Entwicklung einer Methode zur graphischen Darstellung von Planerklärungen

Christian Speck
11. September 2013
Contents

1. Hybrid Planing
2. Motivation
3. Formal Explanation
4. Visualization
5. Presentation of the Framework
6. Future Work
Hybrid Planning

<table>
<thead>
<tr>
<th>POCL-Planning</th>
<th>HTN-Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Causal links</td>
<td>▶ Abstract tasks</td>
</tr>
<tr>
<td>▶ Goal description</td>
<td>▶ Initial task network</td>
</tr>
<tr>
<td>▶ Partial order</td>
<td>▶ Decomposition</td>
</tr>
</tbody>
</table>

▶ Hybrid Planning combines POCL and HTN Planning

A hybrid plan \(P \)

\[
P = \langle TE, \prec, VC, CL \rangle
\]

\(TE\) is a set of tasks, \(\prec\) is a set of ordering constraints, \(VC\) is a set of variable constraints, \(CL\) is a set of causal links
Hybrid Planning - An example from the smartphone domain
Motivation

▸ A plan is presented to the user as a list or a graph
▸ User could question the plan
▸ Formal explanations are used to justify elements of a plan
▸ A formal explanation is hard to understand
Formal Explanation

The formal Explanation ends with a basic argument

- $\text{Necessary}(\text{initialTask})$
- $\text{Necessary}(\text{goalTask})$
- $\forall t : \text{Task}.[\text{Necessary}(t) \leftarrow \text{Addition}(t, \text{initialTaskNetwork})]$
Formal Explanation

(Basic) \(\forall t, t' : Task; \phi : Formula. [CausalRelation(t, \phi, t') \iff \\
\exists cl : CausalLink. [t = producer(cl) \land t' = \\\nconsumer(cl) \land \phi = condition(cl)]] \)

(Basic) \(\forall t, t' : Task; m : Method. [DecompositionRelation(t, m, t') \iff \\
\exists te : TaskExpansion. [Addition(t, te) \land Deletion(t', te) \land \\
Usage(m, te)]] \)
Formal Explanation

(C-Ch) \(\forall t : Task. [Necessary(t) \iff \exists t' : Task; \phi : Formula. [CausalRelation(t, \phi, t') \land Necessary(t')]] \)

(D-Ch) \(\forall t : Task. [Necessary(t) \iff \exists t' : Task; m : Method. [DecompositionRelation(t, m, t') \land Necessary(t')]] \)
Formal Explanation

(C-Prop) \(\forall t, t' : \text{Task}; \phi : \text{Formula}. [\text{CausalRelation}(t, \phi, t') \iff \exists t'' : \text{Task}. [\text{CausalRelation}(t, \phi, t'')] \land \exists m : \text{Method}. [\text{DecompositionRelation}(t'', m, t')]] \)

(P-Prop) \(\forall t, t' : \text{Task}; \phi : \text{Formula}. [\text{CausalRelation}(t, \phi, t') \iff \exists t'' : \text{Task}. [\text{CausalRelation}(t'', \phi, t')] \land \exists m : \text{Method}. [\text{DecompositionRelation}(t'', m, t')]] \)
Visualization

- Presentation integrated into a plan or separated
- Animated or static
Visualization - Example of a formal explanation

1. Necessary(press_newAppointment)
2. CausalRelation(press_newAppointment, ϕ, set_Name)
3. DecompositionRelation(set_Name, m, configure_Appointment)
4. CausalRelation(press_newAppointment, ϕ, configure_Appointment)
5. Necessary(configure_Appointment)
6. CausalRelation(set_Time, isSet_TimeAppointment, Date, press_OK)
7. DecompositionRelation(set_Time, m, configure_Appointment)
8. CausalRelation(configure_Appointment, isSet_TimeAppointment, Date, press_OK)
9. Necessary(press_OK)
10. CausalRelation(press_OK, createdAppointment, goalTask)
11. Necessary(goalTask)

C-CH 4,5
Basic
Basic
C-Prop 2,3
C-Ch 8,9
Basic
Basic
P-Prop 6,7
C-CH 10,11
Basic
Basic
Visualization - Visual elements

- Task t
- Necessary primitive Task
- Task t
- Necessary abstract Task
- Partial Order
- Causal Relation
- Causal Relation from Propagation
- Decomposition Relation
Visualization

Using a decomposition structure for an explanation
Visualization

Group abstract tasks to their primitive tasks in a plan for an explanation

There can be many ways to anchor an abstract task to his primitive tasks in a plan
Presentation of the Framework
Future Work

- Other types of formal explanations
- Dynamic decomposition structure for a given formal explanation
Thanks !!!