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Plan Verification

Are we there yet?

• O(n) for totally ordered classical plans

• O(n2) for POCL plans

• NP-complete for PO planning (Chapman 1987; Nebel and Bäckström
1994)

• ΠP
2 -complete for a plans with control structures (Lang and Zanuttini 2012)

• unknown for HTN planning

2



On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Plan Verification

Are we there yet?

• O(n) for totally ordered classical plans

• O(n2) for POCL plans

• NP-complete for PO planning (Chapman 1987; Nebel and Bäckström
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1994)

• ΠP
2 -complete for a plans with control structures (Lang and Zanuttini 2012)

• unknown for HTN planning

2



On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification

• post-optimization of solutions

• plan repair

• implications for Plan Recognition (HTN Plan Libraries)

What have we done?

1 HTN Plan Verification is NP complete
2 Plan Compatibility is NP complete
3 implications for Plan Recognition
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Hierarchical Task Network (HTN) Planning

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of fluent

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearization,
executable from the initial state

4
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Plan Verification

Definition (VERIFYTN)
Let P be a planning problem and tn be a task network.
Decide whether tn ∈ Sol(P).

What do we have to check?

• refinement

• primitive

• executability

cI
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VERIFYTN: NP-hardness

Theorem
VERIFYTN is NP-hard

Proof.
cI

Checking whether a partially ordered set of
actions has an executable linearization is
NP-hard1.

1(Erol, Hendler, and Nau 1994; Nebel and Bäckström 1994)
6
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6



On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYTN: NP-membership

Theorem
VERIFYTN is in NP

Proof.
Adapt the proof by Höller et al. (2014), showing that Sol(P) form a context
sensitive language.

1 guess a linearization and check executability
2 guess decompositions and check them

cI
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Adapt the proof by Höller et al. (2014), showing that Sol(P) form a context
sensitive language.

1 guess a linearization and check executability
2 guess decompositions and check them

cI

7



On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYTN: NP-membership

Theorem
VERIFYTN is in NP

Proof.
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Adapt the proof by Höller et al. (2014), showing that Sol(P) form a context
sensitive language.

1 guess a linearization and check executability
2 guess decompositions and check them

cI

7



On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYTN: NP-membership

Proof. (continued)

starting with cI , guess decompositions and apply them
repeat until tn has been found
Not sufficient (termination)

cI
. . .

A B

tn
. . .

• handle decompositions with |tnm| = 0

• estimate maximal number of decompositions with |tnm| ≥ 1 needed to
obtain any task network of size |tn|

• result: |tn|(|C|+ 1)

• abort if more decompositions have been applied

8
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Plan Verification

Main reason for NP-hardness:

Find an executable linearization.

Suppose we already have one.

• by an observation

• by using hybrid planning, fusing HTN and POCL

cI

Definition (VERIFYSEQ)
Let P be a planning problem and ω a sequence of actions.
Decide whether ∃tn∈Sol(P) and ω is an executable linearization of tn.

9
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VERIFYSEQ: NP-membership

Theorem
VERIFYSEQ is in NP.

Proof.
Straightforward adaptation of previous proof.
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VERIFYSEQ: NP-hardness

Theorem
VERIFYSEQ is NP-hard.

Proof (idea).
Reduction from VERTEXCOVER.
Reminder: Decide, given a graph G = (V ,E) and a number k , whether
∃VC ⊆ V s.t. |VC | ≤ k and each edge e is adjacent to a node in the cover VC .

a

eab

b
ebc

c
ecg

g

egd

d

edc

ebd

• VC is chosen by decomposition of vertex-tasks

• ω ensures that ≤ k nodes are selected

11
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VERIFYSEQ: NP-hardness

NP-completeness holds even for severely restricted HTN Planning Problems

The constructed domain needs

• neither preconditions nor effects

• no ordering constraints

• no cycles in the decomposition hierarchy

• only a depth of 2 (1 with an initial task network)

12
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Plan Recognition

• Given observed actions, decide which goal the user pursues

• Given observed actions, decide whether they can lead to a solution

• HTNs are commonly used as Plan Libraries
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Plan Recognition

Definition (PLANREG)
Let P be a planning problem and ω a sequence of actions.
Decide whether ∃tn∈Sol(P) and ω is a prefix of a linearization of tn.

cI
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PLANREC

Theorem
PLANREC is strictly semi-decidable.

Proof:
Undecidability: Choose ω = ε.
This is equivalent to the question whether Sol(P) 6= ∅.
Semi-decidability: Sol(P) is enumerable.
Generate next solution and check.

Suppose we know that the sequence is complete.

This is VERIFYSEQ, i.e., still NP-complete.
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Conclusion

• HTN Plan Verification is NP-complete
• for task networks
• for task sequences

• still NP-complete for severely restricted HTN Planning Problems

• HTN Plan Recognition is strictly semi-decidable

• even if the complete plan has been observed, it is still NP-complete

• Plan Compatibility is NP-complete
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Hierarchical Task Network Planning

A task network tn = (T ,≺, α) is a partially ordered set of tasks

• T is a finite set of tasks

• ≺ ⊆ T × T is a strict partial order on T

• α : T 7→ C ∪ O the action for each task

A planning problem is a 6-tuple P = (V ,O,C,M, cI , sI)

• V is a finite set of state variables

• O is a finite set of primitive tasks, for o ∈ O,
(prec(o), add(o), del(o)) ∈ 2V × 2V × 2V is an operator

• C is a finite set of compound tasks

• M ⊆ C × TN is a finite set of decomposition methods

• cI ∈ C is the initial task

• sI ∈ 2V is the initial state
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HTN Modifications

Decomposition:

• Given a task network tn = (T ,≺, α),use method (t, tn′) ∈ M to replace
t ∈ T by tn′

Task Insertion:

• Insert primitive tasks from O

18
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HTN Solutions

• A task network tn is an HTN solution iff:
• tn is obtained via decomposition
• contains only primitive tasks
• there is an executable linearization of tn’s tasks

• SolHTN(P) denotes the set of all solutions to a problem P

• A task network tn is a TIHTN solution iff:
• tn is obtained by decomposition followed by insertion
• contains only primitive tasks
• there is an executable linearization of tn’s tasks

• SolTiHTN(P) denotes the set of all solutions to a problem P

19



On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

HTN Solutions

• A task network tn is an HTN solution iff:
• tn is obtained via decomposition
• contains only primitive tasks
• there is an executable linearization of tn’s tasks

• SolHTN(P) denotes the set of all solutions to a problem P

• A task network tn is a TIHTN solution iff:
• tn is obtained by decomposition followed by insertion
• contains only primitive tasks
• there is an executable linearization of tn’s tasks

• SolTiHTN(P) denotes the set of all solutions to a problem P

19



On the Complexity of HTN Plan Verification and its Implications for Plan Recognition Gregor Behnke et al., Ulm University

VERIFYSEQ: NP-membership and hardness

Theorem
VERIFYSEQ is in NP.

Proof.
Straightforward adaptation of previous proof.

• check executability of ω

• guess a tn with linearization ω

• check whether tn can be decomposed form cI

cI
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VERIFYSEQ: NP-hardness

• represent each edge by an abstract task

• decomposition determines which node is in the VC

• enforce with ω and other abstract tasks, that at most k
different tasks can be chosen

a

eab

b
ebc

c
ecg

g

egd

d

edc

ebd

cI

tf . . . tf
tnI

tn teab tebc tn tebd tecd
tedg tecg

tatatatatata tbtbtbtbtbtb

tns

tctctctctctc tdtdtdtdtdtd tgtgtgtgtgtg
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