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Abstract
Hierarchical Task Network (HTN) planning with
Task Insertion (TIHTN planning) is a formalism
that hybridizes classical planning with HTN plan-
ning by allowing the insertion of operators from
outside the method hierarchy. This additional capa-
bility has some practical benefits, such as allowing
more flexibility for design choices of HTN models:
the task hierarchy may be specified only partially,
since “missing required tasks” may be inserted dur-
ing planning rather than prior planning by means of
the (predefined) HTN methods.
While task insertion in a hierarchical planning set-
ting has already been applied in practice, its theo-
retical properties have not been studied in detail,
yet – only EXPSPACE membership is known so
far. We lower that bound proving NEXPTIME-
completeness and further prove tight complexity
bounds along two axes: whether variables are al-
lowed in method and action schemas, and whether
methods must be totally ordered. We also intro-
duce a new planning technique called acyclic pro-
gression, which we use to define provably efficient
TIHTN planning algorithms.

1 Introduction
Hierarchical Task Network (HTN) planning [Erol et al.,
1996] is a planning approach, where solutions are gener-
ated via step-wise refinement of an initial task network in
a top-down manner. Task networks may contain both com-
pound and primitive tasks. Whereas primitive tasks corre-
spond to standard STRIPS-like actions that can be applied
in states where their preconditions are met, compound tasks
are abstractions thereof. That is, for every compound task,
the domain features a set of decomposition methods, each
mapping that task to a task network. Solutions are ob-
tained by applying methods to compound tasks thereby re-
placing these tasks by the task network of the respective
method. HTN planning is strictly more expressive than non-
hierarchical (i.e., classical) planning. That is, solutions of
HTN problems may be structured in a way that are more com-
plex than solutions of classical planning problems [Höller
et al., 2014]. However, HTN planning is also harder than

Table 1: Summary of our TIHTN plan existence results (not
including Corollary 7). All results are completeness results.

Ordering Variables Complexity Theorem
total no PSPACE Thm. 3
total yes EXPSPACE Thm. 4

partial no NEXPTIME Thm. 5, 6
partial yes 2-NEXPTIME Thm. 5, 6

classical planning. The complexity of the plan existence
problem ranges up to undecidable even for propositional
HTN planning [Erol et al., 1996; Geier and Bercher, 2011;
Alford et al., 2015]. Even the verification of HTN solutions
is harder than in classical planning [Behnke et al., 2015].

Hierarchical planning approaches are often chosen for real-
world application scenarios [Nau et al., 2005; Lin et al., 2008;
Biundo et al., 2011] due to the ability to specify solution
strategies in terms of methods, but also because human ex-
pert knowledge is often structured in a hierarchical way and
can thus be smoothly integrated into HTN planning mod-
els. On the other side, these methods also make HTN
planning less flexible than non-hierarchical approaches, be-
cause only those solutions may be generated that are “reach-
able” via the decomposition of the methods. So, defining
only a partially hierarchical domain is not sufficient to pro-
duce all desired solutions. Several HTN researchers have
thus investigated how partially hierarchical domain knowl-
edge can be exploited during planning without relying on the
restricted (standard) HTN formalism [Kambhampati et al.,
1998; Biundo and Schattenberg, 2001; Alford et al., 2009;
Geier and Bercher, 2011; Shivashankar et al., 2013].

The most natural way to overcome that restriction is to al-
low both the definition and decomposition of compound tasks
and the insertion of tasks from outside the decomposition hi-
erarchy as it is done, for example, by Kambhampati et al.
(1998) and Biundo and Schattenberg (2001) in Hybrid Plan-
ning – a planning approach fusing HTN planning with Partial-
Order Causal-Link (POCL) planning.

This additional flexibility also pays off in terms of compu-
tational complexity: allowing arbitrary insertion of tasks into
task networks lowers the complexity of the plan existence
problem from undecidable (for standard HTN planning) to



EXPSPACE membership (for HTN planning with task inser-
tion – TIHTN planning) [Geier and Bercher, 2011]. This re-
duction of the complexity also has its negative consequences,
however. Some planning problems that can be easily ex-
pressed in the HTN planning setting may not be expressed
in the TIHTN setting (others only with a blowup of the prob-
lem size) [Höller et al., 2014]. Also, the set of TIHTN solu-
tions of a problem may not correspond to the ones the domain
modeler intended: in HTN planning – as opposed to TIHTN
planning – only those plans are regarded solutions that can be
obtained by decomposition only. Thus, certain plans may be
ruled out even if they are executable.

In this paper, we investigate the influence of method struc-
ture (partially vs. totally ordered) and of variables (proposi-
tional vs. lifted TIHTN problems), and provide tight com-
plexity bounds of the plan existence problem for the four
resulting classes of TIHTN problems. The results are sum-
marized in Table 1 (and compared to the respective results
from HTN planning in Table 2 in the last section). Notably,
we show that propositional TIHTN planning is NEXPTIME-
complete, easier than the previously known EXPSPACE up-
per bound. Besides providing tight complexity bounds for
the plan existence problem, another contribution is a new al-
gorithm, called acyclic progression, that efficiently solves TI-
HTN problems. The paper closes with a discussion about the
new complexity findings for TIHTN planning that puts them
into context of already known results for HTN planning.

2 Lifted HTN Planning with Task Insertion
Geier and Bercher (2011) defined a propositional (set-
theoretic) formalization of HTN and TIHTN planning prob-
lems. Both problem classes are syntactically identical – they
differ only in the solution criteria. Recently, we extended
their formalization of HTN planning to a lifted representa-
tion based upon a function-free first order language [Alford
et al., 2015], where the semantics are given via grounding.
For the purpose of this paper, we replicate the definitions for
lifted HTN planning and extend them by task insertion to al-
low specifying lifted TIHTN planning problems.

Task names represent activities to accomplish and are syn-
tactically first-order atoms. Given a set of task names X , a
task network is a tuple tn = (T,≺, α) such that:

• T is a finite nonempty set of task symbols.

• ≺ is a strict partial order over T .

• α : T → X maps from task symbols to task names.

Since task networks are only partially ordered and any task
name might be required to occur several times, we need a way
to “identify” them uniquely. For that purpose, we use the task
symbols T as unique place holders. A task network is called
ground if all task names occurring in it are variable-free.

A lifted TIHTN problem is a tuple (L,O,M, sI , tnI),
where:

• L is a function-free first order language with a finite set
of relations and constants.

• O is a set of operators, where each o ∈ O is a triple
(n, χ, e), n being its task name (referred to as name(o))

not occurring in L, χ being a first-order logic formula
called the precondition of o, and e being a conjunction
of positive and negative literals in L called the effects of
o. We refer to the set of task names in O as primitive.
• M is a set of (decomposition) methods, where each

method m is a pair (c, tn), c being a (non-primitive or
compound) task name, called the method’s head not oc-
curring in O or L, and tn being a task network, called
the method’s subtasks, defined over the names in O and
the method heads inM.
• sI is the (ground) initial state and tnI is the initial task

network that is defined over the names in O.
We define the semantics of lifted TIHTN planning through

grounding. For the details of the grounding process, we refer
to [Alford et al., 2015]. The ground (or propositional) TIHTN
planning problem obtained from (L,O,M, sI , tnI) is given
by P = (L, O,M, sI , tn

′
I).

The operators O form an implicit state-transition function
γ : 2L ×O → 2L for the problem, where:

• A state is any subset of the ground atoms in L. The finite
set of states in a problem is denoted by 2L;
• o is applicable in a state s iff s |= prec(o);
• γ(s, o) is defined iff o is applicable in s; and
• γ(s, o) = (s \ del(o)) ∪ add(o).

Executability A sequence of ground operators 〈o1, . . . , on〉
is executable in a state s0 iff there exists a sequence of states
s1, . . . , sn such that ∀1≤i≤nγ (si−1, oi) = si. A ground task
network tn = (T,≺, α) is primitive iff it contains only task
names fromO. tn is executable in a state s0 iff tn is primitive
and there exists a total ordering t1, . . . , tn of T consistent
with ≺ such that 〈α (t1) , . . . , α (tn)〉 is executable in s0.

Task Decomposition Primitive task networks can only be
obtained by refining the initial task network via decomposi-
tion of compound tasks. Intuitively, decomposition is done
by selecting a task with a non-primitive task name, and re-
placing the task in the network with the task network of a
corresponding method. More formally, let tn = (T,≺, α) be
a task network and let m = (α(t), (Tm,≺m, αm)) ∈ M be
a method. Without loss of generality, assume T ∩ Tm = ∅.
Then the decomposition of t in tn by m into a task network
tn′, written tn−−→t,m D tn′, is given by:

T ′ := (T \ {t}) ∪ Tm
≺′ := {(t, t′) ∈ ≺ | t, t′ ∈ T ′} ∪ ≺m

∪ {(t1, t2) ∈ Tm × T | (t, t2) ∈ ≺}
∪ {(t1, t2) ∈ T × Tm | (t1, t) ∈ ≺}

α′ := {(t, n) ∈ α | t ∈ T ′} ∪ αm

tn′ := (T ′,≺′, α′)
If tn′ is reachable by any finite sequence of decompositions
of tn, we write tn→∗D tn′.

Task Insertion TIHTN planning, in addition to decompo-
sition, allows tasks to be inserted directly into task networks.
Let tn = (T,≺, α) be a task network, t be a fresh task sym-
bol not in T , and o be a primitive task name. Then task



insertion, written tn −−→t,o I tn
′, results in the task network

tn′ = (T ∪ {t} ,≺, α ∪ {(t, o)}). If tn′ is reachable by any
sequence of insertions to tn, we write tn→∗I tn′.

Task insertion commutes with decomposition, i.e., if
tn1 −−→t,m D tn2 −−→t′,o I tn3, then there exists a tn′2 such that
tn1 −−→t′,o I tn

′
2
−−→
t,m D tn3. If tn′ is reachable by any sequence

of decompositions and insertions to tn, we write tn→∗DI tn
′.

Solutions Under HTN semantics, a problem P is solv-
able iff tnI →∗D tn′ and tn′ is executable in sI . The task
network tn′ is then called an HTN solution of P . Under
TIHTN semantics, P is solvable iff there exists a tn′ such
that tnI →∗DI tn

′ and tn′ is executable in sI .
The following definitions go beyond those in [Alford et al.,

2015; Geier and Bercher, 2011].

Acyclic Decompositions Let tn be a task network se-
quence starting in tnI and ending in a task network tn′, s.t.
tnI →∗DI tn

′. For each network tnj ∈ tn, every task sym-
bol was either present in tnI , inserted directly via task in-
sertion, or is the result of a sequence of decompositions of
a task symbol in tnI . For the tasks arrived at by decompo-
sition, we can define their ancestors in the usual way: For
tni, tni+1 ∈ tn with tni −−−→ti,mi D tni+1, ti is an ancestor of
each task t′ ∈ tni+1 that comes from mi; and ancestry is
transitive, i.e., if ti is an ancestor of tj and tj is an ancestor of
tk, then ti is an ancestor of tk. tn is acyclic if for every task
t in its final task network, the ancestors of t all have unique
task names. Thus, an acyclic series of decompositions and
insertions tnI →∗DI tn

′ makes no use of recursive methods,
regardless of their presence in the set of methods.

Geier and Bercher (2011) represent ancestry using decom-
position trees and show that, given a TIHTN solution tn that
is obtained via cyclic method application, one can repeatedly
remove cycles (replacing orphaned sequences of decomposi-
tion with task insertion) to arrive at an acyclic solution tn′.

The next corollary follows as a special case of the applica-
tion of Lemma 1 and Lemma 2 by Geier and Bercher (2011).

Corollary 1. Let P = (L, O,M, sI , tnI) be a ground plan-
ning problem and let tn = (T,≺, α) be a task network such
that tnI →∗DI tn and 〈t1, . . . , tk〉 is an executable task se-
quence of tn that does not violate the ordering constraints
≺. Then there exists a task network tn′ = (T ′,≺′, α′)
with an acyclic decomposition tn→∗DI tn

′ and an executable
task sequence 〈t′1, . . . , t′k〉 of tn′ not violating α′, such that
∀iα (ti) = α′ (t′i).

3 Acyclic Progression for TIHTN Planning
HTN planners generally solve problems either using decom-
position directly [Erol et al., 1994; Bercher et al., 2014], or
by using progression [Nau et al., 2003], which interleaves
decomposition and finding a total executable order over the
primitive tasks [Alford et al., 2012]. Since progression-based
HTN algorithms can be efficient across a number of syntac-
tically identifiable classes of HTN problems [Alford et al.,
2015], it makes a useful starting point for designing efficient
TIHTN algorithms.

We define acyclic progression for TIHTN planning as a
procedure that performs progression on a current state. To

that end, it maintains a task network of primitive and com-
pound tasks that still need to be applied to the current state
or to be decomposed, respectively. To avoid recursive defi-
nitions, it maintains a set of ancestral task names. More pre-
cisely, search nodes are tuples (s, tn, h), where s is a state,
tn = (T,≺, α) is a task network, and h is a mapping of the
tasks in T to the set of ancestral task names, represented as
a set of task-task-name pairs. For each node, there are three
possible operations:
• Task insertion: If o is an operator such that s |=
prec(o), then (γ (s, o) , tn, h) is an acyclic progression
of (s, tn, h)
• Task application: If t ∈ T is an unconstrained primitive

task (∀t′ 6=tt
′ ⊀ t) and s |= prec (α (t)), then we can

apply α(t) to s and remove it from tn and h. So, given

T ′ := T \ {t}
≺′ := {(t1, t2) ∈ ≺ | t1 6= t ∧ t2 6= t}
α′ := {(t′, n) ∈ α | t′ 6= t}
tn′ := (T ′,≺′, α′)
h′ := {(t′, n) ∈ h | t′ 6= t}

then (γ (s, α (t)) , tn′, h′) is an acyclic progression of
(s, tn, h).
• Task decomposition: If t ∈ T is an unconstrained non-

primitive task, (α (t) , tnm) ∈M is method with tnm =
(Tm,≺m, αm), and none of the task names in α occur as
an ancestral task name of t in h, then we can decompose
t and update the history. So if tn−−→t,m D tn′ and

h′ := {(t′, n) ∈ h | t′ 6= t}
∪ {(tm, n) | tm ∈ Tm, (t, n) ∈ h}
∪ {(tm, α (t)) | tm ∈ Tm}

then (s, tn′, h′) is an acyclic progression of (s, tn, h).
If there is a sequence of acyclic progressions from the triple
(s, tn, h) to (s′, tn′, h′), we write (s, tn, h)→∗AP (s′, tn′, h′).
Notably, acyclic progression is only acyclic over decomposi-
tions, not states reached. If there is any sequence of acyclic
decompositions to an empty task network, then the problem
has a TIHTN solution:
Lemma 2. Given a ground planning problem P =
(L, O,M, sI , tnI), there is a series of acyclic progressions
(sI , tnI , ∅)→∗AP (s, tn∅, ∅) (where tn∅ is the empty task net-
work) if and only if P is solvable under TIHTN semantics.

Proof. (⇒) Let TD be the subsequence of the acyclic pro-
gression (sI , tnI , ∅) →∗AP (s, tn∅, ∅) containing all the de-
compositions performed, TA be the subsequence of task ap-
plications, TI be the subsequence of task insertions, and TIA
be the subsequence of both task applications and insertions.

Since task application only removes primitive tasks, TD
must be a decomposition of tnI to a primitive task network
tn′, specifically one with a partial order ≺′ which is con-
sistent with the order and content of task applications, TA.
Then, given that task insertion commutes with decomposi-
tion, TI gives us a set of insertions tn′→∗I tn′′, and TIA is a
witness that tn′′ has an executable ordering.



(⇐) If P is solvable, by Corollary 1 there is an acyclic de-
composition sequence tn such that tnI→∗Dtn, and a sequence
of insertions tn→∗I tn′ such that tn′ = (T ′,≺′, α′) has an ex-
ecutable ordering TIA = 〈t1, . . . , tk〉. Insertions commute
with both themselves and with decomposition, and decompo-
sitions commute with each other so long as one decomposed
task is not an ancestor of the other. So the following proce-
dure gives an acyclic progression of P to the empty network.
Given that ti is the last task from TIA to be applied to the
state (by insertion or application) and the current triple under
progression is (sj , tnj , hj):

• If there is a non-primitive task tj in tnj such that tj is an
ancestor of ti+1 in the sequence tn, use the decomposi-
tion from tn to decompose tj .

• If ti+1 exists in tnj , progress it out of the task network
with task application and move on to ti+2.

• Else, ti+1 was obtained by insertion, and so use inser-
tion to apply α′ (ti+1) to sj and move on to ti+1.

A problem’s acyclic progression bound is the size of the
largest task network reachable via any sequence of acyclic
progressions. Only decomposition can increase the task net-
work size. Since decomposition is required to be acyclic, ev-
ery problem has a finite acyclic progression bound. Given the
tree-like structure of decomposition, if m is the max number
of subtasks in any method and n is the number of task names,
and T is the set of task symbols in the initial task network,
then |T | ·mn is an acyclic progression bound of the problem.

If methods are totally ordered (i.e., the ≺ relation in each
method is a total order), then we reach a much tighter bound:

Theorem 3. Propositional TIHTN planning for problems
with totally-ordered methods is PSPACE-complete.

Proof. Classical planning provides a PSPACE lower bound
[Geier and Bercher, 2011]. Here, we provide an upper bound.

Let P = (L, O,M, sI , tnI) be a ground TIHTN problem
where each method is totally ordered. The initial task network
tnI may be partially ordered. Letting tnI = (T,≺, α), there
are |T | initial tasks. Since the methods are totally ordered,
any sequence of progressions (sI , tnI , ∅)→∗AP (s, tn, h) pre-
serves that tn can be described by the relationship of |T | or
fewer totally ordered chains of tasks.

Progression can only affect the unconstrained tasks in the
chains. While the acyclic decomposition phase of progression
can lengthen a chain by m− 1 tasks (m being the size of the
largest method), each of those tasks has a strictly larger set of
ancestral task names, and the size of that set is capped. If n is
the number of ground task names, each chain can only grow
to a length of n · (m− 1). So the acyclic progression bound
of problems with totally ordered methods is |T | ·n · (m− 1).
Since the size of any state is also polynomial, totally ordered
proposition TIHTN plan existence is PSPACE-complete.

Theorem 4. TIHTN planning is EXPSPACE-complete for
lifted problems with totally-ordered methods.

Proof. Grounding a lifted domain produces a worst-case ex-
ponential increase in the number of task names providing

EXPSPACE membership. Lifted classical planning provides
the EXPSPACE lower bound [Erol et al., 1995].

4 22
k Bottles of Beer on the Wall

At most 2L tasks need to be inserted between each pair of
two consecutive primitive tasks in any acyclic decomposition
[Geier and Bercher, 2011]. This provides an upper bound on
the number of task insertions needed to show a TIHTN prob-
lem is solvable. The song “m Bottles of Beer on the Wall”
uses a decimal counter to encode a bound on the number of
refrains in space logarithmic to m [Knuth, 1977]. Much like
this, we will give transformations of TIHTN operators so that
a binary counter ensures strict upper bounds on the number
of primitive tasks in any solution. This will limit the length
of any sequence of progressions, giving us upper complexity
bounds for TIHTN planning.

Clearly, we could just limit acyclic progression to a
bounded depth instead. However we will also use the bound-
ing transformation below in the following section to provide
a polynomial transformation of acyclic HTN problems which
preserves solvability under TIHTN semantics.

Let P be a propositional problem with a set of operators
O and language L. Given a bound of the form 2k, we create
a language L′ which contains L and the following proposi-
tions: counting, count init , and counteri and decrementi
for i ∈ {1 . . . k + 1}. We define the operator setO′ to be each
operator inO with the added the precondition ¬counting and
the additional effect counting ∧ decrement1. We define an-
other set of operators Ocount with the following operators:

• (count init op,¬count init , count init ∧ counterk),
initializing the counter to the value 2k.

• (decrement i 0 op, pre, eff ) for i ∈ {1..k}, where:

pre := count init ∧ decrementi ∧ ¬counteri
eff := ¬decrementi ∧ decrementi+1 ∧ counteri

setting the ith bit of the counter to 1 if it was zero and
moves on to the next bit.

• (decrement i 1 op, pre, eff ) for i ∈ {1..k}, where:

pre := count init ∧ decrementi ∧ counteri
eff := ¬decrementi ∧ ¬counting ∧ ¬counteri

setting the ith bit of the counter to 0 and stops counting.

Then in the problem P ′ with operators O′ ∪ Ocount and the
language L′, any executable sequence consists of an alternat-
ing pattern of an operator from O′ followed by a sequence
of counting operators from Ocount. Since there is no oper-
ator to decrement counterk+1, we can only apply 2k opera-
tors from O′ to the state. Notice that by setting the appropri-
ate counteri propositions in the count init op operator, we
could have expressed any bound between 0 and 2k+1 − 1.

We can extend this to doubly-exponential bounds for lifted
problems. Let P be a lifted problem with language L and
operators O, and let 22

k

be our bound on operators from
O to encode. Let L′ contain L and the following predi-
cates: counting(), count init(), and counter (v1, . . . , vk)



and decrement (v1, . . . , vk), and let 0, 1 be arbitrary distinct
constants in L′.

As with the counteri predicates, the ground counter(. . .)
predicates will express a binary counter in the state, with
a binary index (the variables) into the exponential num-
ber of bits. Let cr1 . . . , crk be predicates such that each
cri has the form counter (vk, . . . , vi+1, 0, 1, . . . , 1) and let
dec1 . . . , deck be predicates such that each deci has the form
decrement (vk, . . . , vi+1, 0, 1, . . . , 1) where each vm is a
variable. So:
• dec1 = decrement (vk, . . . , v2, 0)

• dec2 = decrement (vk, . . . , v3, 0, 1)

• deck−1 = decrement (vk, 0, 1, . . . , 1), and
• deck = decrement (0, 1, . . . , 1)

Similarly, let dec′1, . . . , dec
′
k be predicates of the form

decrement (vk, . . . , vi+1, 1, 0, . . . , 0), so:
• dec′1 = decrement (vk, . . . , v2, 1)

• dec′2 = decrement (vk, . . . , v3, 1, 0)

• dec′k−1 = decrement (vk, 1, 0, . . . , 0)

• dec′k = decrement (1, 0, . . . , 0)

So if v is an assignment of v1, . . . , vk to {0, 1} and we view
the proposition deci [v] as an instruction to decrement the jth
bit of the counter, then dec′i [v] is for decrementing the bit
with index j + 1.

Let O′ consist of each operator in O with the added
the precondition ¬counting() and the additional effect
counting() ∧ decrement (0, . . . , 0). We define Ocount to
be the following operators:
• (count init op(), pre, eff ), where:

pre := ¬count init()

eff := count init() ∧ counter (1, 0, . . . , 0)

which initializes the counter to the value 22
k

.
• (decrement i 0 op(), pre, eff ) for i ∈ {1..k}, where:

pre := count init() ∧ deci ∧ ¬cri
eff := ¬deci ∧ deci+1 ∧ cri

which, if v is an assignment of v1, . . . , vk to {0, 1}, sets
cri [v] to 1 if it was zero and moves on to the next bit.
• (decrement i 1 op(), pre, eff ) for i ∈ {1..k}, where:

pre := count init() ∧ deci ∧ cri
eff := ¬deci ∧ ¬counting() ∧ ¬cri

which, if v is an assignment of v1, . . . , vk to {0, 1}, sets
cri [v] to 0 and stops counting.

So after decrement (0, . . . , 0) is set by an operator (and
count init op() has been applied in the past), the only legal
sequence of operators involves stepping sequentially through
the 2j possible counter (. . .) predicates until the decrement
operation is finished.

Similar to the propositional transformation, we can start
the counter at some number which is a polynomial sum of

2i for i ∈
{
1..2k

}
. These two transformations are the dual

of the counting tasks in Theorems 4.1 and 4.2 from Alford
et al. (2015). Where the counting tasks gave methods that
enforced exactly 2k and 22

k

repetitions of a given task be
in any solution, this transformation ensures that there are no
more than the specified number of primitive tasks.

Theorem 5. Propositional TIHTN planning is in
NEXPTIME; lifted TIHTN planning is in 2-NEXPTIME.

Proof. Use the appropriate transformation from above to
limit the number of primitive operators in any solution to
|T | · mn · 2L, where |T | is the number of tasks in the ini-
tial network, m is the max method size, n is the number
of non-primitive task names in the grounded problem (ex-
ponential for lifted problems), and 2L is the total number
unique states expressible by L. This ensures every sequence
of acyclic progressions ends after an exponential number of
steps for propositional problems and a doubly-exponential
number of steps for lifted problems. Thus, a depth-first
non-deterministic application of acyclic progression until it
reaches a solution or can progress no more is enough to prove
the existence of a TIHTN solution.

5 Acylic HTN Planning with TIHTN Planners
Theorem 5 provides upper bounds for TIHTN planning. Sec-
tion 2 describes acyclic decomposition. An acyclic prob-
lem is one in which every sequence of decompositions is
acyclic [Erol et al., 1996; Alford et al., 2012]. HTN plan
existence for propositional partially ordered acyclic prob-
lems is NEXPTIME-complete and 2-NEXPTIME-complete
for lifted partially ordered acyclic problems.

Theorem 6.1 of [Alford et al., 2015] encodes NEXPTIME-
and 2-NEXPTIME-bounded Turing machines almost entirely
within the task network of propositional and lifted acyclic
HTN problems, respectively. Of particular interest here,
though, is that, for a given time bound and Turing machine,
every primitive decomposition of the initial task network in
these encodings has exactly the same number of primitive
tasks. This lets us use the bounding transformation from Sec-
tion 4 to prevent rogue task insertion under TIHTN semantics:

Theorem 6. Propositional TIHTN planning is NEXPTIME-
hard; lifted TIHTN planning is 2-NEXPTIME-hard.

Proof. LetN be a nondeterministic Turing machine (NTM),
let K = 22

k

be the time bound for N , and let P with opera-
torsO be the encoding ofN as a lifted acyclic HTN problem.

One can calculate exactly how many primitive tasks are in
any decomposition of P , but it is roughly of the form B =
c ·K2+d ·K+1 for constants c and d, which we can express
as a polynomial sum of 22

i

. Let P ′ be the B-task-bounded
transformation of P .

From the hardness proof of Theorem 6.1 of [Alford et al.,
2015], we know: if N can be in an accepting state after K
steps, there is an executable primitive decomposition of P
with B tasks from O, and so P ′ has a TIHTN solution.

Let tn be a non-executable primitive decomposition of the
initial task network, tnI →∗D tn. Since the bounding trans-
formation does not affect the methods, this decomposition



Table 2: Comparison of the complexity classes for HTN plan-
ning (completeness results) from [Alford et al., 2015] with
our TIHTN planning results (indicated by TI=yes).

Vars. Ordering TI Recursion Complexity
no total no acyclic PSPACE
no total no regular PSPACE
no total no tail PSPACE
no total no arbitrary EXPTIME
no total yes – PSPACE

no partial no acyclic NEXPTIME
no partial no regular PSPACE
no partial no tail EXPSPACE
no partial no arbitrary undecidable
no partial yes regular PSPACE
no partial yes – NEXPTIME

yes total no acyclic EXPSPACE
yes total no regular EXPSPACE
yes total no tail EXPSPACE
yes total no arbitrary 2-EXPTIME
yes total yes – EXPSPACE

yes partial no acyclic 2-NEXPTIME
yes partial no regular EXPSPACE
yes partial no tail 2-EXPSPACE
yes partial no arbitrary undecidable
yes partial yes regular EXPSPACE
yes partial yes – 2-NEXPTIME

sequence is also legal in P ′ (with operators O′ ∪ Ocount ).
Since any insertions of operators from O′ would put tn over
the limit B, no sequence of insertions can make this task net-
work executable in P ′. Thus if no run of N is in an accepting
state after K steps, no primitive decomposition of P is exe-
cutable, and there is no TIHTN solution to P ′.

Since P ′ has a TIHTN solution iff P has a solution, and
P encodes a 22

k

-bounded NTM, lifted TIHTN planning is
2-NEXPTIME-hard.

The proof is the same for propositional TIHTN problems
using the propositional encoding of 2k time-bounded NTMs
into acyclic HTN problems, so propositional acyclic TIHTN
planning is NEXPTIME-hard.

As a corollary, we obtain NEXPTIME and 2-NEXPTIME
completeness for propositional and lifted TIHTN planning,
respectively.

6 A comparison with HTN complexity classes
Based on the recursion structure classification for HTN prob-
lems [Alford et al., 2012], we now have an extensive classifi-
cation of HTN problems by structure and complexity:

• Acyclic problems, discussed earlier, where every decom-
position is guaranteed to be acyclic.

• Tail-recursive problems, where methods can only re-
curse through their last task. All acyclic problems are
also tail-recursive.

• Arbitrary-recursive problems, which includes all HTN
problems.

However, by Corollary 1, non-acyclic (i.e., cyclic) decompo-
sitions can be ignored, limiting the impact of recursion struc-
ture on the complexity of TIHTN planning.

This is not to say that method structure (outside of order-
ing) has no effect on the complexity of TIHTN planning. For
instance, regular TIHTN problems (defined by Erol et al.
(1996) for HTN planning) with a partially ordered initial task
network and partially ordered methods are easier than non-
regular (partially ordered) problems. Regular problems are a
special case of tail-recursive problems, where every method
is constrained to have at most one non-primitive task in the
method’s network, and that task must be constrained to come
after all the primitive tasks. Regular problems have a linear
progression bound regardless of whether the primitive tasks
are totally-ordered amongst themselves. Since acyclic pro-
gression is a special case of progression, regular problems
have linear acyclic progression bounds, and thus partially
ordered regular problems have the same complexity under
TIHTN semantics as totally-ordered regular problems:
Corollary 7. TIHTN plan-existence for regular problems
is PSPACE-complete when they are propositional, and
EXPSPACE-complete otherwise, regardless of ordering.

There are also times when HTN planning is simpler than
TIHTN planning. Alford et al. (2014) show that HTN plan-
ning for propositional regular problems which are also acyclic
is NP-complete. Since an empty set of methods and a sin-
gle primitive task in the initial network is enough to encode
classical planning problems under TIHTN semantics, acyclic-
regular problems are still PSPACE-hard for propositional do-
mains and EXPSPACE-hard when lifted.

So, while TIHTN planning is not always easier than HTN
planning, we have shown that its complexity hierarchy is,
in general, both simpler and less sensitive to method struc-
tures. In future work, we want to investigate the plan exis-
tence problem along the further axis of syntactic restrictions
on the task hierarchy and methods: Alford et al. (2015) de-
fines a new restriction on HTN problems, that of constant-free
methods, that forbids mixing constants and variables in task
names appearing in methods. This significantly reduces the
progression bound for lifted partially ordered acyclic and tail
recursive problems, and thus may also impact the complexity
of those problems under TIHTN semantics.

7 Conclusions
We studied the plan existence problem for TIHTN planning,
a hierarchical planning framework that allows more flexibil-
ity than standard HTN planning. The complexity varies from
PSPACE-complete for the totally ordered propositional set-
ting to 2-NEXPTIME-complete for TIHTN planning where
variables are allowed and the methods’ task networks may be
only partially ordered.

We showed that totally ordered TIHTN planning has the
same plan existence complexity as classical planning (both
with and without variables). Given that plan existence for
both delete-relaxed propositional TIHTN and classical prob-
lems is in polynomial time [Alford et al., 2014], we hope that



many of the algorithms and heuristics developed for classical
planning can be adapted for totally-ordered TIHTN problems.

We also provided a new planning technique for TIHTN
planning, called acyclic progression, that let us define prov-
ably efficient TIHTN planning algorithms. We hope it in-
spires the creation of future planners that are both provably
and empirically efficient.
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