reasoning Problems w.r.t. TBox

Definition: let C ,D be concepts, T a TBox. We say that
I C is satisfiable w.r.t. T

if there is a model I of T with C I 6= ∅
I C is subsumed by D w.r.t. T (written T |= C v D)

if, for every model I of T , we have C I ⊆ DI

Example: T = { A v B u ∃R.C,
∃R.> v ¬A }

Questions: Does T have a model?
Are all concept names in T satisfiable?

28/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Reasoning Problems w.r.t. TBox

Definition: let C ,D be concepts, T a TBox. We say that
I C is satisfiable w.r.t. T

if there is a model I of T with C I 6= ∅
I C is subsumed by D w.r.t. T (written T |= C v D)

if, for every model I of T , we have C I ⊆ DI

Example: T = { A v B u ∃R.C,
∃R.> v ¬A }

Questions: Does T have a model?

Are all concept names in T satisfiable?

28/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Reasoning Problems w.r.t. TBox

Definition: let C ,D be concepts, T a TBox. We say that
I C is satisfiable w.r.t. T

if there is a model I of T with C I 6= ∅
I C is subsumed by D w.r.t. T (written T |= C v D)

if, for every model I of T , we have C I ⊆ DI

Example: T = { A v B u ∃R.C,
∃R.> v ¬A }

Questions: Does T have a model?
Are all concept names in T satisfiable?

29/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

TBox + ABox ≡ Ontology

TBox
I captures knowledge on a general, conceptual level
I contains concept def.s + general axioms about concepts

Think databases: TBox defines schema. Where’s data?

ABox
I captures knowledge on an individual level
I is a finite set of

I concept assertions a : C e.g., John : Man,
I role assertions (a, b) : R e.g., (John,Mary) : hasChild

I uses terms (concepts, roles) defined in the TBox

A pair of a TBox T and an ABox A is called ontology

O = (T ,A)

29/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

TBox + ABox ≡ Ontology

TBox
I captures knowledge on a general, conceptual level
I contains concept def.s + general axioms about concepts

Think databases: TBox defines schema. Where’s data?

ABox
I captures knowledge on an individual level
I is a finite set of

I concept assertions a : C e.g., John : Man,
I role assertions (a, b) : R e.g., (John,Mary) : hasChild

I uses terms (concepts, roles) defined in the TBox

A pair of a TBox T and an ABox A is called ontology

O = (T ,A)

29/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

TBox + ABox ≡ Ontology

TBox
I captures knowledge on a general, conceptual level
I contains concept def.s + general axioms about concepts

Think databases: TBox defines schema. Where’s data?

ABox
I captures knowledge on an individual level
I is a finite set of

I concept assertions a : C e.g., John : Man,
I role assertions (a, b) : R e.g., (John,Mary) : hasChild

I uses terms (concepts, roles) defined in the TBox

A pair of a TBox T and an ABox A is called ontology

O = (T ,A)

29/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

TBox + ABox ≡ Ontology

TBox
I captures knowledge on a general, conceptual level
I contains concept def.s + general axioms about concepts

Think databases: TBox defines schema. Where’s data?

ABox
I captures knowledge on an individual level
I is a finite set of

I concept assertions a : C e.g., John : Man,
I role assertions (a, b) : R e.g., (John,Mary) : hasChild

I uses terms (concepts, roles) defined in the TBox

A pair of a TBox T and an ABox A is called ontology

O = (T ,A)

30/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

ALC ABox Interpretations

Semantics: an interpretation I
I maps each individual name e to some eI ∈ ∆I

I satisfies a concept assertion a : C if aI ∈ C I

I satisfies a role assertion (a, b) : R if (aI , bI) ∈ RI

I is a model of an ABox A if I satisfies each assertion in A

a : C is entailed by A if every model of A satisfies a : C

Question: why do I not define entailments of role assertions?

Answer: no non-trivial role assertion entailments in ALC! ¨̂

30/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

ALC ABox Interpretations

Semantics: an interpretation I
I maps each individual name e to some eI ∈ ∆I

I satisfies a concept assertion a : C if aI ∈ C I

I satisfies a role assertion (a, b) : R if (aI , bI) ∈ RI

I is a model of an ABox A if I satisfies each assertion in A

a : C is entailed by A if every model of A satisfies a : C

Question: why do I not define entailments of role assertions?

Answer: no non-trivial role assertion entailments in ALC! ¨̂

30/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

ALC ABox Interpretations

Semantics: an interpretation I
I maps each individual name e to some eI ∈ ∆I

I satisfies a concept assertion a : C if aI ∈ C I

I satisfies a role assertion (a, b) : R if (aI , bI) ∈ RI

I is a model of an ABox A if I satisfies each assertion in A

a : C is entailed by A if every model of A satisfies a : C

Question: why do I not define entailments of role assertions?

Answer: no non-trivial role assertion entailments in ALC! ¨̂

30/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

ALC ABox Interpretations

Semantics: an interpretation I
I maps each individual name e to some eI ∈ ∆I

I satisfies a concept assertion a : C if aI ∈ C I

I satisfies a role assertion (a, b) : R if (aI , bI) ∈ RI

I is a model of an ABox A if I satisfies each assertion in A

a : C is entailed by A if every model of A satisfies a : C

Question: why do I not define entailments of role assertions?

Answer: no non-trivial role assertion entailments in ALC! ¨̂

30/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

ALC ABox Interpretations

Semantics: an interpretation I
I maps each individual name e to some eI ∈ ∆I

I satisfies a concept assertion a : C if aI ∈ C I

I satisfies a role assertion (a, b) : R if (aI , bI) ∈ RI

I is a model of an ABox A if I satisfies each assertion in A

a : C is entailed by A if every model of A satisfies a : C

Question: why do I not define entailments of role assertions?

Answer: no non-trivial role assertion entailments in ALC! ¨̂

30/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

ALC ABox Interpretations

Semantics: an interpretation I
I maps each individual name e to some eI ∈ ∆I

I satisfies a concept assertion a : C if aI ∈ C I

I satisfies a role assertion (a, b) : R if (aI , bI) ∈ RI

I is a model of an ABox A if I satisfies each assertion in A

a : C is entailed by A if every model of A satisfies a : C

Question: why do I not define entailments of role assertions?

Answer: no non-trivial role assertion entailments in ALC! ¨̂

30/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

ALC ABox Interpretations

Semantics: an interpretation I
I maps each individual name e to some eI ∈ ∆I

I satisfies a concept assertion a : C if aI ∈ C I

I satisfies a role assertion (a, b) : R if (aI , bI) ∈ RI

I is a model of an ABox A if I satisfies each assertion in A

a : C is entailed by A if every model of A satisfies a : C

Question: why do I not define entailments of role assertions?

Answer: no non-trivial role assertion entailments in ALC! ¨̂

31/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

ALC ABox Interpretations

AI can be visualized similarly to T I , as GAI = 〈V ,E〉, where
I C ∈ L(v) if v ∈ C I

I (x, y) is a R-labeled edge if (x, y) ∈ RI

I one may start with one node for each individual name in A

Example: A = { a : B u ∃R.C,
b : A u ¬D u ∀S.∀R.F ,

(b, a) : S }

Question: can you see any entailments?

31/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

ALC ABox Interpretations

AI can be visualized similarly to T I , as GAI = 〈V ,E〉, where
I C ∈ L(v) if v ∈ C I

I (x, y) is a R-labeled edge if (x, y) ∈ RI

I one may start with one node for each individual name in A

Example: A = { a : B u ∃R.C,
b : A u ¬D u ∀S.∀R.F ,

(b, a) : S }

Question: can you see any entailments?

32/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Ontology Semantics

Combined interpretation for TBox and ABox

I Int. I is a model of O = (T ,A) if I |= T and I |= A
I O is consistent if it has some model
I O is coherent if all concept names in O are satisfiable w.r.t. O
I C v D is entailed by O if every model of O satisfies C I ⊆ DI

I a : C is entailed by O if every model of O satisfies aI ∈ C I

32/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Ontology Semantics

Combined interpretation for TBox and ABox
I Int. I is a model of O = (T ,A) if I |= T and I |= A

I O is consistent if it has some model
I O is coherent if all concept names in O are satisfiable w.r.t. O
I C v D is entailed by O if every model of O satisfies C I ⊆ DI

I a : C is entailed by O if every model of O satisfies aI ∈ C I

32/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Ontology Semantics

Combined interpretation for TBox and ABox
I Int. I is a model of O = (T ,A) if I |= T and I |= A
I O is consistent if it has some model

I O is coherent if all concept names in O are satisfiable w.r.t. O
I C v D is entailed by O if every model of O satisfies C I ⊆ DI

I a : C is entailed by O if every model of O satisfies aI ∈ C I

32/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Ontology Semantics

Combined interpretation for TBox and ABox
I Int. I is a model of O = (T ,A) if I |= T and I |= A
I O is consistent if it has some model
I O is coherent if all concept names in O are satisfiable w.r.t. O

I C v D is entailed by O if every model of O satisfies C I ⊆ DI

I a : C is entailed by O if every model of O satisfies aI ∈ C I

32/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Ontology Semantics

Combined interpretation for TBox and ABox
I Int. I is a model of O = (T ,A) if I |= T and I |= A
I O is consistent if it has some model
I O is coherent if all concept names in O are satisfiable w.r.t. O
I C v D is entailed by O if every model of O satisfies C I ⊆ DI

I a : C is entailed by O if every model of O satisfies aI ∈ C I

32/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Ontology Semantics

Combined interpretation for TBox and ABox
I Int. I is a model of O = (T ,A) if I |= T and I |= A
I O is consistent if it has some model
I O is coherent if all concept names in O are satisfiable w.r.t. O
I C v D is entailed by O if every model of O satisfies C I ⊆ DI

I a : C is entailed by O if every model of O satisfies aI ∈ C I

32/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Ontology Semantics

Combined interpretation for TBox and ABox
I Int. I is a model of O = (T ,A) if I |= T and I |= A
I O is consistent if it has some model
I O is coherent if all concept names in O are satisfiable w.r.t. O
I C v D is entailed by O if every model of O satisfies C I ⊆ DI

I a : C is entailed by O if every model of O satisfies aI ∈ C I

Example: O = { A v B u ∃R.C , a : B ,
∃R.> v ¬A , (a, b) : R }

Questions: Does O have a model?
Can you see any entailments?
What about O ∪ {b : A}?

32/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Ontology Semantics

Combined interpretation for TBox and ABox
I Int. I is a model of O = (T ,A) if I |= T and I |= A
I O is consistent if it has some model
I O is coherent if all concept names in O are satisfiable w.r.t. O
I C v D is entailed by O if every model of O satisfies C I ⊆ DI

I a : C is entailed by O if every model of O satisfies aI ∈ C I

Lemma: C v D is entailed by (T ,A) iff C v D is entailed by T

32/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Ontology Semantics

Combined interpretation for TBox and ABox
I Int. I is a model of O = (T ,A) if I |= T and I |= A
I O is consistent if it has some model
I O is coherent if all concept names in O are satisfiable w.r.t. O
I C v D is entailed by O if every model of O satisfies C I ⊆ DI

I a : C is entailed by O if every model of O satisfies aI ∈ C I

Lemma: C v D is entailed by (T ,A) iff C v D is entailed by T

This has big practical impact for reasoners
I Schema is often small
I Data is often large

33/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Description Logics and OWL

OWL is W3C-standardized Web Ontology Language
I If you publish your ontology, it should be in OWL
I If you don’t, then it better be in OWL

OWL is basically a DL + a common syntax
I Syntax: OWL/XML, Functional, Manchester, RDF-based
I Semantics: DL model theory

any reasoning in OWL is reduced to reasoning in DL

OWL includes more stuff:
I Datatypes: strings, integers, dates, etc.

a.k.a. concrete domains in some DLs
I Non-logical stuff: annotations

33/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Description Logics and OWL

OWL is W3C-standardized Web Ontology Language
I If you publish your ontology, it should be in OWL
I If you don’t, then it better be in OWL

OWL is basically a DL + a common syntax
I Syntax: OWL/XML, Functional, Manchester, RDF-based
I Semantics: DL model theory

any reasoning in OWL is reduced to reasoning in DL

OWL includes more stuff:
I Datatypes: strings, integers, dates, etc.

a.k.a. concrete domains in some DLs
I Non-logical stuff: annotations

33/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Description Logics and OWL

OWL is W3C-standardized Web Ontology Language
I If you publish your ontology, it should be in OWL
I If you don’t, then it better be in OWL

OWL is basically a DL + a common syntax
I Syntax: OWL/XML, Functional, Manchester, RDF-based
I Semantics: DL model theory

any reasoning in OWL is reduced to reasoning in DL

OWL includes more stuff:
I Datatypes: strings, integers, dates, etc.

a.k.a. concrete domains in some DLs
I Non-logical stuff: annotations

34/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

OWL Profiles

OWL is a family of languages designed for specific scenarios

Profile DL Scenario
OWL EL EL++ Maintaining large but simple terminologies

(for HCLS, biology, etc., Lecture 4)
OWL QL DL-Lite Scalable ontology-based data access

(Lecture 5)
OWL RL DLP Rule-based applications
OWL DL SROIQ Encapsulates all above, remains decidable.

Reasoning is tableau-based (Lecture 2)

Each profile trades some expressivity for computational guarantees:
I OWL EL: PTime classification
I OWL QL: scalable query answering
I OWL RL: completeness w.r.t. rule systems

34/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

OWL Profiles

OWL is a family of languages designed for specific scenarios

Profile DL Scenario
OWL EL EL++ Maintaining large but simple terminologies

(for HCLS, biology, etc., Lecture 4)

OWL QL DL-Lite Scalable ontology-based data access
(Lecture 5)

OWL RL DLP Rule-based applications
OWL DL SROIQ Encapsulates all above, remains decidable.

Reasoning is tableau-based (Lecture 2)

Each profile trades some expressivity for computational guarantees:
I OWL EL: PTime classification
I OWL QL: scalable query answering
I OWL RL: completeness w.r.t. rule systems

34/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

OWL Profiles

OWL is a family of languages designed for specific scenarios

Profile DL Scenario
OWL EL EL++ Maintaining large but simple terminologies

(for HCLS, biology, etc., Lecture 4)
OWL QL DL-Lite Scalable ontology-based data access

(Lecture 5)
OWL RL DLP Rule-based applications

OWL DL SROIQ Encapsulates all above, remains decidable.
Reasoning is tableau-based (Lecture 2)

Each profile trades some expressivity for computational guarantees:
I OWL EL: PTime classification
I OWL QL: scalable query answering
I OWL RL: completeness w.r.t. rule systems

34/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

OWL Profiles

OWL is a family of languages designed for specific scenarios

Profile DL Scenario
OWL EL EL++ Maintaining large but simple terminologies

(for HCLS, biology, etc., Lecture 4)
OWL QL DL-Lite Scalable ontology-based data access

(Lecture 5)
OWL RL DLP Rule-based applications
OWL DL SROIQ Encapsulates all above, remains decidable.

Reasoning is tableau-based (Lecture 2)

Each profile trades some expressivity for computational guarantees:
I OWL EL: PTime classification
I OWL QL: scalable query answering
I OWL RL: completeness w.r.t. rule systems

34/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

OWL Profiles

OWL is a family of languages designed for specific scenarios

Profile DL Scenario
OWL EL EL++ Maintaining large but simple terminologies

(for HCLS, biology, etc., Lecture 4)
OWL QL DL-Lite Scalable ontology-based data access

(Lecture 5)
OWL RL DLP Rule-based applications
OWL DL SROIQ Encapsulates all above, remains decidable.

Reasoning is tableau-based (Lecture 2)

Each profile trades some expressivity for computational guarantees:
I OWL EL: PTime classification
I OWL QL: scalable query answering
I OWL RL: completeness w.r.t. rule systems

35/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Reducibility of DL Reasoning Problems

Given an ontology O = (T ,A):

I is O consistent? O |= > v ⊥?

I is O coherent? O |= A v ⊥?
(for some concept name A)

I classification O |= A v B?
(for all concept names A,B)

I realization O |= b : B?
(for all concept names A, individual names b)

Question: do we need 4 different algorithms for these?

35/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Reducibility of DL Reasoning Problems

Given an ontology O = (T ,A):

I is O consistent? O |= > v ⊥?
I is O coherent? O |= A v ⊥?

(for some concept name A)

I classification O |= A v B?
(for all concept names A,B)

I realization O |= b : B?
(for all concept names A, individual names b)

Question: do we need 4 different algorithms for these?

35/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Reducibility of DL Reasoning Problems

Given an ontology O = (T ,A):

I is O consistent? O |= > v ⊥?
I is O coherent? O |= A v ⊥?

(for some concept name A)
I classification O |= A v B?

(for all concept names A,B)

I realization O |= b : B?
(for all concept names A, individual names b)

Question: do we need 4 different algorithms for these?

35/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Reducibility of DL Reasoning Problems

Given an ontology O = (T ,A):

I is O consistent? O |= > v ⊥?
I is O coherent? O |= A v ⊥?

(for some concept name A)
I classification O |= A v B?

(for all concept names A,B)
I realization O |= b : B?

(for all concept names A, individual names b)

Question: do we need 4 different algorithms for these?

35/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Reducibility of DL Reasoning Problems

Given an ontology O = (T ,A):

I is O consistent? O |= > v ⊥?
I is O coherent? O |= A v ⊥?

(for some concept name A)
I classification O |= A v B?

(for all concept names A,B)
I realization O |= b : B?

(for all concept names A, individual names b)

Question: do we need 4 different algorithms for these?

36/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Consistency Suffices

Theorem: Let O be an ontology and a a fresh individual. Then:

1. C is satisfiable w.r.t. O iff O ∪ {a : C} is consistent

2. O is coherent iff O ∪ {a : A} is consistent
(for each concept name A)

3. O |= C v D iff O ∪ {a : (C u ¬D)} is not consistent
4. O |= b : C iff O ∪ {b : ¬C} is not consistent

Answer: a decision procedure to solve consistency decides all
standard DL reasoning problems

This does not mean that the naive reduction is practical!

36/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Consistency Suffices

Theorem: Let O be an ontology and a a fresh individual. Then:

1. C is satisfiable w.r.t. O iff O ∪ {a : C} is consistent
2. O is coherent iff O ∪ {a : A} is consistent

(for each concept name A)

3. O |= C v D iff O ∪ {a : (C u ¬D)} is not consistent
4. O |= b : C iff O ∪ {b : ¬C} is not consistent

Answer: a decision procedure to solve consistency decides all
standard DL reasoning problems

This does not mean that the naive reduction is practical!

36/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Consistency Suffices

Theorem: Let O be an ontology and a a fresh individual. Then:

1. C is satisfiable w.r.t. O iff O ∪ {a : C} is consistent
2. O is coherent iff O ∪ {a : A} is consistent

(for each concept name A)
3. O |= C v D iff O ∪ {a : (C u ¬D)} is not consistent

4. O |= b : C iff O ∪ {b : ¬C} is not consistent

Answer: a decision procedure to solve consistency decides all
standard DL reasoning problems

This does not mean that the naive reduction is practical!

36/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Consistency Suffices

Theorem: Let O be an ontology and a a fresh individual. Then:

1. C is satisfiable w.r.t. O iff O ∪ {a : C} is consistent
2. O is coherent iff O ∪ {a : A} is consistent

(for each concept name A)
3. O |= C v D iff O ∪ {a : (C u ¬D)} is not consistent
4. O |= b : C iff O ∪ {b : ¬C} is not consistent

Answer: a decision procedure to solve consistency decides all
standard DL reasoning problems

This does not mean that the naive reduction is practical!

36/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Consistency Suffices

Theorem: Let O be an ontology and a a fresh individual. Then:

1. C is satisfiable w.r.t. O iff O ∪ {a : C} is consistent
2. O is coherent iff O ∪ {a : A} is consistent

(for each concept name A)
3. O |= C v D iff O ∪ {a : (C u ¬D)} is not consistent
4. O |= b : C iff O ∪ {b : ¬C} is not consistent

Answer: a decision procedure to solve consistency decides all
standard DL reasoning problems

This does not mean that the naive reduction is practical!

37/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Origins of Description Logics

Basics: Syntax, Semantics, Reasoning Problems

Anatomy of a Reasoner

38/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

What is Reasoner

Reasoner is a system that solves DL reasoning problems

I Input: ontology (+ an axiom, e.g., C v D)
I Output: yes/no (consistency, entailment), concept hierarchy

(classification)
yes/no for consistency, entailment, satisfiability
concept hierarchy for classification
individual to concepts mapping for realization

Reasoner is more than just implementations of algorithms
I It has to interact with the world (suitable APIs, load data,. . .)
I It has to convert the input into a suitable form
I It has to invoke the right algorithm at the right time
I It has to manage optimizations

38/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

What is Reasoner

Reasoner is a system that solves DL reasoning problems
I Input: ontology (+ an axiom, e.g., C v D)
I Output: yes/no (consistency, entailment), concept hierarchy

(classification)
yes/no for consistency, entailment, satisfiability
concept hierarchy for classification
individual to concepts mapping for realization

Reasoner is more than just implementations of algorithms
I It has to interact with the world (suitable APIs, load data,. . .)
I It has to convert the input into a suitable form
I It has to invoke the right algorithm at the right time
I It has to manage optimizations

38/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

What is Reasoner

Reasoner is a system that solves DL reasoning problems
I Input: ontology (+ an axiom, e.g., C v D)
I Output: yes/no (consistency, entailment), concept hierarchy

(classification)
yes/no for consistency, entailment, satisfiability
concept hierarchy for classification
individual to concepts mapping for realization

Reasoner is more than just implementations of algorithms
I It has to interact with the world (suitable APIs, load data,. . .)
I It has to convert the input into a suitable form
I It has to invoke the right algorithm at the right time
I It has to manage optimizations

39/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Reasoner: the Main Layers

Interface Layer

Parsing API bindings Protégé plugin

Internal
Data Model

Intermediate Layer

(Terms, u,t, ∃, ∀)
Pre-processing, indexing, caching, taxonomy

Incomplete reasoning

Reasoning Layer
Classification
Realization

Core reasoning
procedure

Query answering

40/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Interface Layer

Reasoner must be able to interact with world
I Load ontologies and export the results
I Interact with software via standard APIs (OWL API)
I Be useable in ontology editors (Protégé)

Commonly provided functionality:
I Implementation of standard interfaces

(OWLReasoner in OWL API)
I Parsers
I Serializers

APIs usually provide parsers, serializers, and the data model. . .
. . . but reasoners often support their own for efficiency

40/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Interface Layer

Reasoner must be able to interact with world
I Load ontologies and export the results
I Interact with software via standard APIs (OWL API)
I Be useable in ontology editors (Protégé)

Commonly provided functionality:
I Implementation of standard interfaces

(OWLReasoner in OWL API)
I Parsers
I Serializers

APIs usually provide parsers, serializers, and the data model. . .
. . . but reasoners often support their own for efficiency

40/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Interface Layer

Reasoner must be able to interact with world
I Load ontologies and export the results
I Interact with software via standard APIs (OWL API)
I Be useable in ontology editors (Protégé)

Commonly provided functionality:
I Implementation of standard interfaces

(OWLReasoner in OWL API)
I Parsers
I Serializers

APIs usually provide parsers, serializers, and the data model. . .
. . . but reasoners often support their own for efficiency

41/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Internal Data Model

Internal Data Model is representation of loaded knowledge
I Optimized for reasoning tasks
I Covers supported features of the language

Example: Object-Oriented API for ALC

IDM does not have to mirror the language model
I Can opt for the minimal sufficient set of constructors
I ELK does not store axioms, only rules

41/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Internal Data Model

Internal Data Model is representation of loaded knowledge
I Optimized for reasoning tasks
I Covers supported features of the language

Example: Object-Oriented API for ALC

IDM does not have to mirror the language model
I Can opt for the minimal sufficient set of constructors
I ELK does not store axioms, only rules

41/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Internal Data Model

Internal Data Model is representation of loaded knowledge
I Optimized for reasoning tasks
I Covers supported features of the language

Example: Object-Oriented API for ALC

IDM does not have to mirror the language model
I Can opt for the minimal sufficient set of constructors
I ELK does not store axioms, only rules

42/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Intermediate Layer: Pre-processing and Indexing

Pre-processing: massaging data before sending to reasoning layer
Purely syntactic axioms/concept rewriting:
I Normalization: ¬(C u D) ¬C t ¬D
I Simplification: ∃R.A u ∃R.(A u B) ∃R.(A u B)
I Absorption: A u C v D A v ¬C t D

Indexing: extra data structure for faster look-ups
I A 7→ set of told subsumers
I A 7→ set of told disjoint concepts
I . . .

Practical hint: both can be done in parallel with parsing/loading

42/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Intermediate Layer: Pre-processing and Indexing

Pre-processing: massaging data before sending to reasoning layer
Purely syntactic axioms/concept rewriting:
I Normalization: ¬(C u D) ¬C t ¬D
I Simplification: ∃R.A u ∃R.(A u B) ∃R.(A u B)
I Absorption: A u C v D A v ¬C t D

Indexing: extra data structure for faster look-ups
I A 7→ set of told subsumers
I A 7→ set of told disjoint concepts
I . . .

Practical hint: both can be done in parallel with parsing/loading

42/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Intermediate Layer: Pre-processing and Indexing

Pre-processing: massaging data before sending to reasoning layer
Purely syntactic axioms/concept rewriting:
I Normalization: ¬(C u D) ¬C t ¬D
I Simplification: ∃R.A u ∃R.(A u B) ∃R.(A u B)
I Absorption: A u C v D A v ¬C t D

Indexing: extra data structure for faster look-ups
I A 7→ set of told subsumers
I A 7→ set of told disjoint concepts
I . . .

Practical hint: both can be done in parallel with parsing/loading

43/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Intermediate Layer: Reductions

Reasoner reduces the input problem to the one for which
the core procedure is optimized

I Tableau: O
?
|= α is O ∪ {¬α} consistent?

I Consequence-based algorithms: O
?
|= ¬C t D O

?
|= C v D

(CB algorithms compute subsumers in a goal-directed way)

Reasoner can also reduce the problem to one previously solved

I O
?
|= ¬C t D v ⊥ O

?
|= C v D

if subsumers for C have been computed

43/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Intermediate Layer: Reductions

Reasoner reduces the input problem to the one for which
the core procedure is optimized

I Tableau: O
?
|= α is O ∪ {¬α} consistent?

I Consequence-based algorithms: O
?
|= ¬C t D O

?
|= C v D

(CB algorithms compute subsumers in a goal-directed way)

Reasoner can also reduce the problem to one previously solved

I O
?
|= ¬C t D v ⊥ O

?
|= C v D

if subsumers for C have been computed

44/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Intermediate Layer: Caching

I Single shot reasoning: just answer one query, e.g.,

O
?
|= C v D, and discard everything

I Multiple reasoning: save and re-use intermediate results

Reasoner infers a lot more than it shows to the user

Example: >24M inferences when classifying SNOMED CT
(“only” 300K concepts)

Other stuff, e.g., complex subsumers, can be re-used later.
This layer decides:
I what to save
I what to discard (w.r.t. which policy)
I how to look things up

44/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Intermediate Layer: Caching

I Single shot reasoning: just answer one query, e.g.,

O
?
|= C v D, and discard everything

I Multiple reasoning: save and re-use intermediate results

Reasoner infers a lot more than it shows to the user

Example: >24M inferences when classifying SNOMED CT
(“only” 300K concepts)

Other stuff, e.g., complex subsumers, can be re-used later.
This layer decides:
I what to save
I what to discard (w.r.t. which policy)
I how to look things up

44/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Intermediate Layer: Caching

I Single shot reasoning: just answer one query, e.g.,

O
?
|= C v D, and discard everything

I Multiple reasoning: save and re-use intermediate results

Reasoner infers a lot more than it shows to the user

Example: >24M inferences when classifying SNOMED CT
(“only” 300K concepts)

Other stuff, e.g., complex subsumers, can be re-used later.
This layer decides:
I what to save
I what to discard (w.r.t. which policy)
I how to look things up

45/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Caching

Example: the reasoner inferred A v C u D
while checking satisfiability of A

Next task: compute subsumers of A. It can immediately:
I ignore concepts disjoint with C or D, if known
I take subsumers of C or D, if known
I cache all named subsumers of C u D, if it makes sense

Caches may be cleared when the ontology is changed
. . . or not! Incremental reasoning algorithms exist
Deletions are particularly tricky. Why?

45/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Caching

Example: the reasoner inferred A v C u D
while checking satisfiability of A

Next task: compute subsumers of A. It can immediately:
I ignore concepts disjoint with C or D, if known
I take subsumers of C or D, if known
I cache all named subsumers of C u D, if it makes sense

Caches may be cleared when the ontology is changed
. . . or not! Incremental reasoning algorithms exist
Deletions are particularly tricky. Why?

45/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Caching

Example: the reasoner inferred A v C u D
while checking satisfiability of A

Next task: compute subsumers of A. It can immediately:
I ignore concepts disjoint with C or D, if known
I take subsumers of C or D, if known
I cache all named subsumers of C u D, if it makes sense

Caches may be cleared when the ontology is changed
. . . or not! Incremental reasoning algorithms exist
Deletions are particularly tricky. Why?

46/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Intermediate Layer: Incomplete Reasoning

Main reasoning algorithms are nearly always expensive

Often there are cheaper ways to get the answer
I looking up in the cache
I by probing instead of searching systematically

Examples:
I EL: if ⊥ does not occur in O, it cannot be inconsistent
I Detecting obvious conflicts, e.g., ∃R.¬C and ∀R.C

Approximations can help too
If O′ ⊆ O and O′ |= α, then O |= α (monotonicity)
O′ can fit into a simpler language ⇒ easier to reason with

46/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Intermediate Layer: Incomplete Reasoning

Main reasoning algorithms are nearly always expensive

Often there are cheaper ways to get the answer
I looking up in the cache
I by probing instead of searching systematically

Examples:
I EL: if ⊥ does not occur in O, it cannot be inconsistent
I Detecting obvious conflicts, e.g., ∃R.¬C and ∀R.C

Approximations can help too
If O′ ⊆ O and O′ |= α, then O |= α (monotonicity)
O′ can fit into a simpler language ⇒ easier to reason with

46/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Intermediate Layer: Incomplete Reasoning

Main reasoning algorithms are nearly always expensive

Often there are cheaper ways to get the answer
I looking up in the cache
I by probing instead of searching systematically

Examples:
I EL: if ⊥ does not occur in O, it cannot be inconsistent
I Detecting obvious conflicts, e.g., ∃R.¬C and ∀R.C

Approximations can help too
If O′ ⊆ O and O′ |= α, then O |= α (monotonicity)
O′ can fit into a simpler language ⇒ easier to reason with

47/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Reasoning Layer: Core Reasoning Procedure

Implementation of the main reasoning algorithm
I Expressive DLs: usually tableau algorithm for consistency (L2)
I Lightweight DLs: rule-based saturation algorithm (L4)

Should be compact and extensible to:
I New language features
I New optimizations

Should be reusable for higher level tasks:
I Explanations and debugging

(find all reasons why O |= C v ⊥ happens)
I Query answering
I Incremental reasoning

47/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Reasoning Layer: Core Reasoning Procedure

Implementation of the main reasoning algorithm
I Expressive DLs: usually tableau algorithm for consistency (L2)
I Lightweight DLs: rule-based saturation algorithm (L4)

Should be compact and extensible to:
I New language features
I New optimizations

Should be reusable for higher level tasks:
I Explanations and debugging

(find all reasons why O |= C v ⊥ happens)
I Query answering
I Incremental reasoning

47/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Reasoning Layer: Core Reasoning Procedure

Implementation of the main reasoning algorithm
I Expressive DLs: usually tableau algorithm for consistency (L2)
I Lightweight DLs: rule-based saturation algorithm (L4)

Should be compact and extensible to:
I New language features
I New optimizations

Should be reusable for higher level tasks:
I Explanations and debugging

(find all reasons why O |= C v ⊥ happens)
I Query answering
I Incremental reasoning

48/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Reasoning Layer: Classification and Realization

Classification: compute O |= A v B for all concept names in O
Realization: compute O |= a : A for all individuals in O

Can be reduced to polynomial number of consistency problems
I Very inefficient, many more non-subsumptions than

subsumptions (L3)
I Can be computed in one pass for deterministic DLs (L4)

Once the ontology is classified, many tasks are easier

48/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Reasoning Layer: Classification and Realization

Classification: compute O |= A v B for all concept names in O
Realization: compute O |= a : A for all individuals in O

Can be reduced to polynomial number of consistency problems
I Very inefficient, many more non-subsumptions than

subsumptions (L3)
I Can be computed in one pass for deterministic DLs (L4)

Once the ontology is classified, many tasks are easier

48/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Reasoning Layer: Classification and Realization

Classification: compute O |= A v B for all concept names in O
Realization: compute O |= a : A for all individuals in O

Can be reduced to polynomial number of consistency problems
I Very inefficient, many more non-subsumptions than

subsumptions (L3)
I Can be computed in one pass for deterministic DLs (L4)

Once the ontology is classified, many tasks are easier

49/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Taxonomy Construction

Users want to see only direct subsumptions
I A is directly subsumed by B if O |= A v B and
I There is no C s.t. O |= A v C and O |= C v B

Class taxonomy is transitively reduced graph of subsumptions

Non-trivial, the complexity is O(nk) where k > 2

Transitive reduction algorithms can
I maintain the reduction as the ontologies is classified
I compute the reduction post factum

49/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Taxonomy Construction

Users want to see only direct subsumptions
I A is directly subsumed by B if O |= A v B and
I There is no C s.t. O |= A v C and O |= C v B

Class taxonomy is transitively reduced graph of subsumptions

Non-trivial, the complexity is O(nk) where k > 2

Transitive reduction algorithms can
I maintain the reduction as the ontologies is classified
I compute the reduction post factum

49/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Taxonomy Construction

Users want to see only direct subsumptions
I A is directly subsumed by B if O |= A v B and
I There is no C s.t. O |= A v C and O |= C v B

Class taxonomy is transitively reduced graph of subsumptions

Non-trivial, the complexity is O(nk) where k > 2

Transitive reduction algorithms can
I maintain the reduction as the ontologies is classified
I compute the reduction post factum

50/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Example: Pellet

Pellet – one of the earliest complete reasoners for expressive DLs

50/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Example: Pellet

Pellet – one of the earliest complete reasoners for expressive DLs

51/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Example: ELK

ELK – state-of-the-art consequence-based reasoner for EL-family

Distinctive features:
I Pipelining: loading | indexing, classificiation | taxonomy
I Concurrency: all concepts are classified in parallel

51/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Example: ELK

ELK – state-of-the-art consequence-based reasoner for EL-family

Distinctive features:
I Pipelining: loading | indexing, classificiation | taxonomy
I Concurrency: all concepts are classified in parallel

52/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Stuff Seen Today

Brief history of Description Logics
I Concept languages originating from semantic networks
I Have formal first-order semantics

ALC – a basic propositionally complete DL
I Syntax and semantics (concept constructors, model theory)
I TBox and ABox a.k.a. schema and data
I Reasoning problems

I Concept satisfiability, entailment, ontology consistency
I Inter-reducibility

What’s inside a modern DL reasoner

Tomorrow: how reasoning is actually done (tableau algorithms)

52/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Stuff Seen Today

Brief history of Description Logics
I Concept languages originating from semantic networks
I Have formal first-order semantics

ALC – a basic propositionally complete DL
I Syntax and semantics (concept constructors, model theory)
I TBox and ABox a.k.a. schema and data
I Reasoning problems

I Concept satisfiability, entailment, ontology consistency
I Inter-reducibility

What’s inside a modern DL reasoner

Tomorrow: how reasoning is actually done (tableau algorithms)

52/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Stuff Seen Today

Brief history of Description Logics
I Concept languages originating from semantic networks
I Have formal first-order semantics

ALC – a basic propositionally complete DL
I Syntax and semantics (concept constructors, model theory)
I TBox and ABox a.k.a. schema and data
I Reasoning problems

I Concept satisfiability, entailment, ontology consistency
I Inter-reducibility

What’s inside a modern DL reasoner

Tomorrow: how reasoning is actually done (tableau algorithms)

52/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Stuff Seen Today

Brief history of Description Logics
I Concept languages originating from semantic networks
I Have formal first-order semantics

ALC – a basic propositionally complete DL
I Syntax and semantics (concept constructors, model theory)
I TBox and ABox a.k.a. schema and data
I Reasoning problems

I Concept satisfiability, entailment, ontology consistency
I Inter-reducibility

What’s inside a modern DL reasoner

Tomorrow: how reasoning is actually done (tableau algorithms)

52/52 Pavel Klinov Bijan Parsia | Practical Reasoning in DL (Introduction) | August 5, 2013

Stuff Seen Today

Brief history of Description Logics
I Concept languages originating from semantic networks
I Have formal first-order semantics

ALC – a basic propositionally complete DL
I Syntax and semantics (concept constructors, model theory)
I TBox and ABox a.k.a. schema and data
I Reasoning problems

I Concept satisfiability, entailment, ontology consistency
I Inter-reducibility

What’s inside a modern DL reasoner

Tomorrow: how reasoning is actually done (tableau algorithms)

	Origins of Description Logics
	Basics: Syntax, Semantics, Reasoning Problems
	Anatomy of a Reasoner

