
On the Complexity of HTN Plan Verification and its
Implications for Plan Recognition

Gregor Behnke, Daniel Höller, Susanne Biundo

Ulm University, Institute of Artificial Intelligence

June 9, 2015

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Verification

Are we there yet?

• O(n) for totally ordered classical plans

• O(n2) for POCL plans

• NP-complete for PO planning (Chapman 1987; Nebel and Bäckström
1994)

• ΠP
2 -complete for a plans with control structures (Lang and Zanuttini 2012)

• unknown for HTN planning

2

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Verification

Are we there yet?

• O(n) for totally ordered classical plans

• O(n2) for POCL plans

• NP-complete for PO planning (Chapman 1987; Nebel and Bäckström
1994)

• ΠP
2 -complete for a plans with control structures (Lang and Zanuttini 2012)

• unknown for HTN planning

2

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Verification

Are we there yet?

• O(n) for totally ordered classical plans

• O(n2) for POCL plans

• NP-complete for PO planning (Chapman 1987; Nebel and Bäckström
1994)

• ΠP
2 -complete for a plans with control structures (Lang and Zanuttini 2012)

• unknown for HTN planning

2

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Verification

Are we there yet?

• O(n) for totally ordered classical plans

• O(n2) for POCL plans

• NP-complete for PO planning (Chapman 1987; Nebel and Bäckström
1994)

• ΠP
2 -complete for a plans with control structures (Lang and Zanuttini 2012)

• unknown for HTN planning

2

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Verification

Are we there yet?

• O(n) for totally ordered classical plans

• O(n2) for POCL plans

• NP-complete for PO planning (Chapman 1987; Nebel and Bäckström
1994)

• ΠP
2 -complete for a plans with control structures (Lang and Zanuttini 2012)

• unknown for HTN planning

2

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Verification

Are we there yet?
cI

• O(n) for totally ordered classical plans

• O(n2) for POCL plans

• NP-complete for PO planning (Chapman 1987; Nebel and Bäckström
1994)

• ΠP
2 -complete for a plans with control structures (Lang and Zanuttini 2012)

• unknown for HTN planning

2

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification

• post-optimization of solutions

• plan repair

• implications for Plan Recognition (HTN Plan Libraries)

What have we done?

1 HTN Plan Verification is NP complete
2 Plan Compatibility is NP complete
3 implications for Plan Recognition

3

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification

• post-optimization of solutions

• plan repair

• implications for Plan Recognition (HTN Plan Libraries)

What have we done?

1 HTN Plan Verification is NP complete
2 Plan Compatibility is NP complete
3 implications for Plan Recognition

3

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification

• post-optimization of solutions

• plan repair

• implications for Plan Recognition (HTN Plan Libraries)

What have we done?

1 HTN Plan Verification is NP complete
2 Plan Compatibility is NP complete
3 implications for Plan Recognition

3

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification

• post-optimization of solutions

• plan repair

• implications for Plan Recognition (HTN Plan Libraries)

What have we done?

1 HTN Plan Verification is NP complete
2 Plan Compatibility is NP complete
3 implications for Plan Recognition

3

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification

• post-optimization of solutions

• plan repair

• implications for Plan Recognition (HTN Plan Libraries)

What have we done?

1 HTN Plan Verification is NP complete
2 Plan Compatibility is NP complete
3 implications for Plan Recognition

3

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification

• post-optimization of solutions

• plan repair

• implications for Plan Recognition (HTN Plan Libraries)

What have we done?

1 HTN Plan Verification is NP complete

2 Plan Compatibility is NP complete
3 implications for Plan Recognition

3

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification

• post-optimization of solutions

• plan repair

• implications for Plan Recognition (HTN Plan Libraries)

What have we done?

1 HTN Plan Verification is NP complete
2 Plan Compatibility is NP complete

3 implications for Plan Recognition

3

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification

• post-optimization of solutions

• plan repair

• implications for Plan Recognition (HTN Plan Libraries)

What have we done?

1 HTN Plan Verification is NP complete
2 Plan Compatibility is NP complete
3 implications for Plan Recognition

3

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of fluent

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearization,
executable from the initial state

4

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

primitive compound

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of fluent

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearization,
executable from the initial state

4

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

cI

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of fluent

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearization,
executable from the initial state

4

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

cI

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of fluent

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearization,
executable from the initial state

4

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

cI

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of fluent

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearization,
executable from the initial state

4

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

cI

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of fluent

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearization,
executable from the initial state

4

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

cI

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of fluent

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearization,
executable from the initial state

4

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

cI

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of fluent

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearization,
executable from the initial state

4

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

cI

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of fluent

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearization,
executable from the initial state

4

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

cI

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of fluent

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearization,
executable from the initial state

4

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

cI

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of fluent

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearization,
executable from the initial state

4

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

cI

sI

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of fluent

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearization,
executable from the initial state

4

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Verification

Definition (VERIFYTN)
Let P be a planning problem and tn be a task network.
Decide whether tn ∈ Sol(P).

What do we have to check?

• refinement

• primitive

• executability

cI

5

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Verification

Definition (VERIFYTN)
Let P be a planning problem and tn be a task network.
Decide whether tn ∈ Sol(P).

What do we have to check?

• refinement

• primitive

• executability

cI

5

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Verification

Definition (VERIFYTN)
Let P be a planning problem and tn be a task network.
Decide whether tn ∈ Sol(P).

What do we have to check?

• refinement

• primitive

• executability

cI

5

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Verification

Definition (VERIFYTN)
Let P be a planning problem and tn be a task network.
Decide whether tn ∈ Sol(P).

What do we have to check?

• refinement

• primitive

• executability

cI

5

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Verification

Definition (VERIFYTN)
Let P be a planning problem and tn be a task network.
Decide whether tn ∈ Sol(P).

What do we have to check?

• refinement

• primitive

• executability

cI

5

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYTN: NP-hardness

Theorem
VERIFYTN is NP-hard

Proof.
cI

Checking whether a partially ordered set of
actions has an executable linearization is
NP-hard1.

1(Erol, Hendler, and Nau 1994; Nebel and Bäckström 1994)
6

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYTN: NP-hardness

Theorem
VERIFYTN is NP-hard

Proof.
cI

Checking whether a partially ordered set of
actions has an executable linearization is
NP-hard1.

1(Erol, Hendler, and Nau 1994; Nebel and Bäckström 1994)
6

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYTN: NP-membership

Theorem
VERIFYTN is in NP

Proof.
Adapt the proof by Höller et al. (2014), showing that Sol(P) form a context
sensitive language.

1 guess a linearization and check executability
2 guess decompositions and check them

cI

7

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYTN: NP-membership

Theorem
VERIFYTN is in NP

Proof.
Adapt the proof by Höller et al. (2014), showing that Sol(P) form a context
sensitive language.

1 guess a linearization and check executability
2 guess decompositions and check them

cI

7

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYTN: NP-membership

Theorem
VERIFYTN is in NP

Proof.
Adapt the proof by Höller et al. (2014), showing that Sol(P) form a context
sensitive language.

1 guess a linearization and check executability

2 guess decompositions and check them

cI

7

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYTN: NP-membership

Theorem
VERIFYTN is in NP

Proof.
Adapt the proof by Höller et al. (2014), showing that Sol(P) form a context
sensitive language.

1 guess a linearization and check executability
2 guess decompositions and check them

cI

7

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYTN: NP-membership

Proof. (continued)

starting with cI , guess decompositions and apply them
repeat until tn has been found
Not sufficient (termination)

cI
. . .

A B

tn
. . .

• handle decompositions with |tnm| = 0

• estimate maximal number of decompositions with |tnm| ≥ 1 needed to
obtain any task network of size |tn|

• result: |tn|(|C|+ 1)

• abort if more decompositions have been applied

8

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYTN: NP-membership

Proof. (continued)
starting with cI , guess decompositions and apply them
repeat until tn has been found

Not sufficient (termination)

cI
. . .

A B

tn
. . .

• handle decompositions with |tnm| = 0

• estimate maximal number of decompositions with |tnm| ≥ 1 needed to
obtain any task network of size |tn|

• result: |tn|(|C|+ 1)

• abort if more decompositions have been applied

8

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYTN: NP-membership

Proof. (continued)
starting with cI , guess decompositions and apply them
repeat until tn has been found
Not sufficient (termination)

cI
. . .

A B

tn
. . .

• handle decompositions with |tnm| = 0

• estimate maximal number of decompositions with |tnm| ≥ 1 needed to
obtain any task network of size |tn|

• result: |tn|(|C|+ 1)

• abort if more decompositions have been applied

8

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYTN: NP-membership

Proof. (continued)
starting with cI , guess decompositions and apply them
repeat until tn has been found
Not sufficient (termination)

cI
. . .

A B

tn
. . .

• handle decompositions with |tnm| = 0

• estimate maximal number of decompositions with |tnm| ≥ 1 needed to
obtain any task network of size |tn|

• result: |tn|(|C|+ 1)

• abort if more decompositions have been applied

8

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYTN: NP-membership

Proof. (continued)
starting with cI , guess decompositions and apply them
repeat until tn has been found
Not sufficient (termination)

cI
. . .

A B

tn
. . .

• handle decompositions with |tnm| = 0

• estimate maximal number of decompositions with |tnm| ≥ 1 needed to
obtain any task network of size |tn|

• result: |tn|(|C|+ 1)

• abort if more decompositions have been applied

8

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYTN: NP-membership

Proof. (continued)
starting with cI , guess decompositions and apply them
repeat until tn has been found
Not sufficient (termination)

cI
. . .

A B

tn
. . .

• handle decompositions with |tnm| = 0

• estimate maximal number of decompositions with |tnm| ≥ 1 needed to
obtain any task network of size |tn|

• result: |tn|(|C|+ 1)

• abort if more decompositions have been applied

8

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYTN: NP-membership

Proof. (continued)
starting with cI , guess decompositions and apply them
repeat until tn has been found
Not sufficient (termination)

cI
. . .

A B

tn
. . .

• handle decompositions with |tnm| = 0

• estimate maximal number of decompositions with |tnm| ≥ 1 needed to
obtain any task network of size |tn|

• result: |tn|(|C|+ 1)

• abort if more decompositions have been applied

8

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYTN: NP-membership

Proof. (continued)
starting with cI , guess decompositions and apply them
repeat until tn has been found
Not sufficient (termination)

cI
. . .

A B

tn
. . .

• handle decompositions with |tnm| = 0

• estimate maximal number of decompositions with |tnm| ≥ 1 needed to
obtain any task network of size |tn|

• result: |tn|(|C|+ 1)

• abort if more decompositions have been applied

8

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Verification

Main reason for NP-hardness:

Find an executable linearization.

Suppose we already have one.

• by an observation

• by using hybrid planning, fusing HTN and POCL

cI

Definition (VERIFYSEQ)
Let P be a planning problem and ω a sequence of actions.
Decide whether ∃tn∈Sol(P) and ω is an executable linearization of tn.

9

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Verification

Main reason for NP-hardness:

Find an executable linearization.

Suppose we already have one.

• by an observation

• by using hybrid planning, fusing HTN and POCL

cI

Definition (VERIFYSEQ)
Let P be a planning problem and ω a sequence of actions.
Decide whether ∃tn∈Sol(P) and ω is an executable linearization of tn.

9

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Verification

Main reason for NP-hardness:

Find an executable linearization.

Suppose we already have one.

• by an observation

• by using hybrid planning, fusing HTN and POCL

cI

Definition (VERIFYSEQ)
Let P be a planning problem and ω a sequence of actions.
Decide whether ∃tn∈Sol(P) and ω is an executable linearization of tn.

9

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Verification

Main reason for NP-hardness:

Find an executable linearization.

Suppose we already have one.

• by an observation

• by using hybrid planning, fusing HTN and POCL

cI

Definition (VERIFYSEQ)
Let P be a planning problem and ω a sequence of actions.
Decide whether ∃tn∈Sol(P) and ω is an executable linearization of tn.

9

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYSEQ: NP-membership

Theorem
VERIFYSEQ is in NP.

Proof.
Straightforward adaptation of previous proof.

10

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYSEQ: NP-membership

Theorem
VERIFYSEQ is in NP.

Proof.
Straightforward adaptation of previous proof.

10

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYSEQ: NP-hardness

Theorem
VERIFYSEQ is NP-hard.

Proof (idea).
Reduction from VERTEXCOVER.
Reminder: Decide, given a graph G = (V ,E) and a number k , whether
∃VC ⊆ V s.t. |VC | ≤ k and each edge e is adjacent to a node in the cover VC .

a

eab

b
ebc

c
ecg

g

egd

d

edc

ebd

• VC is chosen by decomposition of vertex-tasks

• ω ensures that ≤ k nodes are selected

11

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYSEQ: NP-hardness

Theorem
VERIFYSEQ is NP-hard.

Proof (idea).
Reduction from VERTEXCOVER.

Reminder: Decide, given a graph G = (V ,E) and a number k , whether
∃VC ⊆ V s.t. |VC | ≤ k and each edge e is adjacent to a node in the cover VC .

a

eab

b
ebc

c
ecg

g

egd

d

edc

ebd

• VC is chosen by decomposition of vertex-tasks

• ω ensures that ≤ k nodes are selected

11

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYSEQ: NP-hardness

Theorem
VERIFYSEQ is NP-hard.

Proof (idea).
Reduction from VERTEXCOVER.
Reminder: Decide, given a graph G = (V ,E) and a number k , whether
∃VC ⊆ V s.t. |VC | ≤ k and each edge e is adjacent to a node in the cover VC .

a

eab

b
ebc

c
ecg

g

egd

d

edc

ebd

• VC is chosen by decomposition of vertex-tasks

• ω ensures that ≤ k nodes are selected

11

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYSEQ: NP-hardness

Theorem
VERIFYSEQ is NP-hard.

Proof (idea).
Reduction from VERTEXCOVER.
Reminder: Decide, given a graph G = (V ,E) and a number k , whether
∃VC ⊆ V s.t. |VC | ≤ k and each edge e is adjacent to a node in the cover VC .

a

eab

b
ebc

c
ecg

g

egd

d

edc

ebd

• VC is chosen by decomposition of vertex-tasks

• ω ensures that ≤ k nodes are selected

11

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYSEQ: NP-hardness

Theorem
VERIFYSEQ is NP-hard.

Proof (idea).
Reduction from VERTEXCOVER.
Reminder: Decide, given a graph G = (V ,E) and a number k , whether
∃VC ⊆ V s.t. |VC | ≤ k and each edge e is adjacent to a node in the cover VC .

a

eab

b
ebc

c
ecg

g

egd

d

edc

ebd

• VC is chosen by decomposition of vertex-tasks

• ω ensures that ≤ k nodes are selected

11

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYSEQ: NP-hardness

NP-completeness holds even for severely restricted HTN Planning Problems

The constructed domain needs

• neither preconditions nor effects

• no ordering constraints

• no cycles in the decomposition hierarchy

• only a depth of 2 (1 with an initial task network)

12

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Recognition

• Given observed actions, decide which goal the user pursues

• Given observed actions, decide whether they can lead to a solution

• HTNs are commonly used as Plan Libraries

13

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Recognition

• Given observed actions, decide which goal the user pursues

• Given observed actions, decide whether they can lead to a solution

• HTNs are commonly used as Plan Libraries

13

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Recognition

• Given observed actions, decide which goal the user pursues

• Given observed actions, decide whether they can lead to a solution

• HTNs are commonly used as Plan Libraries

13

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Recognition

• Given observed actions, decide which goal the user pursues

• Given observed actions, decide whether they can lead to a solution

• HTNs are commonly used as Plan Libraries

13

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Recognition

Definition (PLANREG)
Let P be a planning problem and ω a sequence of actions.
Decide whether ∃tn∈Sol(P) and ω is a prefix of a linearization of tn.

cI

14

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Recognition

Definition (PLANREG)
Let P be a planning problem and ω a sequence of actions.
Decide whether ∃tn∈Sol(P) and ω is a prefix of a linearization of tn.

cI

14

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Recognition

Definition (PLANREG)
Let P be a planning problem and ω a sequence of actions.
Decide whether ∃tn∈Sol(P) and ω is a prefix of a linearization of tn.

cI

14

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Recognition

Definition (PLANREG)
Let P be a planning problem and ω a sequence of actions.
Decide whether ∃tn∈Sol(P) and ω is a prefix of a linearization of tn.

cI

14

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

PLANREC

Theorem
PLANREC is strictly semi-decidable.

Proof:
Undecidability: Choose ω = ε.
This is equivalent to the question whether Sol(P) 6= ∅.
Semi-decidability: Sol(P) is enumerable.
Generate next solution and check.

Suppose we know that the sequence is complete.

This is VERIFYSEQ, i.e., still NP-complete.

15

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

PLANREC

Theorem
PLANREC is strictly semi-decidable.

Proof:
Undecidability: Choose ω = ε.
This is equivalent to the question whether Sol(P) 6= ∅.

Semi-decidability: Sol(P) is enumerable.
Generate next solution and check.

Suppose we know that the sequence is complete.

This is VERIFYSEQ, i.e., still NP-complete.

15

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

PLANREC

Theorem
PLANREC is strictly semi-decidable.

Proof:
Undecidability: Choose ω = ε.
This is equivalent to the question whether Sol(P) 6= ∅.
Semi-decidability: Sol(P) is enumerable.
Generate next solution and check.

Suppose we know that the sequence is complete.

This is VERIFYSEQ, i.e., still NP-complete.

15

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

PLANREC

Theorem
PLANREC is strictly semi-decidable.

Proof:
Undecidability: Choose ω = ε.
This is equivalent to the question whether Sol(P) 6= ∅.
Semi-decidability: Sol(P) is enumerable.
Generate next solution and check.

Suppose we know that the sequence is complete.

This is VERIFYSEQ, i.e., still NP-complete.

15

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

PLANREC

Theorem
PLANREC is strictly semi-decidable.

Proof:
Undecidability: Choose ω = ε.
This is equivalent to the question whether Sol(P) 6= ∅.
Semi-decidability: Sol(P) is enumerable.
Generate next solution and check.

Suppose we know that the sequence is complete.

This is VERIFYSEQ, i.e., still NP-complete.

15

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Conclusion

• HTN Plan Verification is NP-complete
• for task networks
• for task sequences

• still NP-complete for severely restricted HTN Planning Problems

• HTN Plan Recognition is strictly semi-decidable

• even if the complete plan has been observed, it is still NP-complete

• Plan Compatibility is NP-complete

16

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Conclusion

• HTN Plan Verification is NP-complete
• for task networks
• for task sequences

• still NP-complete for severely restricted HTN Planning Problems

• HTN Plan Recognition is strictly semi-decidable

• even if the complete plan has been observed, it is still NP-complete

• Plan Compatibility is NP-complete

16

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Hierarchical Task Network Planning

A task network tn = (T ,≺, α) is a partially ordered set of tasks

• T is a finite set of tasks

• ≺ ⊆ T × T is a strict partial order on T

• α : T 7→ C ∪ O the action for each task

A planning problem is a 6-tuple P = (V ,O,C,M, cI , sI)

• V is a finite set of state variables

• O is a finite set of primitive tasks, for o ∈ O,
(prec(o), add(o), del(o)) ∈ 2V × 2V × 2V is an operator

• C is a finite set of compound tasks

• M ⊆ C × TN is a finite set of decomposition methods

• cI ∈ C is the initial task

• sI ∈ 2V is the initial state

17

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Hierarchical Task Network Planning

A task network tn = (T ,≺, α) is a partially ordered set of tasks

• T is a finite set of tasks

• ≺ ⊆ T × T is a strict partial order on T

• α : T 7→ C ∪ O the action for each task

A planning problem is a 6-tuple P = (V ,O,C,M, cI , sI)

• V is a finite set of state variables

• O is a finite set of primitive tasks, for o ∈ O,
(prec(o), add(o), del(o)) ∈ 2V × 2V × 2V is an operator

• C is a finite set of compound tasks

• M ⊆ C × TN is a finite set of decomposition methods

• cI ∈ C is the initial task

• sI ∈ 2V is the initial state

17

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Hierarchical Task Network Planning

A task network tn = (T ,≺, α) is a partially ordered set of tasks

• T is a finite set of tasks

• ≺ ⊆ T × T is a strict partial order on T

• α : T 7→ C ∪ O the action for each task

A planning problem is a 6-tuple P = (V ,O,C,M, cI , sI)

• V is a finite set of state variables

• O is a finite set of primitive tasks, for o ∈ O,
(prec(o), add(o), del(o)) ∈ 2V × 2V × 2V is an operator

• C is a finite set of compound tasks

• M ⊆ C × TN is a finite set of decomposition methods

• cI ∈ C is the initial task

• sI ∈ 2V is the initial state

17

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

HTN Modifications

Decomposition:

• Given a task network tn = (T ,≺, α),use method (t, tn′) ∈ M to replace
t ∈ T by tn′

Task Insertion:

• Insert primitive tasks from O

18

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

HTN Modifications

Decomposition:

• Given a task network tn = (T ,≺, α),use method (t, tn′) ∈ M to replace
t ∈ T by tn′

Task Insertion:

• Insert primitive tasks from O

18

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

HTN Solutions

• A task network tn is an HTN solution iff:
• tn is obtained via decomposition
• contains only primitive tasks
• there is an executable linearization of tn’s tasks

• SolHTN(P) denotes the set of all solutions to a problem P

• A task network tn is a TIHTN solution iff:
• tn is obtained by decomposition followed by insertion
• contains only primitive tasks
• there is an executable linearization of tn’s tasks

• SolTiHTN(P) denotes the set of all solutions to a problem P

19

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

HTN Solutions

• A task network tn is an HTN solution iff:
• tn is obtained via decomposition
• contains only primitive tasks
• there is an executable linearization of tn’s tasks

• SolHTN(P) denotes the set of all solutions to a problem P

• A task network tn is a TIHTN solution iff:
• tn is obtained by decomposition followed by insertion
• contains only primitive tasks
• there is an executable linearization of tn’s tasks

• SolTiHTN(P) denotes the set of all solutions to a problem P

19

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYSEQ: NP-membership and hardness

Theorem
VERIFYSEQ is in NP.

Proof.
Straightforward adaptation of previous proof.

• check executability of ω

• guess a tn with linearization ω

• check whether tn can be decomposed form cI

cI

20

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYSEQ: NP-membership and hardness

Theorem
VERIFYSEQ is in NP.

Proof.
Straightforward adaptation of previous proof.

• check executability of ω

• guess a tn with linearization ω

• check whether tn can be decomposed form cI

cI

20

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYSEQ: NP-membership and hardness

Theorem
VERIFYSEQ is in NP.

Proof.
Straightforward adaptation of previous proof.

• check executability of ω

• guess a tn with linearization ω

• check whether tn can be decomposed form cI

cI

20

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYSEQ: NP-membership and hardness

Theorem
VERIFYSEQ is in NP.

Proof.
Straightforward adaptation of previous proof.

• check executability of ω

• guess a tn with linearization ω

• check whether tn can be decomposed form cI

cI

20

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYSEQ: NP-membership and hardness

Theorem
VERIFYSEQ is in NP.

Proof.
Straightforward adaptation of previous proof.

• check executability of ω

• guess a tn with linearization ω

• check whether tn can be decomposed form cI

cI

20

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYSEQ: NP-hardness

• represent each edge by an abstract task

• decomposition determines which node is in the VC

• enforce with ω and other abstract tasks, that at most k
different tasks can be chosen

a

eab

b
ebc

c
ecg

g

egd

d

edc

ebd

cI

tf . . . tf
tnI

tn teab tebc tn tebd tecd
tedg tecg

tatatatatata tbtbtbtbtbtb

tns

tctctctctctc tdtdtdtdtdtd tgtgtgtgtgtg

21

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYSEQ: NP-hardness

• represent each edge by an abstract task

• decomposition determines which node is in the VC

• enforce with ω and other abstract tasks, that at most k
different tasks can be chosen

a

eab

b
ebc

c
ecg

g

egd

d

edc

ebd

cI

tf . . . tf
tnI

tn teab tebc tn tebd tecd
tedg tecg

tatatatatata tbtbtbtbtbtb

tns

tctctctctctc tdtdtdtdtdtd tgtgtgtgtgtg

21

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYSEQ: NP-hardness

• represent each edge by an abstract task

• decomposition determines which node is in the VC

• enforce with ω and other abstract tasks, that at most k
different tasks can be chosen

a

eab

b
ebc

c
ecg

g

egd

d

edc

ebd

cI

tf . . . tf
tnI

tn teab tebc tn tebd tecd
tedg tecg

tatatatatata tbtbtbtbtbtb

tns

tctctctctctc tdtdtdtdtdtd tgtgtgtgtgtg

21

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYSEQ: NP-hardness

• represent each edge by an abstract task

• decomposition determines which node is in the VC

• enforce with ω and other abstract tasks, that at most k
different tasks can be chosen

a

eab

b
ebc

c
ecg

g

egd

d

edc

ebd

cI

tf . . . tf
tnI

tn teab tebc tn tebd tecd
tedg tecg

tatatatatata tbtbtbtbtbtb

tns

tctctctctctc tdtdtdtdtdtd tgtgtgtgtgtg

21

On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYSEQ: NP-hardness

• represent each edge by an abstract task

• decomposition determines which node is in the VC

• enforce with ω and other abstract tasks, that at most k
different tasks can be chosen

a

eab

b
ebc

c
ecg

g

egd

d

edc

ebd

cI

tf . . . tf
tnI

tn teab tebc tn tebd tecd
tedg tecg

tatatatatata tbtbtbtbtbtb

tns

tctctctctctc tdtdtdtdtdtd tgtgtgtgtgtg

21

	Conclusion
	Appendix

