On the Complexity of HTN Plan Verification and its Implications for Plan Recognition

Gregor Behnke, Daniel Höller, Susanne Biundo

Ulm University, Institute of Artificial Intelligence

June 9, 2015

Deutsche Forschungsgemeinschaft DFG

Are we there yet?

• $\mathcal{O}(n)$ for totally ordered classical plans

- $\mathcal{O}(n)$ for totally ordered classical plans
- $\mathcal{O}(n^2)$ for POCL plans

- $\mathcal{O}(n)$ for totally ordered classical plans
- $\mathcal{O}(n^2)$ for POCL plans
- NP-complete for PO planning (Chapman 1987; Nebel and Bäckström 1994)

- $\mathcal{O}(n)$ for totally ordered classical plans
- $\mathcal{O}(n^2)$ for POCL plans
- NP-complete for PO planning (Chapman 1987; Nebel and Bäckström 1994)
- Π^P₂-complete for a plans with control structures (Lang and Zanuttini 2012)

- $\mathcal{O}(n)$ for totally ordered classical plans
- $\mathcal{O}(n^2)$ for POCL plans
- Nℙ-complete for PO planning (Chapman 1987; Nebel and Bäckström 1994)
- Π^P₂-complete for a plans with control structures (Lang and Zanuttini 2012)
- unknown for HTN planning

Plan Verification

Plan Verification

post-optimization of solutions

Plan Verification

- post-optimization of solutions
- plan repair

Plan Verification

- post-optimization of solutions
- plan repair
- implications for Plan Recognition (HTN Plan Libraries)

Plan Verification

- post-optimization of solutions
- plan repair
- implications for Plan Recognition (HTN Plan Libraries)

What have we done?

Plan Verification

- post-optimization of solutions ۲
- plan repair ۰
- implications for Plan Recognition (HTN Plan Libraries)

What have we done?

• HTN Plan Verification is \mathbb{NP} complete

Plan Verification

- post-optimization of solutions
- plan repair
- implications for Plan Recognition (HTN Plan Libraries)

What have we done?

- HTN Plan Verification is \mathbb{NP} complete
- **2** Plan Compatibility is \mathbb{NP} complete

Plan Verification

- post-optimization of solutions
- plan repair
- implications for Plan Recognition (HTN Plan Libraries)

What have we done?

- HTN Plan Verification is \mathbb{NP} complete
- ⁽²⁾ Plan Compatibility is \mathbb{NP} complete
- Implications for Plan Recognition

$$\mathcal{P} = (P, C, c_l, M, L, s_l)$$

- $\mathcal{P} = (P, C, c_l, M, L, s_l)$
 - P a set of primitive tasks
 - *C* a set of compound tasks

- $\mathcal{P} = (P, C, c_l, M, L, s_l)$
 - P a set of primitive tasks
 - C a set of compound tasks
 - $c_l \in C$ the initial task

A solution tn \in *Sol*(\mathcal{P}) must

be a refinement of the initial task

ö

$$\mathcal{P} = (\mathcal{P}, \mathcal{C}, \mathcal{c}_l, \mathcal{M}, \mathcal{L}, \mathcal{s}_l)$$

- *P* a set of primitive tasks
- C a set of compound tasks
- $c_l \in C$ the initial task
- $M \subseteq C \times 2^{TN}$ the methods

A solution the $\textit{Sol}(\mathcal{P})$ must

$$\mathcal{P} = (\mathcal{P}, \mathcal{C}, \mathcal{c}_l, \mathcal{M}, \mathcal{L}, \mathcal{s}_l)$$

- *P* a set of primitive tasks
- C a set of compound tasks
- $c_l \in C$ the initial task
- $M \subseteq C \times 2^{TN}$ the methods

A solution the $\mathit{Sol}(\mathcal{P})$ must

- $\mathcal{P} = (P, C, c_l, M, L, s_l)$
 - P a set of primitive tasks
 - C a set of compound tasks
 - $c_l \in C$ the initial task
 - $M \subseteq C \times 2^{TN}$ the methods

A solution the $\mathit{Sol}(\mathcal{P})$ must

- $\mathcal{P} = (P, C, c_l, M, L, s_l)$
 - P a set of primitive tasks
 - C a set of compound tasks
 - $c_l \in C$ the initial task
 - $M \subseteq C \times 2^{TN}$ the methods

A solution the $\mathit{Sol}(\mathcal{P})$ must

- $\mathcal{P} = (P, C, c_l, M, L, s_l)$
 - P a set of primitive tasks
 - C a set of compound tasks
 - $c_l \in C$ the initial task
 - $M \subseteq C \times 2^{TN}$ the methods

A solution the $\mathit{Sol}(\mathcal{P})$ must

- *P* a set of primitive tasks
- C a set of compound tasks
- $c_l \in C$ the initial task
- $M \subseteq C \times 2^{TN}$ the methods

A solution the $\mathit{Sol}(\mathcal{P})$ must

- *P* a set of primitive tasks
- C a set of compound tasks
- $c_l \in C$ the initial task
- $M \subseteq C \times 2^{TN}$ the methods

A solution the $\textit{Sol}(\mathcal{P})$ must

- be a refinement of the initial task
- only contain primitive tasks

- $\mathcal{P} = (P, C, c_l, M, L, s_l)$
 - P a set of primitive tasks
 - C a set of compound tasks
 - $c_l \in C$ the initial task
 - $M \subseteq C \times 2^{TN}$ the methods
 - L a set of fluent

A solution the $\textit{Sol}(\mathcal{P})$ must

- be a refinement of the initial task
- only contain primitive tasks

- $\mathcal{P} = (P, C, c_l, M, L, s_l)$
 - P a set of primitive tasks
 - C a set of compound tasks
 - $c_l \in C$ the initial task
 - $M \subseteq C \times 2^{TN}$ the methods
 - L a set of fluent
 - $s_I \subseteq L$ the initial state

A solution the $\mathit{Sol}(\mathcal{P})$ must

- be a refinement of the initial task
- only contain primitive tasks
- have a linearization, executable from the initial state

Definition (VERIFYTN)

Let \mathcal{P} be a planning problem and tn be a task network. Decide whether tn $\in Sol(\mathcal{P})$.

Definition (VERIFYTN)

Let \mathcal{P} be a planning problem and tn be a task network. Decide whether tn $\in Sol(\mathcal{P})$.

What do we have to check?

Definition (VERIFYTN)

Let \mathcal{P} be a planning problem and tn be a task network. Decide whether tn $\in Sol(\mathcal{P})$.

What do we have to check?

refinement

Definition (VERIFYTN)

Let \mathcal{P} be a planning problem and tn be a task network. Decide whether tn $\in Sol(\mathcal{P})$.

What do we have to check?

- refinement
- primitive

Definition (VERIFYTN)

Let \mathcal{P} be a planning problem and tn be a task network. Decide whether tn $\in Sol(\mathcal{P})$.

What do we have to check?

- refinement
- primitive
- executability

VERIFYTN: Nℙ-hardness

Theorem

VERIFYTN *is* ℕℙ-hard

¹(Erol, Hendler, and Nau 1994; Nebel and Bäckström 1994)

VERIFYTN: Nℙ-hardness

Theorem

VERIFYTN *is* ℕℙ-hard

Proof.

Checking whether a partially ordered set of actions has an executable linearization is \mathbb{NP} -hard¹.

¹(Erol, Hendler, and Nau 1994; Nebel and Bäckström 1994)

VERIFYTN: ℕℙ-membership

Theorem

VerifyTN is in \mathbb{NP}

VERIFYTN: NP-membership

Theorem	i
VERIFYTN <i>is in</i> \mathbb{NP}	ļ

Proof.

Adapt the proof by Höller et al. (2014), showing that $Sol(\mathcal{P})$ form a context sensitive language.
Theorem	h
VERIFYTN <i>is in</i> \mathbb{NP}	J

Proof.

Adapt the proof by Höller et al. (2014), showing that $Sol(\mathcal{P})$ form a context sensitive language.

guess a linearization and check executability

VERIFYTN: \mathbb{NP} -membership

Theorem	h
VERIFYTN <i>is in</i> \mathbb{NP}	

Proof.

Adapt the proof by Höller et al. (2014), showing that $Sol(\mathcal{P})$ form a context sensitive language.

guess a linearization and check executability

guess decompositions and check them

Proof. (continued)

Proof. (continued) starting with c_l , guess decompositions and apply them repeat until tn has been found

Proof. (continued) starting with c_l , guess decompositions and apply them repeat until tn has been found Not sufficient (termination)

Proof. (continued) starting with c_l , guess decompositions and apply them repeat until thas been found

Proof. (continued) starting with c_l , guess decompositions and apply them repeat until th has been found

Not sufficient (termination)

• handle decompositions with $|tn_m| = 0$

Proof. (continued) starting with c_l , guess decompositions and apply them repeat until th has been found

- handle decompositions with $|tn_m| = 0$
- estimate maximal number of decompositions with |tn_m| ≥ 1 needed to obtain any task network of size |tn|

Proof. (continued) starting with c_l , guess decompositions and apply them repeat until th has been found

- handle decompositions with $|tn_m| = 0$
- estimate maximal number of decompositions with $|tn_m| \ge 1$ needed to obtain any task network of size |tn|
- result: |tn|(|C| + 1)

Proof. (continued) starting with c_l , guess decompositions and apply them repeat until th has been found

- handle decompositions with $|tn_m| = 0$
- estimate maximal number of decompositions with $|tn_m| \ge 1$ needed to obtain any task network of size |tn|
- result: |tn|(|C| + 1)
- abort if more decompositions have been applied

Main reason for \mathbb{NP} -hardness:

Main reason for \mathbb{NP} -hardness:

Find an executable linearization.

Main reason for $\mathbb{NP}\text{-hardness}$:

Find an executable linearization. Suppose we already have one.

- by an observation
- by using hybrid planning, fusing HTN and POCL

Main reason for \mathbb{NP} -hardness:

Find an executable linearization.

Suppose we already have one.

- by an observation
- by using hybrid planning, fusing HTN and POCL

Definition (VERIFYSEQ)

VERIFYSEQ: NP-membership

Theorem

VERIFYSEQ is in \mathbb{NP} .

VERIFYSEQ: Nℙ-membership

Theorem

VERIFYSEQ is in \mathbb{NP} .

Proof.

Straightforward adaptation of previous proof.

Theorem

VERIFYSEQ is NP-hard.

Theorem

VERIFYSEQ *is* ℕℙ*-hard*.

Proof (idea). Reduction from VERTEXCOVER.

Theorem

VERIFYSEQ is \mathbb{NP} -hard.

Proof (idea).

Reduction from VERTEXCOVER.

Reminder: Decide, given a graph G = (V, E) and a number k, whether

 $\exists V_C \subseteq V$ s.t. $|V_C| \leq k$ and each edge *e* is adjacent to a node in the cover V_C .

Theorem

VERIFYSEQ is \mathbb{NP} -hard.

Proof (idea).

Reduction from VERTEXCOVER.

Reminder: Decide, given a graph G = (V, E) and a number k, whether

 $\exists V_C \subseteq V$ s.t. $|V_C| \leq k$ and each edge *e* is adjacent to a node in the cover V_C .

V_C is chosen by decomposition of vertex-tasks

Theorem

VERIFYSEQ is \mathbb{NP} -hard.

Proof (idea).

Reduction from VERTEXCOVER.

Reminder: Decide, given a graph G = (V, E) and a number k, whether

 $\exists V_C \subseteq V$ s.t. $|V_C| \leq k$ and each edge *e* is adjacent to a node in the cover V_C .

- V_C is chosen by decomposition of vertex-tasks
- ω ensures that $\leq k$ nodes are selected

 \mathbb{NP} -completeness holds even for severely restricted HTN Planning Problems

The constructed domain needs

- neither preconditions nor effects
- no ordering constraints
- no cycles in the decomposition hierarchy
- only a depth of 2 (1 with an initial task network)

Given observed actions, decide which goal the user pursues

- Given observed actions, decide which goal the user pursues
- Given observed actions, decide whether they can lead to a solution

- Given observed actions, decide which goal the user pursues
- Given observed actions, decide whether they can lead to a solution
- HTNs are commonly used as *Plan Libraries*

Definition (PLANREG)

Definition (PLANREG)

Definition (PLANREG)

Definition (PLANREG)

Theorem

PLANREC is strictly semi-decidable.

Theorem

PLANREC is strictly semi-decidable.

Proof: <u>Undecidability:</u> Choose $\omega = \varepsilon$. This is equivalent to the question whether $Sol(\mathcal{P}) \neq \emptyset$.

Theorem

PLANREC is strictly semi-decidable.

Proof: <u>Undecidability</u>: Choose $\omega = \varepsilon$. This is equivalent to the question whether $Sol(\mathcal{P}) \neq \emptyset$. <u>Semi-decidability</u>: $Sol(\mathcal{P})$ is enumerable. <u>Generate next solution and check</u>.

Theorem

PLANREC is strictly semi-decidable.

Proof: <u>Undecidability</u>: Choose $\omega = \varepsilon$. This is equivalent to the question whether $Sol(\mathcal{P}) \neq \emptyset$. <u>Semi-decidability</u>: $Sol(\mathcal{P})$ is enumerable. <u>Generate next solution and check</u>.

Suppose we know that the sequence is complete.

Theorem

PLANREC is strictly semi-decidable.

Proof: <u>Undecidability</u>: Choose $\omega = \varepsilon$. This is equivalent to the question whether $Sol(\mathcal{P}) \neq \emptyset$. <u>Semi-decidability</u>: $Sol(\mathcal{P})$ is enumerable. Generate next solution and check.

Suppose we know that the sequence is complete.

This is VERIFYSEQ, i.e., still \mathbb{NP} -complete.

Conclusion

- HTN Plan Verification is Nℙ-complete
 - for task networks
 - for task sequences
- still NP-complete for severely restricted HTN Planning Problems
- HTN Plan Recognition is strictly semi-decidable
- even if the complete plan has been observed, it is still $\mathbb{NP}\text{-}complete$
- Plan Compatibility is NP-complete
Conclusion

- HTN Plan Verification is Nℙ-complete
 - for task networks
 - for task sequences
- still NP-complete for severely restricted HTN Planning Problems
- HTN Plan Recognition is strictly semi-decidable
- even if the complete plan has been observed, it is still $\mathbb{NP}\text{-}complete$
- Plan Compatibility is NP-complete

Hierarchical Task Network Planning

A *task network* tn = (T, \prec, α) is a partially ordered set of tasks

- T is a finite set of tasks
- $\prec \subseteq T \times T$ is a strict partial order on T
- $\alpha: \mathbf{T} \mapsto \mathbf{C} \cup \mathbf{O}$ the action for each task

Hierarchical Task Network Planning

A *task network* tn = (T, \prec, α) is a partially ordered set of tasks

- T is a finite set of tasks
- $\prec \subseteq T \times T$ is a strict partial order on T
- $\alpha: \mathbf{T} \mapsto \mathbf{C} \cup \mathbf{O}$ the action for each task

A planning problem is a 6-tuple $\mathcal{P} = (V, O, C, M, c_I, s_I)$

- V is a finite set of state variables
- O is a finite set of *primitive tasks*, for o ∈ O, (prec(o), add(o), del(o)) ∈ 2^V × 2^V × 2^V is an operator
- C is a finite set of compound tasks
- $M \subseteq C \times TN$ is a finite set of *decomposition methods*

Hierarchical Task Network Planning

A *task network* tn = (T, \prec, α) is a partially ordered set of tasks

- T is a finite set of tasks
- $\prec \subseteq T \times T$ is a strict partial order on T
- $\alpha: \mathbf{T} \mapsto \mathbf{C} \cup \mathbf{O}$ the action for each task

A planning problem is a 6-tuple $\mathcal{P} = (V, O, C, M, c_I, s_I)$

- V is a finite set of state variables
- O is a finite set of *primitive tasks*, for o ∈ O, (prec(o), add(o), del(o)) ∈ 2^V × 2^V × 2^V is an operator
- C is a finite set of compound tasks
- $M \subseteq C \times TN$ is a finite set of *decomposition methods*
- $c_l \in C$ is the *initial task*
- $s_I \in 2^V$ is the *initial state*

HTN Modifications

Decomposition:

 Given a task network tn = (T, ≺, α),use method (t, tn') ∈ M to replace t ∈ T by tn'

HTN Modifications

Decomposition:

 Given a task network tn = (T, ≺, α),use method (t, tn') ∈ M to replace t ∈ T by tn'

Task Insertion:

• Insert primitive tasks from O

HTN Solutions

- A task network tn is an HTN solution iff:
 - tn is obtained via decomposition
 - · contains only primitive tasks
 - · there is an executable linearization of tn's tasks
- $Sol_{HTN}(\mathcal{P})$ denotes the set of <u>all</u> solutions to a problem \mathcal{P}

HTN Solutions

- A task network tn is an HTN solution iff:
 - tn is obtained via decomposition
 - · contains only primitive tasks
 - · there is an executable linearization of tn's tasks
- $Sol_{HTN}(\mathcal{P})$ denotes the set of <u>all</u> solutions to a problem \mathcal{P}
- A task network tn is a TIHTN solution iff:
 - tn is obtained by decomposition followed by insertion
 - · contains only primitive tasks
 - there is an executable linearization of tn's tasks
- $\mathit{Sol}_{\mathit{TiHTN}}(\mathcal{P})$ denotes the set of <u>all</u> solutions to a problem \mathcal{P}

Theorem

VERIFYSEQ is in \mathbb{NP} .

Theorem

VERIFYSEQ is in \mathbb{NP} .

Proof. Straightforward adaptation of previous proof.

Theorem

VERIFYSEQ is in \mathbb{NP} .

Proof. Straightforward adaptation of previous proof.

• check executability of ω

Theorem

VERIFYSEQ is in \mathbb{NP} .

Proof. Straightforward adaptation of previous proof.

- check executability of ω
- guess a tn with linearization ω

Theorem

VERIFYSEQ is in \mathbb{NP} .

Proof. Straightforward adaptation of previous proof.

- check executability of ω
- guess a tn with linearization ω
- check whether tn can be decomposed form c_l

VERIFYSEQ: Nℙ-hardness

VERIFYSEQ: Nℙ-hardness

represent each edge by an abstract task

VERIFYSEQ: Nℙ-hardness

represent each edge by an abstract task

decomposition determines which node is in the VC

VERIFYSEQ: NP-hardness

represent each edge by an abstract task

decomposition determines which node is in the VC enforce with ω and other abstract tasks, that at most *k* different tasks can be chosen

VERIFYSEQ: NP-hardness

represent each edge by an abstract task

decomposition determines which node is in the VC enforce with ω and other abstract tasks, that at most *k* different tasks can be chosen

