
Language Classification of
Hierarchical Planning Problems

Daniel Höller and Gregor Behnke and Pascal Bercher and Susanne Biundo1

Abstract. Theoretical results on HTN planning are mostly related
to the plan existence problem. In this paper, we study the structure
of the generated plans in terms of the language they produce. We
show that such languages are always context-sensitive. Furthermore
we identify certain subclasses of HTN planning problems which gen-
erate either regular or context-free languages. Most importantly we
have discovered that HTN planning problems, where preconditions
and effects are omitted, constitute a new class of languages that lies
strictly between the context-free and context-sensitive languages.

1 Introduction

Hierarchical Task Network (HTN) planning [6] is an approach for
solving planning problems that relies on abstract – compound – tasks
and the refinement (decomposition) thereof into task networks con-
taining both compound and primitive tasks. Primitive tasks corre-
spond to actions in standard classical planning; a solution to an HTN

planning problem is a task network consisting of primitive tasks that
is executable and was generated from the initial task network; hence,
the problem is to find a suitable sequence of decompositions in order
to generate such a solution. That problem is, without further restric-
tions, known to be semi-decidable [6].

The representation of such problems (given: a set of primitive and
compound tasks, a set of decomposition methods mapping compound
tasks to task networks, and an initial task network) shows major
similarities to formal grammars (given: a set of terminal- and non-
terminal symbols, a set of rules, and a non-terminal start symbol). It
is already known that context-free grammars can be encoded within
the HTN planning framework. In fact, its encoding is used for Erol
et al.’s proof for the semi-decidability of HTN planning [6, 8]. How-
ever, “the other way round” is not clear; i.e., whether HTN planning
problems can express languages that are not context-free. Thus, in
this paper, we study different kinds of HTN planning problems and
their relation to formal languages.

Our results are summarized in Tab. 1. The most interesting result
is that HTN planning problems including only actions without pre-
conditions and effects, HTN 0 pre

0 eff , lie strictly between the context-
free and the context-sensitive languages. Thus, HTN 0 pre

0 eff can be
regarded as new class of languages and grammars. This seems to
be an important insight, as context-free languages are considered
structurally relatively simple, whilst context-sensitive languages are
highly complex, as they can express PSPACE-complete problems.

1 Institute of Artificial Intelligence, Ulm University, D-89069 Ulm, Germany,
{daniel.hoeller,gregor.behnke,pascal.bercher,susanne.biundo}@uni-ulm.de

Table 1. Summary of our results: languages generated by different versions
of hierarchical planning and their relation to the Chomsky Hierarchy.

Loops Partial
Order

Preconditions
and Effects

Task
Insertion

Relation to
Chomsky Class

yes yes yes yes TIHTN ⊆ REG Thm. 5
yes yes no yes TIHTN 0 pre

0 eff (REG Cor. 1

no yes yes no HTNacyc (REG Thm. 3
yes no yes no HTNord = CF Thm. 6
yes yes no no CF (HTN 0 pre

0 eff (CS Thm. 8, 9
yes yes yes no HTN ⊆ CS Thm. 7

2 Hierarchical Planning
In this section we first describe the HTN planning formalization we
base our results upon. We use the one given in earlier work [8], where
Geier and Bercher identified a relaxation of “pure” HTN planning
that lowers the complexity of the plan existence problem from semi-
decidable to EXPSPACE membership. That relaxation is the capabil-
ity to insert actions into task networks without them being introduced
via the decomposition of a compound task. They refer to the standard
setting as HTN planning, and to the setting where inserting actions is
allowed as HTN planning with Task Insertion (TIHTN).

Now, we first define these two problem classes and then extend the
work of Geier and Bercher [8] by proposing a normal form for these
problems and prove their existence for any HTN or TIHTN problem.

2.1 Problem Formalization
We start by describing task networks, which are partially ordered sets
of tasks. A task is a unique identifier. Each task is mapped to a so-
called task name. Task names, on the other hand are the “names”,
which in turn map to the actual operators that (finally) show the pre-
conditions and effects.

Definition 1 (Task Network) A task network tn = (T,≺, α) over
a set of task names N is a 3-tuple, where

• T is a finite and non-empty set of tasks
• ≺ ⊆ T ×T is a strict partial order on T (irreflexive, asymmetric,

and transitive)
• α : T → N labels every task with a task name, its inverse is given

by α−1 : N → 2T with α−1 : n 7→ {t | α(t) = n}

TNN denotes the set of all task networks over the task names N . By
abuse of notation, we write T (tn) = T for tn = (T,≺, α).

Having this definition at hand we can now formally define
HTN and TIHTN planning problems. In earlier work, Geier and

Bercher [8] showed that the two problem classes of HTN and TIHTN

differ solely in their solution criterion, while an identical syntactical
representation can be used. Hence, we will skip the terms “TIHTN”
and “HTN”, when it comes to the (syntactical) problem description.

Definition 2 (Planning Problem) A planning problem is a 6-tuple
P = (L,C,O,M, cI , sI), where

• L, a finite set of proposition symbols
• C, a finite set of compound task names
• O, a finite set of primitive task names with C ∩O = ∅
• M ⊆ C × TNC∪O , a finite set of (decomposition) methods
• cI ∈ C, the initial task name
• sI ∈ 2L, the initial state

For each primitive task name o ∈ O, its operator (or action) is given
by (preco, addo, delo) ∈ 2L × 2L × 2L and it consists of a precon-
dition, an add-, and a delete list; the latter two constitute the effects.
We denote by tnI := ({tI}, ∅, {(tI , cI)}) the initial task network.

Before we can state how to solve planning problems (and how
solutions look like), we need to introduce the concepts of decompo-
sition and task insertion. For the former, we first define restrictions
on relations and functions: Let R ⊆ D ×D be a relation. Its restric-
tion to a set X is given by R|X := {(r1, r2) ∈ R | r1, r2 ∈ X}. The
restriction on a function f : D → V is defined as f |X :={(d, v) ∈ f
| d ∈ X}. That restriction operator can also be applied to task net-
works given by tn|T ′ := (T ∩ T ′,≺|T ′ , α|T ′).

Two task networks tn = (T,≺, α) and t̃n = (T̃ , ≺̃, α̃) are called
isomorphic, written tn ∼= t̃n, if and only if there exists a bijection
σ : T → T̃ , such that for all tasks t, t′ ∈ T it holds that (t, t′) ∈ ≺
if and only if (σ(t), σ(t′)) ∈ ≺̃ and α(t) = α̃(σ(t)).

Definition 3 (Decomposition) A method m = (c, tnm) ∈ M de-
composes a task network tn = (T,≺, α) into a task network tn′

by replacing task t, written tn −−→t,m tn′, if and only if t ∈ T ,
α(t) = c, and there exists a task network t̃nm = (T̃m, ≺̃m, α̃m)

with tnm ∼= t̃nm and T ∩ T̃m = ∅, where

tn′ := (T ′,≺ ∪ ≺̃m ∪ ≺dec-t, α ∪ α̃m)|T ′ with

T ′ := (T \ {t}) ∪ T̃m
≺dec-t := {(t1, t2) ∈ T × T̃m | (t1, t) ∈ ≺} ∪

{(t1, t2) ∈ T̃m × T | (t, t2) ∈ ≺}

We write tn →∗D tn′, if tn can be decomposed into tn′ using an
arbitrary number of decompositions.

While in the (pure) HTN problem setting, changing task networks
is only possible via decomposition of compound tasks, the TIHTN

setting also allows the alteration of the same via task insertion.

Definition 4 (Task Insertion) Let tn = (T,≺, α) be a task net-
work.

Let o ∈ O be a primitive task name; then, a task network tn′ can
be obtained from tn by insertion of o, if and only if for some t /∈ T ,
tn′ = (T ∪ {t},≺, α ∪ {(t, o)}).

Let (t1, t2) be an ordering constraint; then, a task network
(T,≺′, α) can be obtained from tn by insertion of (t1, t2), if and
only if t1, t2 ∈ T and ≺′ is the transitive closure of ≺ ∪ {(t1, t2)}.
We write tn →∗I tn′, if tn′ can be obtained from tn by adding an
arbitrary number of primitive task names and ordering constraints.

We proceed by defining a task network as being executable if there
exists a linearization of its tasks that is executable in the standard
way. We thereby follow our previous definition [8] and the one given
by Erol et al. [6]. Note that one could also define it in such a way that
every linearization needs to be executable, as it is required in Hybrid
planning – an approach that fuses HTN planning with POCL planning
[3, 5]. Note that this difference may influence the complexity of the
plan existence problem [9, Thm. 14, 15],[2, Thm. 1],[6, Thm. 8].

Definition 5 (Executable Task Network) A task network (T,≺, α)
is executable in a state s ∈ 2L, if and only if it is primitive, i.e., for
all t ∈ T holds α(t) ∈ O and there exists a linearization of its
tasks t1, . . . , tn that is compatible with ≺ and a sequence of states
s0, . . . sn such that s0 = s, precα(ti) ⊆ si−1, and for all 1 ≤ i ≤ n
holds si = (si−1 \ delα(ti)) ∪ addα(ti).

Definition 6 (Solution) A task network tnS is a solution to a plan-
ning problem P , if and only if

(1) tnS is executable in sI and
(2) tnI →∗D tnS for tnS being a HTN solution to P or
(2’) there exists a task network tn such that tnI →∗D tn →∗I tnS

for tnS being a TIHTN solution to P .

SolHTN(P) and SolTIHTN(P) denote the sets of all HTN and TIHTN

solutions of P , respectively.

2.2 A Normal Form for Hierarchical Planning
In this section, we propose a normal form for HTN and TIHTN plan-
ning problems and prove that any such problem can be transformed
into it. It is used in the proof of Thm. 7.

Definition 7 (Normal Form for Planning Problems) A planning
problem P = (L,C,O,M, cI , sI) is in 1-free-Normal-Form
(NF 6=1) if and only if for all methods (c, (T,≺, α)) ∈M it holds:

(c 6= cI ⇒ |T | 6= 1) and @t ∈ T with α(t) = cI

and it is in 2-Normal-Form (NF≥2) if and only if for all methods
(c, (T,≺, α)) ∈M it holds:

(c 6= cI ⇒ |T | ≥ 2) and @t ∈ T with α(t) = cI

The following two theorems state that every planning problem can
be transformed into these normal forms without changing its set of
solutions. The proof for the NF≥2 will utilize the existence of a NF6=1

for a given planning problem. Both proofs are constructive, thus the
normal forms can be obtained in practice.

Theorem 1 For every planning problem P = (L,C,O,M, cI , sI)
there exists a planning problem P ′ in NF 6=1, such that:

SolHTN(P) = SolHTN(P ′) and SolTIHTN(P) = SolTIHTN(P ′)

Proof: We obtain that there is no method (c, (T,≺, α)) with t ∈ T
and α(t) = cI by introducing a new initial task name c∗I with a
single method mapping it to the task network containing exactly cI .
Concerning the other criterion, we obtain c 6= cI ⇒ |T | 6= 1 by
induction on the number n of compound task names c 6= cI , with
(c, (T,≺, α)) ∈M and |T | = 1.

Case n = 0: Proved. Case n > 0: Let c ∈ C be a task that violates
the criterion andM=1(c) := {(c, (T,≺, α)) ∈M | |T | = 1} the set
of violating methods and N=1(c) := {α(t) | (c, ({t}, ∅, α)) ∈

M=1(c)} \ {c} the set of task names they lead to. Let M−(c) :=
{(c′, (T,≺, α)) ∈ M | t ∈ T, α(t) = c} be the set of all
methods that generate c. We now generate a new planning problem
P = (L,C,O,M ′, cI , sI), where all methods from M=1(c) are re-
moved and their “effects” are propagated upwards to all methods in
M−(c). Thus, M ′ := (M \M=1(c)) ∪Msubst with:

Msubst := {(c′, (T,≺, α|T\T ′∪α′)) | (c′, (T,≺, α)) ∈M−(c),

T ′ ⊆ α−1(c), α′ ⊆ T ′ ×N=1(c), s.t. α′ is a function}

Obviously, n is reduced by 1. It is clear that the proposed transfor-
mation does not change the set of solutions – independently of the
two solution criteria. 2

The setMsubst may in general contain exponentially many decom-
position methods, as for any subset T ′ ⊆ α−1(c), i.e., any subset of
occurrences of c in a method, a new method is added to the original
set of methods. Fig. 1 gives an example where it is necessary to re-
place all possible subsets of occurrences of T2 in the method of T1.

T1

T2 T2

T2

a b c

T1

a T2

T1

T2 a

T1

a a

Figure 1. The left hand side gives a planning problem as AND/OR graph
that depicts the necessity to replace all possible subsets in order to propagate
NF 6=1violations. It contains two compound (T1 and T2) and three primitive

tasks (a, b and c). T1 can be decomposed into two ordered tasks (both
named T2) that can either be decomposed into a single a or into both b and
c. The methods on the right will be added to obtain NF6=1, while the method

that decomposes T2 into a single a will be removed.

Theorem 2 For every planning problem P = (L,C,O,M, cI , sI)
there exists a planning problem P ′ in NF≥2, such that:

SolHTN(P) = SolHTN(P ′) and SolTIHTN(P) = SolTIHTN(P ′)

Proof: We prove the claim by induction on the number n of com-
pound task names with “empty” methods, i.e., task names c 6= cI
with (c, (∅, ∅, ∅)) ∈M .

Case n = 0: To eliminate NF 6=1 violations, we use the (construc-
tive) proof of Thm. 1. Since that proof does not introduce further
“empty” methods we obtain NF≥2.

Case n > 0: Due to Thm. 1 there is a planning problem P ′ =
(L,C,O,M ′, cI , sI) in NF 6=1 that is equivalent to P . Both have the
same number of “empty” methods. There is at least one compound
task name c 6= cI with an “empty” method mε = (c, (∅, ∅, ∅)) ∈
M ′. Let M−(c) = {(c′, (T,≺, α)) ∈ M ′ | t ∈ T, α(t) = c} be
the set of methods leading to (at least) one c. We can replace mε by
several new methods given by M ′′ := (M ′ \{mε})∪Msubst where

Msubst := {(c′, tn|T (tn)\T ′) | (c′, tn) ∈M−(c), T ′ ⊆ α−1(c)}

The solution sets remain equal. Instead of using mε to delete c, a
method fromMsubst is used that does not produce c in the first place.
The modification may introduce new “empty” methods, at most one
for each task name c′. This happens if and only if c′ can be decom-
posed solely into multiple instances of c. If this is the case, the newly
added method can be propagated upwards itself. But the propagation
must be done at most once for each task name. The second propaga-
tion would not add new decomposition methods. Thus the number of
necessary propagations is limited. 2

3 Language Classification

It is widely known that hierarchical planning can be used to en-
code context-free grammars. Erol et al. [6] used that fact to prove
that (unrestricted) hierarchical planning is semi-decidable. Geier and
Bercher [8] showed that their proof can still be applied in the sim-
plified planning formalization used in this paper. However, we are
unaware of any formal studies on which types of languages can be
expressed by hierarchical planning problems or loosened variants
thereof. We will begin by defining several such classes and then pro-
ceed by investigating structural restricted variants (such as acyclic
problems) and the influence of the solution criterion (i.e. HTN vs. TI-
HTN). Then, we investigate restrictions to preconditions and effects
by considering the case of no-operations.

We will refer to the class of regular languages as REG , to the
(class of) context-free languages as CF , and to the context-sensitive
languages as CS [4]. Each of the three classes has a correspond-
ing type of grammar that generates it: the regular, context-free and
context-sensitive grammars, respectively. In addition to these stan-
dard grammars, there are also several other grammars, such as ID/LP

grammars [11, 10, 7] used in language recognition.
ID/LP grammars seem to be close to our hierarchical setting and

in particular to HTN 0 pre
0 eff , the HTN variant without preconditions

and effects. Both allow a partial order on their grammar rules. How-
ever, Nederhof et al. [10] showed that ID/LP grammars are equiva-
lent to context-free grammars, as after the application of a partially
ordered rule, a total order on the newly generated word must be cho-
sen. Hence, ID/LP grammars are only a more compact representation
of context-free grammars. In HTN planning, the ordering decision
may be postponed. We will show that this enables the expression of
more languages and that HTN 0 pre

0 eff is a strict superset of CF .

Definition 8 (Hierarchical Language Classes) Let P be a plan-
ning problem. We define the language of a planning problem P using
the solution criterion S ∈ {HTN, TIHTN} by

LS(P) := {ω | ω is an executable linearization of tn ∈ SolS(P)}

Now, we can define the following classes of languages:

• HTN := {LHTN(P) | P is a planning problem}
• HTNacyc := {LHTN(P) | P is an acyclic2 planning problem}
• HTNord := {LHTN(P) | P is a planning problem, where each

decomposition method m ∈M is totally ordered3}
• HTN 0 pre

0 eff := {LHTN(P) | P is a planning problem, where for
each o ∈ O, preco = addo = delo = ∅}

• TIHTN := {LTIHTN(P) | P is a planning problem}
• TIHTN 0 pre

0 eff := {LTIHTN(P) | P is a planning problem, where
for all o ∈ O, preco = addo = delo = ∅}

• EXE := {LTIHTN(P) | P is a planning problem without
hierarchy, i.e., M = {(cI , (∅, ∅, ∅))}}

Note that our definition of the language of a planning problem,
LS(P), uses only the executable linearizations of solution task net-
works. If we use all linearizations induced by a solution, some of
them might not be executable (cf. Def. 5). This means that they would
not be able to transfer the initial state into a goal state.

2 A planning problem is acyclic if the size of possible decomposition trees
[8, Def. 7, 8] is limited by some constant.

3 A method m = (c, (T,≺, α)) is totally ordered if ≺ is a total order.

3.1 Unrestricted Preconditions and Effects
We start by classifying the languages of planning problems with re-
strictions on the decomposition methods.

Theorem 3 HTNacyc (REG

Proof: The language of each acyclic planning problem is finite and
thus regular. The two classes are not equal, the regular language Σ∗

(with Σ 6= ∅) cannot be generated by an acyclic planning problem. 2

Next we want to investigate the class EXE of executable se-
quences of primitive task names, which plays an important role in
the proofs in this section.

Theorem 4 EXE (REG

Proof: Let P = (L,C,O, {(cI , (∅, ∅, ∅))}, cI , sI) be a planning
problem without hierarchy. LTIHTN(P) contains all executable se-
quences of primitive task names o ∈ O. We define an automaton
A = (Σ, S, s0, δ, F) with Σ = O, S = 2L∪{†}, s0 = sI , F = 2L,

δ(s, o) :=

{
† if s = † or preco 6⊆ s
(s \ delo) ∪ addo else

That automaton A keeps track of the state generated by an input
word w being a sequence of primitive task names. If the sequence is
not executable the state † will be reached. This automaton accepts
exactly LTIHTN(P) making EXE regular. For each language in
EXE holds: if a word w is in the language, so is also each prefix
ofw. Thus, the regular language {ab} can’t be expressed by EXE . 2

Having Thm. 4 at hand, we can start to examine the other lan-
guage classes. For each planning problem P = (L,C,O,M, cI , sI)
we define Pno-H = (L,C,O, {(cI , (∅, ∅, ∅))}, cI , sI) to be a re-
laxed version of P not showing hierarchy and Pno-PE to be the re-
laxed version of P not showing preconditions or effects for its op-
erators. Note that for both solution criteria S ∈ {HTN, TIHTN}:
LS(P) = LS(Pno-PE)∩LTIHTN(Pno-H) and that LTIHTN(Pno-H) is regu-
lar due to Thm. 4. Hence, for the remaining theorems it often suffices
to show the results we are interested in just for LS(Pno-PE).

Theorem 5 TIHTN ⊆ REG

Proof: Let P = (L,C,O,M, cI , sI) be a planning problem.
Because LTIHTN(P) = LTIHTN(Pno-PE) ∩ LTIHTN(Pno-H) it suffices to
show that LTIHTN(Pno-PE) is regular, as the intersection of two regular
languages is regular. Lem. 2 of the paper of Geier and Bercher [8]
provides that every word ω ∈ L(P) contains a word ω′ as a non-
consecutive substring that can be obtained by decomposing cI and
having a size of at most m|C|, where m = max(c,(T,≺,α))∈M |T |.
Since ω′ can be interleaved with arbitrary inserted tasks, it is suffi-
cient so check whether the input ω contains such an ω′. We construct
a non-deterministic automaton A. Let Op = {ω | tnI →∗D tn, tn
is primitive, |T (tn)| ≤ m|C|, and ω is a linearization of tn} be
the set of all “small” words that can be obtained by decomposing
cI . Each word in LTIHTN(Pno-PE) contains at least one element
ω ∈ Op as a non-consecutive substring. An automaton is given

by A = (Σ, S, s0, δ, F) with Σ = O, S =
⋃m|C|

n=0 Σn, s0 = ε,
F = Op and δ(s, o) = {s, s ◦ o} ∩ S, where ◦ denotes string
concatenation. It accepts a word ω if and only if it contains ω′ ∈ Op
as a non-consecutive substring. 2

Further, one can see that TIHTN 0 pre
0 eff cannot describe finite lan-

guages. Combining this fact with the last theorem, we can conclude:

Corollary 1 TIHTN 0 pre
0 eff (REG

Next we consider problems where each method is totally ordered.

Theorem 6 HTNord = CF

Proof: CF ⊆ HTNord : Let G = (T,NT,R, S) be a context-free
grammar. We construct a totally ordered planning problem P with
L(G) = LHTN(P). It is similar to Erol et al.’s proof of HTN semi-
decidability [6, Thm. 1]. It is P = (∅, NT, T,M, S, ∅) with

M := {(A, ({t1, . . . , tn}, {(ti ≺ tj) | 1 ≤ i < n and i < j ≤ n},
{(ti, ωi) | 1 ≤ i ≤ n}) | A→ ω1ω2 . . . ωn ∈ R}

HTNord ⊆ CF : Let P = (L,C,O,M, cI , sI) be a planning
problem in which all decomposition methods are totally ordered.
Consider LHTN(P) = LHTN(Pno-PE) ∩ LTIHTN(Pno-H).

Then the proposition holds if LHTN(Pno-PE) is context-free. This
can be obtained by constructing a grammar G = (O,C,R, cI), s.t.
L(G) = LHTN(Pno-PE) with R given by

R := {c→ ω | (c, (T,≺, α)) ∈M and ω = α(t1)α(t2) . . . α(tn)

where t1t2 . . . tn is the linearization of T according to ≺} 2

Finally, we classify unrestricted HTN planning problems.

Theorem 7 HTN ⊆ CS

Proof: To prove the claim it suffices to show the existence of a
linear bounded automaton (LBA) that solves the word problem for
LHTN(P) [4, p. 331] for every HTN planning problem P (an ac-
ceptor). Using the partition of the HTN languages LHTN(P) =
LHTN(Pno-PE) ∩ LTIHTN(Pno-H) and knowing that CS is closed under
intersection [4, p. 337] we only need to show that our claim holds
for all HTN 0 pre

0 eff languages. From Thm. 2 we know that a planning
problem P ′ = (L′, C′, O′,M ′, c′I , s

′
I) in NF≥2 exists that is equiv-

alent to LHTN(Pno-PE). The increased number of methods in M ′ does
not matter here as the problem P ′ is not part of the LBA’s input.

Alg. 1 gives a generic acceptor. It first non-deterministically gener-
ates a so-called decomposition tree [8, Def. 7, 8]. Then, each symbol
of the input word ω is matched to a primitive task in that tree. After
each matching, the ordering constraints of this last symbol to all other
primitive tasks are checked. Note that in HTN planning an ordering
constraint between two tasks a and b can solely be introduced by the
method that decomposed some other task into two subtasks ta and
tb, where ta is ancestor of a (and not of b) and tb is ancestor of b (not
of a). The ordering has to be checked in exactly this decomposition.

The algorithm is now explained in detail. Starting from cI a de-
composition tree is generated in line 2–4. To represent the tree on the
LBA’s tape, an encoding is used that omits all ordering constraints.
These are checked later on. For each method mi an arbitrary but
fixed total order of its subtasks is used to write its decomposition
in the following form to the tape: mi(st1st2 . . . stn), where mi is
a method identifier and the stjs are the names of its subtasks. It-
eratively, the subtasks are again decomposed; mi(. . .) thereby re-
places the task it is applied to. A primitive task pt is represented by
pt(). Consider the representation of the problem shown in Fig. 3(a):
m1(m2(a()b())m3(d()c())), where each mi decomposes the task
Ti. As P ′ is in NF≥2, the tree has at most 2|ω| nodes. At most |ω| of

them can be inner nodes, as each inner node has at least two succes-
sors. The needed space is thus limited to 6|ω|, including braces.

For simplicity we describe the acceptor as a multi-tape LBA. This
does not increase its expressivity. END is used to denote a symbol
that limits the tape. The LBA has the following tapes: TAPE-1 of
length |ω| holds the word to parse. TAPE-2 of length 6|ω| is used to
represent the (decomposition) tree; initially cI is on the tape. TAPE-3
is used to simulate a push-down automaton that is needed to go one
level up in the tree. Thus its size is bounded by the length of TAPE-2.

1 function LBAPno-PE (ω)
2 while ∃c ∈ C′ on TAPE-2 do
3 Replace it non-deterministically by a decomposition
4 if reached END then return failure;

5 while HEAD-1 has not reached END do
6 Pick next symbol s from TAPE-1 and delete it
7 Non-det. choose an unmatched primitive task p in the tree

g (on TAPE-2) whose name equals s
8 Mark p as matched

// check ordering to other tasks
9 foreach primitive task o on TAPE-2 do

10 Set mark mp to position of p and mo to o
11 OK ← false

// find method (using PDA)
12 while ¬OK ∧ ¬(mp is root of tree) do
13 Move mp one layer up in the tree; Set mo to o
14 while ¬OK ∧ ¬(mo is root of tree) do
15 Move mo one layer up in the tree
16 if mp and mo mark the same method m then
17 if (o ≺ p) is a valid ordering in m then
18 OK ← true

19 else return failure;

20 if TAPE-2 contains unmarked task then return failure;
21 return success

Algorithm 1. Generic linear bounded automaton that decides the word
problem for LHTN(P ′) languages.

In line 5, TAPE-2 contains a valid decomposition tree g. Now the
symbols of ω are matched to primitive tasks in g and the ordering
constraints are checked. The symbols of ω are iteratively deleted on
TAPE-1 and a primitive task in g that has the same name as the sym-
bol and has not been matched before is marked as matched (line 6–8).

Let s be the last matched symbol. Since ω is proceeded in a left-to-
right order, the ordering (o ≺ s) must be a valid ordering for all other
tasks o that are already marked in the tree. Starting from s and o and
going up in the tree, the method that generates both an ancestor for
o (denoted to) and a different one for s (denoted ts) is searched and
the ordering is checked: (o ≺ s) is valid if and only if (to � ts) does
not hold in that method (line 12–19). To go up in the tree, its repre-
sentation has to be parsed using a push-down automaton simulated
on TAPE-3. The process is illustrated in Fig. 2 for the HTN given
in Fig. 3(a): in the beginning a is already marked, then c is newly
matched. By checking the ordering constraints iteratively, the order-
ing relation of the primitive tasks does not have to be maintained on
the LBA’s tape (this would not be possible due to the limited space).

After checking the decomposition and the ordering constraints, it
is checked whether all primitive tasks in the tree have been matched
(line 20). If this is the case, the word is accepted.

The acceptor generates a valid decomposition tree g, checks if
the symbols in ω can be matched to primitive tasks having the same
name and whether the ordering present in ω is valid in g. Thus it will
accept every word in LHTN(P ′). Words that are not in the language
will violate (at least) one of the given constraints, otherwise they
would be in the language. Thus they will be rejected. The space is
linear-bounded in the size of ω. 2

m1

m2 m3

a b c d

6�

m1(m2(a(X)b())m3(d()c()))

m1(m2(a(X)b())m3(d()c(X))) match c, set marker
m1(m2(a(X)b())m3(d()c(X))) move up mp
m1(m2(a(X)b())m3(d()c(X))) move up mo
m1(m2(a(X)b())m3(d()c(X))) move up mo
m1(m2(a(X)b())m3(d()c(X))) move up mp, reset mo
m1(m2(a(X)b())m3(d()c(X))) move up mo
m1(m2(a(X)b())m3(d()c(X))) move upmo, ordering X

Figure 2. Example illustrating the check of the ordering relation of a
newly matched c with an a that has been matched before.

One can even show HTN (CS using the context-sensitive lan-
guage {ap | p prime}. To represent this infinite language, there must
be a cycle in the HTN that leads to a non-prime number of as.

3.2 Restricted Preconditions and Effects
In this section, we classify the languages of planning problems with
severe restrictions on the preconditions and effects: we only con-
sider the case, where every primitive task name’s operator is a no-
operation, i.e., (∅, ∅, ∅).

The next corollaries follow from the proof of Thm. 7 and the first
case of the proof given for Thm. 6 (CF ⊆ HTNord), respectively.

Corollary 2 HTN 0 pre
0 eff ⊆ CS

Corollary 3 CF ⊆ HTN 0 pre
0 eff

One might pose the question if we can stay context-free by trans-
ferring any partially ordered method of a precondition- and effect-
free HTN problem into a set of totally ordered grammar rules. But
though this approach provides the same ordering flexibility for a
given decomposition, it introduces ordering constraints on the sub-
tasks. Consider Fig. 3: using decomposition, all three words (and

T1

T2 T3

a b c d

(a) HTN definition

T1 → T2T3

T1 → T3T2

T2 → ab

T3 → cd

Word 1: abcd X
Word 2: cdab X
Word 3: acbd X

(b) Context-free grammar translation and words

Figure 3. Planning problem whose language is not correctly transformed
by the naive context-free translation.

even more) can be generated. When the decompositions are trans-
ferred to the four rules given in Fig. 3(b), only the words 1 and 2 can
be generated by that grammar. Word 3 can not, though it is a member
of the language induced by the planning problem. Thm. 8 states that
it is not possible in general to transform an arbitrary precondition-
and effect-free HTN planning problem into a context-free grammar.

Theorem 8 CF (HTN 0 pre
0 eff

Proof: Consider the planning problem given in Fig. 4. An initial
task T1 is decomposed into two unordered tasks T2 and T3. The
task T2 can be decomposed into an arbitrary number of as fol-
lowed by the same number of bs (cs and ds, for T3). We will use
the notation suggested by Nederhof et al. [10] to denote all inter-
leavings of the words ω1 and ω2 via ω1||ω2. Then, LHTN(P) =⋃
n∈N+

⋃
j∈N+ a

nbn||cjdj .

T1

T2

T2

T3

T3a b c da b c d

Figure 4. The planning problem P used in the proof of Thm. 8.

Suppose CF = HTN 0 pre
0 eff . Then, LHTN(P) is context-free. By the

pumping lemma for context-free languages [4, p. 287], ∃m ∈ N,
so that ∀z ∈ LHTN(P) with |z| ≥ m holds: z can be written as
z = uvwxy with substrings u, v, w, x and y such that (i) |vx| ≥ 1;
(ii) |vwx| ≤ m and (iii) uviwxiy ∈ L,∀i ∈ N0 hold.

We choose z = am+1cm+1bm+1dm+1 out ofLHTN(P), obviously
|z| > m. Let z = uvwxy be an arbitrary partition of z fulfilling (i)
and (ii). As each of the four segments of terminal symbols a, b, c, d
has a length ofm+1, vwx can contain at most two different terminal
symbols. Thus, we can distinguish the following cases.
1. vwx = ki for some k ∈ {a, b, c, d} with 0 < i ≤ m by (ii).

(i) ensures that vx contains at least one k. By (iii), uv2wx2y ∈
LHTN(P). The number of ks in uv2wx2y is strictly larger than in
uvwxy, the number of all other terminals remain unchanged. By
definition, the number of as must match the number of bs (and cs
the number of ds), thus uv2wx2y 6∈ LHTN(P).

2. vwx = kilj for some (k, l) ∈ {(a, c), (c, b), (b, d)} and 0 <
i, j ≤ m (ii). By (i) vx contains at least one k or one l. By (iii),
uv2wx2y ∈ LHTN(P). uv2wx2y contains more ks and/or more
ls than z, while the number of the other terminals remains un-
changed. As k can not be the partner of l, there is a mismatch in
the number of as and bs or cs and ds: uv2wx2y 6∈ LHTN(P).

In both cases we have obtained a contradiction, thus LHTN(P) can
not be context-free. Using Cor. 3 we have CF (HTN 0 pre

0 eff . 2

The fact that there is a language that is not context-free, but con-
tained in HTN 0 pre

0 eff raises the question if all context-sensitive lan-
guages are members of HTN 0 pre

0 eff .

Proposition 1 Let P be a planning problem where all actions have
no preconditions and effects. Deciding SolHTN(P) = ∅ is in NP.

This proposition is a trivial corollary from a result by Alford et
al. [1], who proved that delete-free HTN planning is NP-complete.
Since precondition- and effect-free HTN planning is a further restric-
tion, the proposition holds.

Theorem 9 HTN 0 pre
0 eff (CS

Proof: From Cor. 2, we know that the HTN 0 pre
0 eff languages are a

subset of the context-sensitive languages. Suppose they are equal;

then LHTN(P) = ∅ would not be decidable, as in the case of
context-sensitive languages [4, p. 339]. However, Prop. 1 states that
this question is in NP and thus decidable, which contradicts the
assumption. HTN 0 pre

0 eff 6= CS holds and consequently our claim. 2

Finally we know that HTN 0 pre
0 eff is a separate language class lying

strictly between the context-free and the context-sensitive languages.

4 Conclusion
In this paper we have provided a way to view the set of solutions
to HTN and TIHTN planning problems as a formal language. We
have shown that the expressiveness of HTN planning is at most that
of context-sensitive languages. In addition, several subclasses, like
acyclic, totally ordered, or precondition- and effect-free problems
have been classified w.r.t. their position in the Chomsky Hierarchy.
Our results are summarized in Tab. 1. They help to gain more insights
into the structure of hierarchical planning in general. One of our re-
sults is the discovery of a new language class, HTN 0 pre

0 eff , which lies
strictly between the context-free and the context-sensitive languages.
Such a class is of interest for future work, e.g., to find the position of
the border between tractable and intractable word problems.

ACKNOWLEDGEMENTS
We want to acknowledge the insightful comments of the reviewers.
This work was done within the Transregional Collaborative Research
Centre SFB/TRR 62 “Companion-Technology for Cognitive Techni-
cal Systems” funded by the German Research Foundation (DFG).

REFERENCES
[1] Ron Alford, Vikas Shivashankar, Ugur Kuter, and Dana Nau, ‘On the

feasibility of planning graph style heuristics for HTN planning’, in
Proc. of the 24th Int. Conference on Automated Planning and Schedul-
ing (ICAPS 2014), (2014).

[2] Pascal Bercher, Thomas Geier, Felix Richter, and Susanne Biundo, ‘On
delete relaxation in partial-order causal-link planning’, in Proc. of the
2013 IEEE 25th Int. Conference on Tools with Artificial Intelligence
(ICTAI 2013), pp. 674–681, (2013).

[3] Susanne Biundo and Bernd Schattenberg, ‘From abstract crisis to con-
crete relief (a preliminary report on combining state abstraction and
HTN planning)’, in Proc. of the 6th European Conference on Planning
(ECP 2001), pp. 157–168, (2001).

[4] Martin D. Davis, Ron Sigal, and Elaine J. Weyuker, Computability,
Complexity, and Languages: Fundamentals of Theoretical Computer
Science, Academic Press, San Diego, CA, USA, 2nd edn., 1994.

[5] Mohamed Elkawkagy, Pascal Bercher, Bernd Schattenberg, and Su-
sanne Biundo, ‘Improving hierarchical planning performance by the
use of landmarks’, in Proc. of the 26th National Conference on Arti-
ficial Intelligence (AAAI 2012), pp. 1763–1769, (2012).

[6] Kutluhan Erol, James A. Hendler, and Dana S. Nau, ‘Complexity re-
sults for HTN planning’, Annals of Mathematics and Artificial Intelli-
gence, 18(1), 69–93, (1996).

[7] Gerald Gazdar and Geoffrey K. Pullum, Generalized phrase structure
grammar: a theoretical synopsis, volume 7 of CSRP-Sussex, Indiana
University Linguistics Club, 1982.

[8] Thomas Geier and Pascal Bercher, ‘On the decidability of HTN plan-
ning with task insertion’, in Proc. of the 22nd Int. Joint Conference on
Artificial Intelligence (IJCAI 2011), pp. 1955–1961, (2011).

[9] Bernhard Nebel and Christer Bäckström, ‘On the computational com-
plexity of temporal projection, planning, and plan validation’, Artificial
Intelligence, 66(1), 125–160, (1994).

[10] Mark-Jan Nederhof, Giorgio Satta, and Stuart M. Shieber, ‘Partially
ordered multiset context-free grammars and ID/LP parsing’, in Proc. of
the 8th Int. Workshop on Parsing Technologies, pp. 171–182, (2003).

[11] Stuart M. Shieber, ‘Direct parsing of ID/LP grammars’, Linguistics and
Philosophy, 7(2), 135–154, (1984).

