
Finding User-friendly Linearizations
of Partially Ordered Plans

Daniel Höller, Pascal Bercher, Felix Richter, Marvin Schiller, Thomas Geier,
and Susanne Biundo

Institute of Artificial Intelligence, Ulm University, Germany
{forename.surname}@uni-ulm.de

Abstract. Planning models usually do not discriminate between differ-
ent possible execution orders of the actions within a plan, as long as
the sequence remains executable. As the formal planning problem is an
abstraction of the real world, it can very well occur that one lineariza-
tion is more favorable than the other for reasons not captured by the
planning model — in particular if actions are performed by a human.
Post-hoc linearization of plans is thus a way to improve the quality of
a plan enactment. The cost of this transformation decouples from the
planning process, and it allows to incorporate knowledge that cannot be
expressed within the limitations of a certain planning formalism. In this
paper we discuss the idea of finding useful plan linearizations within the
formalism of hybrid planning (although the basic ideas are applicable to
a broader class of planning models). We propose three concrete models
for plan linearization, discuss their ramifications using the application
domain of automated user-assistance, and sketch out ways how to em-
pirically validate the assumptions underlying these user-centric models.

Keywords: Hybrid Planning, POCL Planning, HTN Planning, Plan
Linearization, User-centered Planning, User Assistance, Plan Execution

1 Introduction

In the last years we showed in different application domains that AI Planning
can help to give a human user support on complex tasks like the operation of a
smart phone, where the system helps the user to send messages, create contacts
or appointments [2]. Recently we described a system that helps the user assemble
a complex home theater system [1]. A hybrid planning system is utilized to find
plans that help the user to reach her or his goal. Hybrid planning combines
elements from Hierarchical Task Network (HTN) planning and Partial Order
Causal Link (POCL) planning. Abstract tasks are decomposed repeatedly until
all tasks are specific enough to be applied directly. Causal links make the causal
structure of the plan explicit and ensure executability. The plans are partially
ordered and thus enable a flexible execution order. Any of these orderings will
transfer the initial state to a state that fulfills the desired goal properties.

However, when the plans have to be communicated to a human user, or are
even executed by a human, some linearizations of the partially ordered plan



2 D. Höller, P. Bercher, F. Richter, M. Schiller, T. Geier, S. Biundo

might be better than others. We identified the following possible objectives for
the task of plan linearization. The choice of the objective especially influences
the experimental setup when the different utility functions are evaluated.

1. imitate human behavior
2. maximize the user’s subjective appraisal
3. optimize some objective metric – this could be, e.g., the time a user needs

to execute a plan

We do not want to imitate humans’ behavior. In our context, the second and
third objective are more relevant. Which of them to choose might depend on a
specific application. In some situations, the user’s appraisal is the top goal. In
others a speedy execution of the plan might be the ultimate objective.

In this paper we introduce and discuss three utility functions, relying on
different properties of the planning problem and its solution, that enable the
comparison of different linearizations. These utilities are discussed in context of
our home theater assistance system [1].

The following sections introduce the hybrid planning approach (Sec. 2) and
our example domain (Sec. 3). Sec. 4 introduces the different utility functions
that are discussed in Sec. 5. That section also outlines several alternatives for
empirically evaluating the proposed utility functions. Sec. 6 concludes the paper.

2 The Hybrid Planning Framework

Hybrid planning [1,3] combines elements from Hierarchical Task Network (HTN)
planning and Partial Order Causal Link (POCL) planning. Like in HTN plan-
ning, abstract tasks are repeatedly decomposed using decomposition methods
until they can be executed directly. Like in POCL planning, the system utilizes
Causal Links to prevent already established preconditions from being changed.
The domain modeler is free to allow the system to insert primitive tasks inde-
pendent from hierarchical decomposition.

A planning domain is a tuple D = 〈T,M〉, where T is a set of tasks that
can be partitioned into the sets TC and TP of compound and primitive tasks,
respectively. It holds T = TC ∪ TP and TC ∩ TP = ∅. Each t(τ) ∈ T is a tuple
〈pre, eff 〉, where pre and eff are conjunctions of literals over the task parameters
τ = τ1, . . . , τn and specify the preconditions and effects of a task. A partial plan
has the structure P = (PS ,≺,VC ,CL) , where PS is a set of plan steps, i.e. of
uniquely identified tasks. ≺ is a set of constraints of the form (ti, tj) that define
a strict partial order on the tasks in PS . VC is a set of variable constraints that
codesignate or non-codesignate task parameters to other task parameters or to
constants. CL is a set of causal links. A causal link has the form t →ϕ t′ and
states that the precondition ϕ of task t′ is established by task t. The precondition
ϕ is said to be supported by that causal link.

As given in the beginning, the compound tasks of a plan have to be de-
composed until only primitive tasks are left. This is done using (decomposition)
methods given by the second domain element M . A method m ∈M has the form



Finding User-friendly Linearizations of Partially Ordered Plans 3

m = 〈t(τ), P 〉 and defines a mapping of the compound task t(τ) to a partial plan
P .

A planning problem P is given by a planning domain and a definition of an
initial state, a goal state and an initial partial plan Pinit . Initial and goal state
are usually given as two special primitive tasks init and goal that have the initial
state as effect and the goal state as precondition, respectively. States and the
applicability of primitive tasks are defined as usual. Fully grounded primitive
tasks are also called actions.

A partial plan P = (PS ,≺,VC ,CL) is a solution to a planning problem if
and only if the following conditions hold:

1. It is a refinement of the initial plan Pinit , i.e. it is achieved by decomposition,
insertion of causal links and ordering constraints, and (if intended by the
domain designer) task insertion.

2. It does not contain compound tasks.
3. All preconditions are supported by causal links.
4. There is no causal threat. A threat is a situation where a task t′ that has an

effect ¬ϕ can be placed between two tasks t and t′′ when there is a causal
link t→ϕ t

′′ in CL. A task t′ can be placed between the tasks t and t′′ when
≺ ∪ {(t, t′), (t′, t′′)} is also a valid strict partial order.

A partial plan that is a solution is also referred to as plan. We denote it by
P ∗ = (PS∗, ≺∗, VC ∗, CL∗).

3 Example Domain

We exemplify the proposed utility functions in the home theater domain [1,
Section ”Domain Model“]. In that domain several devices, such as a blu-ray
player, a satellite receiver, an amplifier (audio/video receiver), and a television,
have to be connected with each other, s.t. the television receives the audio signals
of the blu-ray player and the satellite receiver and the television receives the video
signals of these devices. Many different cables are modeled, such as cinch or DVI
and HDMI cables. The specific devices and cables are modeled by constants of
the respective sort.

For connecting these devices using cables, the domain features plugIn actions
that take as argument four constants: the two hardware components that have
to be connected with each other (where one is a cable and the other a device
such as a blu-ray player) and the two ports that are connected (for example, an
HDMI port in case of a blu-ray player and one of the ends of an HDMI cable).
Thus, for connecting two devices using one single cable, (at least) two actions
are needed: one for each end of the cable. The domain is modeled in such a way
that actions may only be executed in the order in which the signal is transported
from its source to its destination. So, if a cinch cable were utilized to transport
the audio signal of the blu-ray player to the amplifier, then the cable needs first
to be plugged into the blu-ray player and afterwards into the amplifier although
the pure ”physics“ would also allow the other execution order.



4 D. Höller, P. Bercher, F. Richter, M. Schiller, T. Geier, S. Biundo

As an example, consider the following solution to the given planning problem:
The blu-ray player is connected to the amplifier using two cables: a DVI

cable is used for video and a cinch cable for the audio signal. The satellite
receiver is connected to the amplifier using a scart-to-cinch cable. That cable
transports both audio and video. It uses a scart connector at one end (that is
plugged into the satellite receiver) and three single cinch ports at the other: two
transport the audio signal and one the video. Finally, the amplifier is connected
to the television using a further cinch cable. Since putting an end of a cable
into a device is modeled using a single action, that solution consists of 10 plan
steps (two actions for each cable except scart-2-cinch, which requires four). This
solution is depicted graphically in Fig. 1.

blu-ray
player

amplifier

TV

receiver

(1) DVI cable (video)
(2) cinch cable (audio)
(3) scart-to-cinch cable

(audio and video)
(4) cinch cable (video)

(1)

(2)

(4)

(3)

(a) Obtained setup

ps1 ps2
(1)

ps3 ps4
(2)

ps5 ps7

ps6

ps8

(3)

ps9 ps10
(4)

(b) Solution plan

Fig. 1: Fig. (a) gives a graphical representation of the solution to the described
problem of the home theater domain. The graph in Fig. (b) schematically depicts
a solution plan to the corresponding planning problem. Nodes psi represent plan
steps. There is an edge between two nodes if and only if there is at least one
causal link between the corresponding nodes in the graph. The plan steps ps1 and
ps2 represent the plugIn actions to connect the blu-ray player to the amplifier
using a DVI cable, whereas ps3 and ps4 connect those devices using a cinch
cable. The plan steps ps5 to ps8 represent the plugIn actions for connecting the
satellite receiver with the amplifier. Audio connection is established using ps7
to ps8 (left and right channel) and video using ps6. The amplifier is connected
to the television with the cinch cable using ps9 and ps10. Since cables may only
be connected in the order of signal transportation, the execution of ps9 requires
that ps2 and ps6 have already been executed (since afterwards the amplifier has
both required video signals that are transported to the television).

From the solution criteria of hybrid planning we can be sure that any plan
step linearization respecting the ordering constraints and causal structure is an
executable solution. However, some linearizations might be confusing to some



Finding User-friendly Linearizations of Partially Ordered Plans 5

users. Consider the plan in Fig. 4: The sequence 〈ps1, ps5, ps3, ps6, ps2〉 is a prefix
of a valid linearization of its plan steps. However, the user repeatedly switches
back and forth between different cables and devices in that linearization:

1. ps1: plug DVI cable into blu-ray player
2. ps5: plug scart end of scart-to-cinch cable into satellite receiver
3. ps3: plug cinch cable into blu-ray player
4. ps6: plug cinch-video end of scart-to-cinch cable into amplifier
5. ps2: plug the other end of the DVI cable into amplifier

A more reasonable solution would be to execute ps2 directly after ps1 and ps4
directly after ps3, and so on. In the following, we introduce three different pos-
sibilities to choose reasonable execution orders. These are based on the actions’
parameters, on the causal link structure of the plan, and on the hierarchical
structure of the planning domain.

4 Plan Linearization

This section gives three different utility functions for plan linearization. The
intuition behind the following definition of the overall utility is that a good
next action to execute has to fit into the context, i.e. the sequence of actions
that have already been executed. Therefore the overall utility is a sum of local
utilities between each action and its predecessors in the linearization.

Definition 1 (Utility of Plan Linearizations)
Given a plan P ∗ = (PS∗,≺∗,VC ∗,CL∗) and a linearization of its plan steps
L = 〈ps1, ps2, . . . , psn〉 that is valid with respect to ≺∗, we define the (overall)
utility U(L) of the linearization as

U(L) =
n∑
i=1

i−1∑
j=1

w(j) ∗ u(psi, psi−j)

The additional weight function w(j) is introduced to allow for different fac-
tors, e.g. to give the recently executed actions more weight than those at the
beginning of the execution. The following subsections give three possible defini-
tions of that local utility function u(ps, ps ′). The first one is based on the actions’
parameters, the second on the causal links, and the last one on the domain’s task
hierarchy.

4.1 Parameter Similarity

The first (local) utility function is entirely based on the steps in the plan. More
precisely, it employs a pairwise comparison of two plan steps’ parameters. This
is based on the assumption that the tasks represent things to do, while the
parameters represent entities that are necessary to do so. In our example the
user may want to complete connecting a specific cable or device before switching
his attention to other devices or cables.



6 D. Höller, P. Bercher, F. Richter, M. Schiller, T. Geier, S. Biundo

Definition 2 (Parameter-based Utility)
We define the parameter-based utility up of two ground plan steps ps1(c11, . . . , c

1
m)

and ps2(c21, . . . , c
2
n) as

up(ps1(c11, . . . , c
1
m), ps2(c21, . . . , c

2
n)) = ‖

∑m
i=1

∑n
j=1 u

c(c1i , c
2
j )‖

where ‖·‖ is an arbitrary normalization operator.

The given function compares each pair of the parameters of ps1 and ps2. A
simple function to compare two parameters is given in Def. 3. More sophisticated
functions could e.g. include the parameters’ sorts when they are not identical.

Definition 3 (Parameter Similarity)

uc(c1, c2) =

{
1, if c1 = c2

0, else

After summing up the different parameter similarities, the overall utility value
of the plan steps has to be normalized to prevent the approach from preferring
plan steps with many parameters. A straightforward realization of this function
would consist in, for example, dividing the utility by the product of the parameter
count of both plan steps (if greater than zero).

There are some self-evident extensions of the given utility definition, e.g.
by including also the task schemata of the plan steps. In our domain, only
a single task schema is used (there are only plugIn actions), but in general
several different task schemata are possible; depending on the domain it might
be preferable to execute similar task schemata consecutively. For instance, in
another domain, it might be plausible to execute all “shopping” actions together
before (or after) executing “cleaning” actions.

4.2 Causal Link Structure

The next utility function is based on the plan’s causal link structure. Like POCL
planning, our planning approach is problem-driven, i.e. every causal link in the
plan is necessary to support some precondition. Thus the structure of the causal
links represents the causal structure of the plan. This causality information can
be utilized for plan linearization.

Definition 4 (Causal Link-based Utility)
We define the causal link-based utility of two plan steps ps1 and ps2 as

ucl(ps1, ps2) = ul({ϕ | (ps1 →ϕ ps2) ∈ CL∗})
where ul(·) maps to an utility number.

The function ul(·) maps the set of causal links between two plan steps to a
utility number. One possibility is the set cardinality. However, there are several
alternatives, e.g. to return 1 if there is at least one link and 0, otherwise.

The given definition is based on the causal links between two plan steps.
In combination with an appropriate weight function w, this utility results in



Finding User-friendly Linearizations of Partially Ordered Plans 7

linearizations where the steps are ordered in a way that the preconditions of
some step are established (directly) predecessing plan steps.

4.3 Decomposition Information

Since a planning domain is (usually) modeled by a human, the way the task
hierarchy is modeled might also carry information. Partial plans that are used
in decomposition methods are implementations of their abstract tasks [3]. Tasks
that are within the same partial plan can hence be considered to be semantically
related. We generalize this relationship between tasks in the plan of the same
method to those of different methods and give another utility that is based on
the Task Decomposition Graph (TDG). Our definition of the TDG is a simplified
variant of the TDG that was used in earlier work [4].

Definition 5 (Task Decomposition Graph)
Let 〈V,E〉 be an and/or graph with the set of vertices V and the set of edges
E ⊆ V × 2V . We define the Task Decomposition Graph (TDG) as the minimal
graph that fulfills the following specification:

1. base case:
(a) tinit ∈ V , where tinit is a new artificial root node

(b) V ⊇
⋃

T∈Ground(PSinit,VC init)

T

(c) E ⊇
⋃

T∈Ground(PSinit,VC init)

{(tinit, T )}

2. ∀t(c) ∈ V : 〈t(τ ′), 〈PS ′,≺′,VC ′,CL′〉〉 ∈M ∧ θ is mgu of c and τ ′ ⇒
(a) V ⊇

⋃
T∈Ground(PS ′,VC ′∪θ)

T and

(b) E ⊇
⋃

T∈Ground(PS ′,VC ′∪θ)
{(t(c), T )}

Where Ground(PS ,VC ) denotes a set of sets. Each element is a set of ground
tasks obtained by grounding the plan steps PS with respect to the variable con-
straints in VC . The returned outer set contains all valid groundings.

The TDG includes nodes for every ground instance of every task in the
initial task network (1b). To connect these nodes in the initial plan, a new node
is introduced (1a) that is the parent node of them (1c). For every task in V and
every compatible method, the groundings of the tasks in the method’s plan are
also nodes in the graph (2a). And each compatible grounding of the method’s
plan is connected via a multi-edge (a connector) to the parent task (2b).

Definition 6 (Decomposition-based Utility)
Let the decomposition-based utility between two plan steps l1:t1 and ln:tn be

defined as

hd(ln:tn, lm:tm) = min{n+m |〈t1, . . . , tn〉, 〈t′1, . . . , t′m〉, t′1 = t1, t
′
m = tm, and

for 1 < j ≤ n holds (tj−1, V
′) ∈ E and tj ∈ V ′,

for 1 < k ≤ m holds (t ′k−1, V
′) ∈ E and t ′k ∈ V ′}



8 D. Höller, P. Bercher, F. Richter, M. Schiller, T. Geier, S. Biundo

The utility gives the minimal distance of two tasks in the possible decom-
positions from the initial plan. To reach one node from the other, one has to
go up the tree until a node is reached that is a parent node of both of them.
Afterwards one has to go down the tree until the second node is reached. Since
here we return some kind of similarity, please be aware that this function has
to be minimized (in contrast to the others). As this utility relies solely on de-
composition it can, in the current form, not deal with task insertion (cf. solution
criterion (1)).

When a planning system generated a solution, it has found one valid decom-
position of the initial plan that resulted in the plan at hand. That decomposition,
called Decomposition Tree (DT) [5], is quite related to our TDG. From a practi-
cal point of view the node distance can be taken from this tree. However, while
the TDG gives a measure for the semantic similarity of tasks, the DT is affected
by the preconditions and effects as well as by the planning process itself. It is
just one valid decomposition, but might not be minimal.

5 Discussion

In this section we first discuss how the proposed utility functions would perform
in the home theater domain. Afterwards, we discuss how the different lineariza-
tions could be evaluated in a field study with human users.

5.1 Linearization Behavior in the Home Theater Scenario

We will now discuss the proposed utility functions based on the example solution
depicted in Fig. 1.

Parameter-based Utility. Recall that each action takes four arguments: the
source hardware like a device (e.g., a blu-ray player) or a cable, its port (where
also cables have “ports”, these are their ends), and the destination hardware and
port. Let us assume the plan step ps1 is picked first for being presented to the
user. We regard it as plausible to continue with ps2, because both plan steps are
concerned with connecting the DVI cable. We know that both ps1 and ps2 have a
common constant that represents this cable. We can assume that the parameter
similarity-based utility function may select ps2 after ps1 rather than selecting
ps5, where completely different devices and cables (hence disjoint constants) are
used.

Note that the question how ties are broken (in case two actions are similar
with respect to their parameter similarity-based utility value) can also influence
the resulting linearization. In our example, recall that ps1 and ps2 share exactly
one constant: the one representing the DVI cable. However, ps1 and ps3 also
share a constant: the one representing the blu-ray player. Thus, rather than
selecting ps2 after the execution of ps1, also ps3 might be selected. Both selection
strategies might be regarded useful: the one completes connecting the cable that
was used last, whereas the other completes connecting the device that was used
last.



Finding User-friendly Linearizations of Partially Ordered Plans 9

Causal Link-based Utility. If one looks at the solution plan in Fig. 1 it seems
quite natural that we execute ps2 directly after ps1 and, as another example,
ps6 to ps8 directly after ps5. Why is this the case? Because, as depicted in the
figure, these actions are causally related to each other. In hybrid planning, these
causal dependencies are modeled explicitly using causal links and can thus easily
be used for plan linearization.

Again, assume ps1 was picked first. Since the only plan step to which ps1 is
causally related is ps2, that plan step is picked next. The next causally relevant
plan step (for ps2) is ps9. However, because ps9 requires ps6 to be executed first,
another plan step must be chosen.

The question of tie-breaking is also quite important for this plan linearization
strategy as can be seen with the next example. Assume ps5 (putting the scart end
of the scart-to-cinch-cable in the satellite receiver) is selected for execution after
ps2. The next candidates are ps6 to ps8 (which correspond to plugging the cinch
ends of the scart-to-cinch-cable into the amplifier). Assuming ps6 were selected
next, we are free to select either ps9 or ps7 or ps8 next. The first tie-breaking
strategy corresponds to depth-first selection, whereas the latter correspond to
breadth-first selection. Selecting in a depth-first manner corresponds to estab-
lishing the video signal for the television first. Selecting in a breadth-first manner
would first complete connecting the scart-to-cinch cable before proceeding.

Decomposition-based Utility. The last linearization technique is based on the
decomposition hierarchy of the planning domain. Suppose the planning prob-
lem is given by three initial abstract connect tasks each taking two devices,
which need to be connected. For each abstract task, the decomposition meth-
ods contain pre-defined standard solutions for these tasks. For instance, the two
plan step sequences 〈ps1, ps2〉 and 〈ps3, ps4〉 can be put together in a partial
plan P that is used by a decomposition method m = 〈t(c̄), P )〉 for the task
t(c̄) = connect(bluray,amplifier). Analogously, the sub plan in Fig. 1 involv-
ing the plan steps ps5 to ps8 can be defined as a standard solution to the task
connect(receiver,amplifier).

Now, let us say ps1 is picked first for execution. Since the decomposition
distance to ps2 and ps3 is the same and smaller than the distance to ps5, one of
these two plan steps is picked first. So, all plan steps ps1 to ps4 will be presented
for execution before any other plan step of the solution. For tie-breaking between
these plan steps, further strategies need to be considered since all of them have
the same decomposition distance according to Def. 6.

5.2 Empirical Evaluation

The ultimate goal of the presented techniques is to assist users in real-world
scenarios. The suitability of the three different utility functions for plan lin-
earization and their relative strengths and weaknesses therefore call for empirical
investigation. Can one of them be considered preferable, or does this depend,
for example, on the application domain? Such questions are shared with other



10 D. Höller, P. Bercher, F. Richter, M. Schiller, T. Geier, S. Biundo

subfields in HCI, where several alternative forms of empirical evaluation have
been employed (see e.g. [6,7]):

1. the output/behavior of a system is compared to human experts (requiring a
metric to quantify the difference),

2. users provide a subjective rating for a system’s performance, or
3. users have to solve a task assisted by a system, and task performance is used

as the test metric.

These three forms of empirical evaluation measure different objectives, akin
to the ones presented in Sec. 1:

1. in how far a system succeeds in imitating humans,
2. a system’s performance as subjectively perceived by prospective users, or
3. an objective metric for a system’s capability in assisting users, for example,

users’ performance in carrying out a plan presented using the techniques
outlined in this paper, as measured, for example, in terms of time taken to
carry out a plan.

For the evaluation of the three utility functions for plan linearization, a first
step is to identify test cases where the different approaches lead to different
solutions (i.e. plan linearizations). The most simple experimental design would
follow the second approach to evaluation, namely to present these different plan
linearizations to the participants of an experiment, whose task is to rate them
for appropriateness.

More concretely, such a simple experiment might consist in randomly assign-
ing participants to three groups, each of which is presented with different plan
linearizations, all for the same sequence of plans. The use of the three utility
functions for generating the linearizations is counterbalanced across the three
groups, such that for each plan each of the three approaches is used for one
third of the participants, allowing for the average ratings from the participants
to be compared (i.e., a latin square type of experiment design). For the presen-
tation of plan steps within such an experiment, several options are available,
ranging from simple lists to speech output [2]. In order to avoid confounds, in
an experimental setting the most simple one is clearly preferable (i.e., a bullet
point list).

As to the task that the participants have to fulfill in the experiment, the
most simple design would ask them to provide a subjective rating for the plan
linearizations, similar to the approach in [1]. This would reveal only the per-
ceived usefulness or plausibility (as judged by the participants), not an objective
measure for the effect of a particular ordering of plan steps has on a user’s success
in carrying out a suggested plan.

By contrast, an experimental design measuring participants’ performance
in carrying out plans with steps ordered by different linearizations would offer
greater practical validity, but might fail to deliver results for various reasons.
For example, if the problem turns out to be too easy or too difficult in general,
or if the way the generated plan steps are presented turns out to be unsuitable,



Finding User-friendly Linearizations of Partially Ordered Plans 11

differences in the employed linearization might not show strongly enough to be
measured reliably.

The remaining option for designing an experiment – the first item in the
above list – would be to offer participants the possibility to arrange an initially
unordered plan in the order they prefer to see, and to evaluate the employed
linearization approaches according to their agreement with the most frequent
solutions. However, one needs to be careful that the order produced by the par-
ticipants is not unintentionally influenced by potential flaws in the experimental
setup, for example if the method through which participants are introduced to
the plan, its steps, and by which they are to manipulate and indicate the final
order of steps is biased towards a particular solution.

Another problem to consider is that the success of the given approaches (first
of all, the quality of the linearizations) depends on the way the domain is modeled
and, in case of the causal link utility function, the planning process that is used
to generate the plans. This is due to the fact that (some of) the decisions of the
planning system are reflected in the causal links. Thus the relative performance
of linearization metrics might change when they are applied in different domains.
However, these domain-independent methods might be a good starting point for
more elaborated domain-specific heuristics.

6 Conclusion

Though each linearization of a partially ordered solution plan solves the given
planning problem, a system that interacts with a human user should come up
with a linearization that is intuitive to her or him. We addressed this issue in the
context of a system that helps the user to assemble a complex home theater. We
introduced three utility functions that are based on different properties of the
planning problem and its solution. The first one relies solely on the similarity of
the steps in the given plan. The second and third function benefit from our hybrid
planning approach: they exploit the causal link structure generated during the
planning process, and the way in which a solution was decomposed from the
initial abstract plan. Further we discussed how one would go on to empirically
evaluate the proposed models.

Acknowledgment

This work is done within the Transregional Collaborative Research Centre SFB/
TRR 62 “Companion-Technology for Cognitive Technical Systems” funded by
the German Research Foundation (DFG).

References

1. Bercher, P., Biundo, S., Geier, T., Hoernle, T., Nothdurft, F., Richter, F., Schat-
tenberg, B.: Plan, repair, execute, explain - how planning helps to assemble your



12 D. Höller, P. Bercher, F. Richter, M. Schiller, T. Geier, S. Biundo

home theater. In: Proceedings of the 24th International Conference on Automated
Planning and Scheduling (ICAPS 2014). pp. 386–394. AAAI Press (2014)

2. Biundo, S., Bercher, P., Geier, T., Müller, F., Schattenberg, B.: Advanced user as-
sistance based on AI planning. Cognitive Systems Research 12(3-4), 219–236 (2011),
special Issue on Complex Cognition

3. Biundo, S., Schattenberg, B.: From abstract crisis to concrete relief (a preliminary
report on combining state abstraction and HTN planning). In: Proceedings of the
6th European Conference on Planning (ECP 2001). pp. 157–168 (2001)

4. Elkawkagy, M., Bercher, P., Schattenberg, B., Biundo, S.: Improving hierarchical
planning performance by the use of landmarks. In: Proceedings of the 26th National
Conference on Artificial Intelligence (AAAI 2012). pp. 1763–1769. AAAI Press (7
2012)

5. Geier, T., Bercher, P.: On the decidability of HTN planning with task insertion.
In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence
(IJCAI 2011). pp. 1955–1961 (2011)

6. Portet, F., Reiter, E., Gatt, A., Hunter, J., Sripada, S., Freer, Y., Sykes, C.: Auto-
matic generation of textual summaries from neonatal intensive care data. Artificial
Intelligence 173(7), 789–816 (2009)

7. Reiter, E., Belz, A.: An investigation into the validity of some metrics for automat-
ically evaluating natural language generation systems. Computational Linguistics
35(4), 529–558 (2009)


	Finding User-friendly Linearizations of Partially Ordered Plans

