Classification & Experimentation

Bijan Parsia
<bijan.parsia@manchester.ac.uk>
Today

• Some brief hints on engineering
• Thinking about the problem
• Classification without heat death
• Experimentation on reasoning
A Tale of Three Rules

Wherein we see that a little thought goes a long way
Consider the □-rule

□-rule: if \(C_1 \sqcap C_2 \in L(a) \) for some \(a \) and \(\{ C_1, C_2 \} \not\subseteq L(a) \)

then add \(\{ C_1, C_2 \} \) to \(L(a) \)

- How do you implement this?
- When do you fire this?
Consider the clash rule

\[\{A, \neg A\} \not\subseteq L(a), \bot \not\in L(a) \text{ for all } a, A \]

- How do you test for clashes?
- How often do you test for clashes?
Consider the \square-rule

\square-rule: if $C_1 \sqcup C_2 \in L(a)$ for some a and $\{C_1, C_2\} \cap L(a) = \emptyset$
then replace G with G_1 and G_2 s.t.
$C_1 \in L(a)$ in G_1 and $C_2 \in L_2(a)$ in G_2

- How do you create G_1 and G_2?
 - Deep copy?
There’s other stuff in your code!

```java
debugString = currentClass.toString();
if (debug)
    System.out.println(debugString);

debugString = currentClass.toString();
if (debug)
    System.out.println(debugString);
```

- What’s wrong with this?
- What should it look like?
- This appeared in real code
 - by one of the top 4 programmers I know
Classify Classification

Wherein we despair
Classification: Formulations

• Most standard formulation:
 – For all class names A, B in O, determine whether
 • $O \models A \sqsubseteq B$ (or not)

• Slight generalisation
 – For all class names (plus \bot and \top), A, B in O, determine whether
 • $O \models A \sqsubseteq B$
 – This neatly includes
 • the consistency check (i.e., whether $O \models \top \sqsubseteq \bot$)
 • concept satisfiabilities (i.e., whether $O \models A \sqsubseteq \bot$)
 • concept trivialities (i.e., whether $O \models \top \sqsubseteq A$)

• Full generalisation
 – For all predicate names (user defined or built in) A, B in O, determine whether
 • $O \models A \sqsubseteq B$
 – This includes roles/properties/binary predicates!
 – Few systems do this! (Only HermiT?)
Classification: For implementation (1)

• Close Functional Formulation (CFF)
 – Input: An ontology O (i.e., a set of axioms)
 – Output: A new ontology O' st
 • $O' = \{A \sqsubseteq B \mid A, B \in (\hat{O} \cup \{\bot, T\}) \land O \models A \sqsubseteq B\}$ or
 – Transitive closure
 • $O' = \{A \sqsubseteq B \mid A, B \in (\hat{O} \cup \{\bot, T\}) \land O \models A \sqsubseteq B$
 & $\nexists C \text{ s.t. } \{A \sqsubseteq C, C \sqsubseteq B\} \subseteq O'$
 – Transitive reduct...almost
 • (Pick your favorite data structure to represent this)

• Problems?
CFF Problems: \(\bot \) and \(\top \)

- Many subsumptions involving \(\bot \) and \(\top \) are trivial
 - \(A \subseteq \top \)
 - \(\bot \subseteq A \)
 - Other key trivial subsumption:
 - \(A \subseteq A \) (and circular!)

- Non trivial examples “blow up” the transitive closure
 - If \(A \subseteq \top \), then \(A \) is subsumed by every other term
CFF Problems: Equivalences

- In CFF, if $A \equiv B$, then
 - it shows up as $A \sqsubseteq B$ and $B \sqsubseteq A$
- But what happens with longer chains?
- Problems even
 - if we allow equivalences

\[
\begin{align*}
A \equiv B & \quad A \equiv B & \quad A \equiv B \\
B \equiv C & \quad B \equiv C & \quad B \equiv C \\
A \equiv C & \quad A \equiv C & \quad A \equiv D
\end{align*}
\]
Transitive Reduct Saves the Day?

• Modified Functional Formulation (CFF)
 – Input: An ontology O (i.e., a set of axioms)
 – Output: A new ontology O' st
 • $O' = \{A \sqsubseteq B \mid A, B \in (\bar{O} \cup \{\bot, \top\}) \& O \vdash A \sqsubseteq B^*$
 & $\not\exists C$ s.t. $\{A \sqsubseteq C, C \sqsubseteq B\} \subseteq O'$
 & $O \nvdash A \equiv B\} \cup$

 $\{\equiv(A_1...A_n)** \mid A_1...A_n \in (\bar{O} \cup \{\bot, \top\}) \&$

 \[1\leq i,j\leq n^*, \ O \vdash A_i \equiv A_j\}$

 *And a few more side conditions

 **Where $A_1...A_n$ is “appropriately” sorted

 – (Pick your favorite data structure to represent this)

• Great for some applications
 – But the downstream application should know your particulars!

• Bad for some applications
Downstream apps...oy!

Declaration(Class(:A))
EquivalentClasses(:A owl:Nothing)
Declaration(Class(:B))
EquivalentClasses(owl:Nothing :A)

Declaration(Class(:A))
EquivalentClasses(:A owl:Nothing)
SubClassOf(:A owl:Thing)
Declaration(Class(:B))
SubClassOf(:B owl:Thing)
EquivalentClasses(owl:Nothing :A)
Counting Entailments

- **Goal:**
 - Given O_1 and O_2, determine
 - whether O_1 has “more entailments” than O_2
 - restrict our attention to atomic subsumptions

- Easy if one entails the other

- Transitive reduct fails to be monotonic

\[
\begin{align*}
 X_1 &\sqsubseteq A \\
 X_2 &\sqsubseteq A \\
 X_3 &\sqsubseteq A \\
 X_1 &\sqsubseteq B \\
 X_2 &\sqsubseteq B \\
 X_3 &\sqsubseteq B \\
 A &\sqsubseteq B
\end{align*}
\]

\[
\begin{array}{c}
 \overset{B}{A} \\
 \overset{X_1}{X_2} \\
 \overset{X_3}{4}
\end{array}
\]
Counting Entailments

- Goal:
 - Given O_1 and O_2, determine
 - whether O_1 has “more entailments” than O_2
 - restrict our attention to atomic subsumptions

- Easy if one entails the other
- Transitive reduct fails to be monotonic
Extended notions

- What about disjointnesses?
 - Negative literals as well!
 - \(L = \emptyset \cup \{\neg A \mid A \in \emptyset\} \)
 - \(\{A \sqsubseteq B \mid A, B \in L \land \emptyset \vdash A \sqsubseteq B\} \)
 - Note redundancy and choice!
 - \(A \sqsubseteq B \iff \neg B \sqsubseteq \neg A \)
 - \(A \sqsubseteq \neg B \iff B \sqsubseteq \neg A \)

- Beyond literals!
 - We could classify sub-expressions (Sub)
 - \(A \in \text{Sub} \)
 - \(C \sqsubseteq D \in \text{Sub} \rightarrow C,D \in \text{Sub} \)
 - \(\neg C \in \text{Sub} \rightarrow C \in \text{Sub} \)
 - \(C \sqcup D \in \text{Sub} \rightarrow C,D \in \text{Sub} \)
 - \(C \sqcap D \in \text{Sub} \rightarrow C,D \in \text{Sub} \)
 - \(\exists P.C \in \text{Sub} \rightarrow C \in \text{Sub} \)
 - \(\forall P.C \in \text{Sub} \rightarrow C \in \text{Sub} \)
 - \(\{A \sqsubseteq B \mid A, B \in \text{Sub} \land \emptyset \vdash A \sqsubseteq B\} \)
Classify before you die

Wherein we avoid work
3 RoughClassification Approaches

- Reduction to SAT
 - All tableaux & hypertableaux systems
 - Dominant, covers arbitrary languages
- Consequence based
 - Currently for fragments, esp. EL and horn-SHIQ
- Meta/Modular
Subsumption tests

• There can always be n^2 subsumption tests
 – Four possible states
 1. $O \models A \subseteq B$
 – In all models of O, $A^I \subseteq B^I$
 2. $O \not\models A \subseteq B$
 – In at least one model, $A^I \not\subseteq B^I$
 3. $O \models A \subseteq \lnot B$
 – In all models of O, $A^I \cap B^I = \emptyset$
 4. $O \models \lnot(A \subseteq B)$
 – In every model, $A^I \not\subset B^I$

• We look for 1 & 2
 – 3 and 4 entail 2
 – Handy fact!
Key issues

• There can always be n^2 subsumptions
 – Consider $O \models T \sqsubseteq \bot$!
 • But this case doesn’t require n^2 tests

• 1 subsumption test
 – Can dominate
 – Easiest to see in SAT based procedures
 • If SAT is NP-hard (EXPTIME, NEXPTIME, 2NEXPTIME), then one such test can kill you
 • $A \sqcap \neg B$
 – But even with a PTIME SAT test...
 • The quadratic factor can kill you
The quadratic factor

- Consider the SNOMED CT ontology
 - contains about 300,000 terms.

- Presume the naive approach
 - Perform $\approx n^2$ subsumption tests

- Let your test we wicked fast
 - 1 millisecond per test

- Classification time
 $300,000 \times 300,000$ milliseconds
 $= 25,000$ hours
 ≈ 2.8 years

Any practically scalable classification implementation must prune the subsumption test space
SAT based procedures

Wherein we get satisfaction
SAT based procedures

- **Refutation procedure**
 - Via reduction to an concept
 - \(C \sqcap \neg D \)

- **Individual SAT tests**
 - Positive: Concept is unsatisfiable; subsumption holds
 - Negative: Concept is satisfiable; nonsubsumption

- **Basic strategy**
 1. Avoid tests
 2. Substitute cheap (generally sound, but incomplete) tests
 - SAT procedure independent (some are part of 1)
 - Exploit extra info from the SAT test
 3. Worst case, do a “full” SAT test
 - And complain about it!
Enhanced Traversal

• Data structure:
 – A DAG where
 • Nodes are (sets of) concept names
 • Edges indicate subsumption relations
 • Initialize with $\bot \rightarrow \top$

• General idea
 – DAG represents the transitive reduct of atomic subsumption
 – Add subsumptions as you find them
 – Don’t look for subsumptions that are
 • implicit in the graph
 • impossible in the graph
 – Defer looking for subsumptions
 • where they are unlikely
ET: Top search (Top down)

- Given a fresh concept, \(C \), to classify
- Starting from \(\top \) check whether
 \[-C \subseteq \top \]
ET: Top search (Top down)

- Given a fresh concept, C, to classify
- Starting from \top check whether
 - $C \sqsubseteq \top$
 - Easy yes!
 - Only candidate left is \bot
 - SAT test!??!?!
 - (In some cases)
 - Answer (let’s say): no
 - No other candidates for subsumers
 - Done Top search for C
ET: Bottom search (Bottom Up)

- Given our placed concept C
- Starting from \perp check whether $\neg \perp \sqsubseteq C$
ET: Bottom search (Bottom Up)

• Given our placed concept C
• Starting from \(\bot \) check whether

 \(-\ \bot \subseteq C \)

 • Easy yes!

 \(-\text{What’s left?} \)

 • Only candidate is \(\top \)

 • \(\top \) subsumes all subsumees of C

 – Potential SAT test!!!

 – In this case, \(\top \not\subseteq C \)

 – So we’re done!
Information reuse

- **Top Down**
 - If we know
 - $E \subseteq D$
 - $C \not\subseteq D$
 - Then we know
 - $C \not\subseteq E$
 - *No need to perform a test!*

- **Bottom up**
 - If we know
 - $E \subseteq D$
 - $E \not\subseteq C$
 - Then we know
 - $D \not\subseteq C$
 - *No need to perform a test!*
Savings

• Possible tests (assuming consistency)
 – Total
 • \(n = 5 \)
 • \(n^2 = 25 \)

• Count (order C, D, E)
Savings

• Possible tests (assuming consistency)
 – Total
 • $n = 5$
 • $n^2 = 25$
 – Count (order C, D, E)
 – (1) trivial ($\perp \subseteq \top$)
 – (2) non trivial ($\top \subseteq \perp$)
 • Consistent! (SAT)!
 – C
 • Top Down
Savings

- Possible tests (assuming consistency)
 - Total
 - \(n = 5 \)
 - \(n^2 = 25 \)
 - Count (order C, D, E)
 - (1) trivial (\(\bot \leq \top \))
 - (2) non trivial (\(\top \leq \bot \))
 - Consistent! (SAT)
 - C
 - Top Down
 - (3) \(C \leq \top \) (trivial!)
 - (4) \(C \leq \bot \) (hard!)
 » C is is satisfiable (SAT)
Savings

- Possible tests
 - Total
 - \(n = 5 \)
 - \(n^2 = 25 \text{ SAT!} \)

- Count (order C, D, E)
 - (1) trivial (\(\bot \subseteq \top \))
 - (2) non trivial (\(\top \subseteq \bot \))
 - Consistent! (SAT)
 - C [1 SAT, 1 Trivial]
 - Bottom up
 - (5) \(\bot \subseteq C \) (trivial)
 - (6) \(\top \subseteq C \) (SAT!)
Savings

• Possible tests
 – Total
 • $n = 5$
 • $n^2 = 25$ SAT!?
 – Count (order C, D, E)
 – (1) trivial ($\bot \in \top$)
 – (2) non trivial ($\top \in \bot$)
 • Consistent! (SAT)
 – C [2 SAT, 2 Trivial]
 – D
 • Top Down
 – (7) $D \in \top$ (trivial!)
 – (8) $D \in C$ (SAT!)
 – (9) $D \in \bot$ AVOIDED
Savings

- Possible tests
 - Total
 - $n = 5$
 - $n^2 = 25$ SAT!
- Count (order C, D, E)
 - (1) trivial ($\bot \subseteq \top$)
 - (2) non trivial ($\top \subseteq \bot$)
 - Consistent! (SAT)
 - C [2 SAT, 2 Trivial]
 - D [1 SAT, 1 Trivial, 1 Avoided]
 - Bottom up
 - (10) $\bot \subseteq D$ Trivial
 - (11) $C \subseteq D$ (SAT)
 - (12) $\top \subseteq D$ AVOIDED!
Savings

- Possible tests
 - Total
 - $n = 5$
 - $n^2 = 25$ SAT!
- Count (order C, D, E)
 - (1) trivial ($\bot \subseteq \top$)
 - (2) non trivial ($\top \subseteq \bot$)
 - Consistent! (SAT)
 - C [2 SAT, 2 Trivial]
 - D [2 SAT, 2 Trivial, 2 Avoided]
 - E
 - Top Down
 - (13) $E \subseteq \top$ (trivial)
 - (14) $E \subseteq C$ (SAT)
 - (15) $E \subseteq D$ (SAT)
 - (16) $E \subseteq \bot$ (AVOIDED)
Savings

- Possible tests
 - Total
 - \(n = 5 \)
 - \(n^2 = 25 \) SAT!
- Count (order C, D, E)
 - (1) trivial (\(\bot \subseteq \top \))
 - (2) non trivial (\(\top \subseteq \bot \))
 - Consistent! (SAT)
 - C [2 SAT, 2 Trivial]
 - D [2 SAT, 2 Trivial, 2 Avoided]
 - E [1 Trivial, 2 SAT, 1 Avoided]
 - Bottom up
 - (17) \(\bot \subseteq E \) (trivial)
 - (18) C \(\subseteq E \) AVOIDED
 - (19) D \(\subseteq E \) (SAT)
 - (20) \(\top \subseteq E \) AVOIDED
Savings

• Possible tests
 – Total
 • $n = 5$
 • $n^2 = 25$ SAT!?

• Count (order C, D, E)
 – (1) trivial ($\bot \subseteq \top$)
 – (2) non trivial ($\top \subseteq \bot$)
 • Consistent! (SAT)
 – C [2 SAT, 2 Trivial]
 – D [2 SAT, 2 Trivial, 2 Avoided]
 – E [2 Trivial, 3 SAT, 3 Avoided]
 – Reflexive!
 • $C \subseteq C$
 – All avoided = 5
 • Total [8 SAT, 7 Trivial, 5+5 avoided] = 25
9 SAT seem like a lot!

• Assertions!
 – If our ontology contains $E \sqsubseteq D$
 • We can just enter that! No sat!
 – If our ontology contains (or implies) $C \sqsubseteq \neg D$
 • Then we don’t need to test $D \sqsubseteq C$, $C \sqsubseteq D$, $E \sqsubseteq C$
 • 4 tests gone!
 – We can look for cheap consequences
 • E.g., $A \sqsubseteq C \sqcap D$ immediately gives $A \sqsubseteq C$, $A \sqsubseteq D$
 – Must take care about $\top \sqsubseteq A$, C, D or $\top \sqsubseteq A$, C, D

• Exploit internals
 – For any SAT test we can
 • extract a representation of a model
 • if we have such a “pseudo-model” of C and of $\neg D$
 – We can see if they merge to form a new model
 » Done!