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Abstract

In classical planning it is easy to verify if a given se-
quence of actions is a solution to a planning problem.
It has to be checked whether the actions are applica-
ble in the given order and if a goal state is reached af-
ter executing them. In this paper we show that verify-
ing whether a plan is a solution to an HTN planning
problem is much harder. More specifically, we prove
that this problem is NP-complete, even for very simple
HTN planning problems. Furthermore, this problem re-
mains NP-complete if an executable sequence of tasks
is already provided. HTN-like hierarchical structures are
commonly used to represent plan libraries in plan and
goal recognition. By applying our result to plan and goal
recognition we provide insight into its complexity.

1 Introduction
In classical planning it is polynomial to test whether a plan is
a solution to a planning problem. This problem is called plan
verification. It involves checking executability and if a goal
is reached. Since hierarchical planning has an additional so-
lution criterion, a more elaborated test is necessary. The cri-
terion requires a solution to be obtained via decomposing
the initial task network. It makes the plan existence problem
in hierarchical planning semi-decidable in general, though
there are subclasses that remain decidable (Erol, Hendler,
and Nau 1996; Alford, Bercher, and Aha 2015). This raises
the question: How complex is plan verification in hierarchi-
cal planning? This question is, by itself, of theoretical inter-
est, as it provides further insight into the structure of hierar-
chical planning. Plan verification is also of practical interest
whenever solutions need to be changed after the planning
process and still have to fulfil all solution criteria. Such sit-
uations include plan repair or post-optimization.

Usually, plans in hierarchical planning are partially or-
dered. In some cases the plan that has to be verified is given
as a sequence of actions instead. Consider e.g. an observed
sequence of actions in plan recognition. Verifying such se-
quences is a slightly different problem from verifying par-
tially ordered plans. It does not include deciding whether
there is an executable linearisation of a given partially or-
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dered plan, which has been shown to be a hard problem
(Nebel and Bäckström 1994; Chapman 1987).

Lang and Zanuttini (2012) have investigated knowledge-
based programs (KBP), i.e. plans containing control struc-
tures. They have shown, that in this case plan verification
is ΠP

2 -complete for KBPs without loops and EXPSPACE-
complete in general.

A related problem is to decide if a partially ordered plan
is a specialisation of a second one, i.e. it includes the same
tasks, but a stricter partial order. It arises when information
about the decomposition steps is available during the ver-
ification process. It is also important for planning systems
in general: partial plans are the search nodes in plan-space
planning (e.g. in hierarchical task network (Erol, Hendler,
and Nau 1994), partial-order causal-link (POCL) (Penberthy
and Weld 1992) or hybrid planning (Biundo and Schatten-
berg 2001)). Comparing task networks is crucial e.g. when-
ever visited lists are used to ensure termination of certain
subclasses of HTN planning problems (Alford et al. 2012).

In this paper we show that the plan verification problem
is NP-complete. This holds regardless of whether the plan
that is to be verified is partially or totally ordered, or whether
decomposition information is provided or not; and even for
very simple subclasses of HTN planning problems that show
e.g. neither preconditions nor effects and are very restricted
in decomposition depth. HTN-like structures are also used to
represent plan libraries in plan and goal recognition. We dis-
cuss what our results imply for the complexity of this task.

2 Hierarchical planning
This section provides a formal introduction to HTN planning
similar to our previous definition (Höller et al. 2014) adopted
from Geier and Bercher (2011). We start by describing task
networks, which are partially ordered sets of tasks. A task
is a unique identifier. A task name is assigned to each task
giving the type of a task, e.g. move-a-b. The distinction be-
tween task names and tasks is necessary to allow multiple
instances of a task name, i.e. an action, in a task network.

Definition 1 (Task Network) A task network tn over a set
of task names X is a tuple (T,≺, α), where
• T is a finite, possibly empty, set of tasks
• ≺ ⊆ T × T is a strict partial order on T
• α : T → X labels every task with a task name



TNX is defined as the set of all task networks over the task
names X . As a short-hand notation, we write T (tn) = T ,
≺(tn) = ≺ and α(tn) = α for a task network tn =
(T,≺, α) . We define tn(x) to be the task network contain-
ing a single instance of x, i.e. tn(x) = ({◦}, ∅, {(◦, x)}) and
tn∅ = (∅, ∅, ∅) to be the empty task network.
Definition 2 (Isomorphic Task Network) Two task net-
works tn = (T,≺, α) and tn′ = (T ′,≺′, α′) are called iso-
morphic, written tn ∼= tn′, if and only if there exists a bijec-
tion σ : T → T ′, such that ∀t, t′ ∈ T it holds that (t, t′) ∈ ≺
if and only if (σ(t), σ(t′)) ∈ ≺′ and α(t) = α′(σ(t)).

A planning problem is defined in the following way:
Definition 3 (Planning Problem) A planning problem is a
6-tuple P = (L,C,O,M, cI , sI), with
• L, a finite set of proposition symbols
• C, a finite set of compound task names
• O, a finite set of primitive task names with C ∩O = ∅
• M ⊆ C×TNC∪O, a finite set of decomposition methods
• cI ∈ C, the initial task name
• sI ∈ 2L, the initial state
For each primitive task name o ∈ O, its operator or ac-
tion is given by a tuple that defines its precondition and
its effect, the latter in terms of an add-, and a delete list:
(prec(o), add(o), del(o)) ∈ 2L × 2L × 2L.
Allowing only a single initial task name instead of an ini-
tial task network helps to make some proofs less compli-
cated, but does not influence expressivity. Every HTN plan-
ning problem with an initial task network can easily be trans-
lated to this form by the costs of one additional compound
task name and one additional method.

In HTN planning, compound tasks are repeatedly decom-
posed until all tasks are primitive. To ease notation, we de-
fine restrictions on relations, functions and task network us-
ing the bar notation.
Definition 4 (Restriction) Let R ⊆ D × D be a relation,
f : D → V a function and tn be a task network. Then the
restrictions of R and f to some set X are defined by

R|X :=R ∩ (X ×X)

f |X := f ∩ (X × V )

tn|X := (T (tn) ∩X,≺(tn)|X , α(tn)|X)

Definition 5 (Decomposition) A method m = (c, tnm) ∈
M decomposes a task network tn1 = (T1,≺1, α1) into a
task network tn2 by replacing task t, written tn1

−−→
t,m tn2, if

and only if t ∈ T1, α1(t) = c, and ∃tn′ = (T ′,≺′, α′) with
tn′ ∼= tnm and T ′ ∩ T1 = ∅, where

tn2 := (T ′′,≺1 ∪ ≺′ ∪ ≺X , α1 ∪ α′)|T ′′ with

T ′′ := (T1 \ {t}) ∪ T ′

≺X := {(t1, t2) ∈ T1 × T ′ | (t1, t) ∈ ≺1} ∪
{(t1, t2) ∈ T ′ × T1 | (t, t2) ∈ ≺1}

We write D(tn1, t,m) for an arbitrary but fixed task network
tn2, s.t. tn1 −−→t,m tn2, i.e. the canonical representative of all
such task network w.r.t. ∼=. We write tn1 →∗D tn2, if tn1

can be decomposed into tn2 using an arbitrary number of
decompositions.

In the common HTN problem setting, changing task net-
works is only possible via decomposing compound tasks.
Allowing the insertion of tasks into task networks inde-
pendently of task decomposition allows for more flexibil-
ity in modelling the domain and even renders the plan ex-
istence problem decidable (Geier and Bercher 2011). This
setting is called HTN planning with task insertion or TIHTN.
Throughout the paper we will show results for the pure HTN
formalism. However, they also apply to TIHTN and its al-
tered solution criterion.
Definition 6 (Task Insertion) Let tn1 = (T1,≺1, α1) be a
task network. Let o be a primitive task name; then, a task
network tn2 can be obtained from tn1 by insertion of o, if
and only if tn2 = (T1 ∪ {t},≺1, α1 ∪ {(t, o)}) for some
t /∈ T1 and ≺1 is a strict partial order on T1 ∪ {t}. We
write tn1 →∗I tn2, if tn2 can be generated from tn1 using
an arbitrary number of insertions of primitive task names.

Following definitions by Erol, Hendler, and Nau (1996)
and Geier and Bercher (2011), we define a task network as
being executable if there exists a linearisation of its tasks that
is executable. An alternative definition could require all lin-
earisations to be executable, as in hybrid planning (Biundo
and Schattenberg 2001) and POCL planning (Penberthy and
Weld 1992).
Definition 7 (Executable Task Network) A task network
(T,≺, α) is executable in a state s ∈ 2L, if and only if all
its tasks are primitive and there exists a linearisation of its
tasks t1, . . . , tn that is compatible with ≺ and a sequence of
states s0, . . . sn such that s0 = s and prec(α(ti)) ⊆ si−1
and si = (si−1 \del(α(ti)))∪add(α(ti)) for all 1 ≤ i ≤ n.

Finally, we define the solutions of a planning problem P .
Definition 8 (Solution) A task network tnS is a solution to
a planning problem P , if and only if

(1) tnS is executable in sI and
(2) tnI →∗D tnS for tnS being an HTN solution to P or
(2’) there exists a task network tnB such that tnI →∗D

tnB →∗I tnS for tnS being a TIHTN solution to P .
SolHTN (P) and SolTIHTN (P) denote the sets of all HTN
and TIHTN solutions of P , respectively.

3 Plan Verification for Task Networks
In this section, we study the problem of HTN plan verifica-
tion in its most general form. Plan verification is the ques-
tion whether a given task network tn is a solution for a given
planning problem P . The following definition provides the
formal decision problem.
Definition 9 (VERIFYTN) The problem VERIFYTN is to
decide, given a planning problem P and a task network tn,
whether tn ∈ SolHTN (P) holds.

Please note that the task network tn is part of the input
and all complexity results will refer to the combined length
of the planning problem and the plan to be verified.

NP-hardness can be easily obtained for this problem. We
can reduce from the problem asking whether a task net-
work tn has an executable linearisation. One can use a plan-
ning problem with the sole method (cI , tn) and then ask



whether tn is a solution of this problem. Since this prob-
lem has already been proven to be NP-complete (Nebel
and Bäckström 1994, Thm. 14, 15), (Erol, Hendler, and Nau
1996, Thm. 8) the following corollary holds.

Corollary 1 VERIFYTN is NP-hard.

In the remainder of this section, we show that verify-
ing plans can be solved in NP. We have provided a non-
deterministic algorithm which decides whether a sequence
of actions ω is a word of the formal language induced by
a planning problem P (Höller et al. 2014, Alg. 1). Since
this language contains every executable linearisation of ev-
ery solution of P , this algorithm can serve as the basis for
the NP membership proof. However, the algorithm assumes
that the HTN planning domain is in a so-called 2-normal
form NF≥2. In this normal form the task network tn of
each method (c, tn)1 has at least size 2, i.e. |T (tn)| ≥ 2.
Though the given construction preserves the problem’s set
of solutions, it leads to exponentially many new decomposi-
tion methods. It is unknown whether it is possible to find an
equivalent planning problem of sub-exponential size. This
makes the construction of the NF≥2 unsuitable for an NP-
membership proof. We showed that the algorithm is linear
space bounded, which does only imply PSPACE member-
ship but not NP membership. Here we enhance the algorithm
s.t. it can verify plans for arbitrary HTNs and show that the
resulting algorithm is still in NP.

The given proof would work with less effort if methods
decomposing into empty task networks (henceforth called
ε-methods) are forbidden in the input. However, this would
restrict the options available for domain modellers.

To overcome the restrictions of the previous algorithm,
we use the notions of possibly empty task Πε and of the unit
reachability function ρ1. These two represent the transfor-
mation of a planning domain into NF≥2 in a compressed
way. We define both of them and show that they can be com-
puted in polynomial time. Please be aware that ρ1 is only
necessary for the construction of Πε and is not used later on.

Definition 10 Let P = (L,C,O,M, cI , sI) be a planning
problem. We define the set of deletable abstract tasks Πε as

Πε = {a | tn(a)→∗D tn∅}

We define the unit reachability function ρ1 : C → 2C∪O as

ρ1(c) = {a | tn(c)→∗D tn(a)}

The computation of Πε and ρ1 is necessarily intertwined.
As such we compute them inductively. The base-cases are:

Π0
ε = {a | (a, tn) ∈M and |T (tn)| = 0}

ρ01(c) = {c} ∪ {a | (c, tn) ∈M and
T (tn) = {t} with α(t) = a}

Subsequently the inductive step is given by

Πn
ε = Πn−1

ε ∪ {a | (a, tn) ∈M and

∀t ∈ T (tn) : ρn−11 (t) ∩Πn−1
ε 6= ∅}

1The only exception from this rule is the initial task cI , that in
turn must not be contained in any methods task network.

ρn1 (c) = ρn−11 (c) ∪
⋃

a∈ρn−1
1 (c)

ρn−11 (a) ∪ {a | (c, tn) ∈M and
∃t ∈ T (tn) : α(tn)(t) = a and

∀t′ ∈ T (tn) \ {t} : α(tn)(t′) ∈ Πn−1
ε }

Clearly, Πε = Π∞ε and ρ1 = ρ∞1 holds. The iteration can
be aborted if Πn

ε and ρn1 have not changed any more. Since
both are bounded in size, at most γ = |C|+ |C|(|C|+ |O|)
steps need to be performed. Each step takes by definition an
effort of at most |M |δγ, where δ = max(c,tn)∈M |T (tn)|.
Thus the computation of Πε and ρ1 takes at most |M |δγ2
steps, which is still polynomial.

Next we can define the ε-extended planning problem con-
taining “short-cut” decompositions for all tasks in Πε.

Definition 11 Let P = (L,C,O,M, cI , sI) be a planning
problem. Then the problem Pε = (L,C,O,M ∪ {(c, tn∅) |
c ∈ Πε}, cI , sI) is the ε-extended planning problem.

At this point it should be obvious that SolHTN (P) =
SolHTN (Pε) holds, the only difference between the prob-
lems being that decomposing cI may take fewer method
applications due to the new ε-methods. Prior to the NP-
membership proof, we show the following lemma providing
an upper bound to the number of decompositions necessary
to reach a certain task network starting with tn(cI).

Lemma 1 Let P = (L,C,O,M, cI , sI) be an ε-extended
planning problem and tns a non-empty task network s.t.
tn(cI)→∗D tns. Then k < |T (tns)|(|C|+ 1) task networks
tn1, . . . , tnk exist such that tn(cI) = tn0 →∗D tn1 →∗D
. . . →∗D tnk →∗D tnk+1 = tns and ∀i : |T (tni)| ≤
|T (tni+1)| and decomposing any tni into tni+1 uses exactly
one decomposition methodmi = (c, tn) with T (tn) ≥ 1 fol-
lowed by an arbitrary number of ε-methods m̃i applied only
to the tasks inserted by mi.

Proof: Since tn(cI) →∗D tns there exists some tni, s.t.
tn(cI) →∗D tn1 →∗D . . . →∗D tnk →∗D tns for some k
where each tni is decomposed into tni+1 by using a sin-
gle decomposition method mi = (c, tn) with T (tn) ≥ 1
followed by an arbitrary number of ε-methods. In addition,
we can require w.l.o.g. that decompositions using ε-methods
follow immediately after the method creating the task they
delete, since we can re-arrange their order. Thus the second
required property holds. We need to show that there is also
a sequence of task networks with monotonic size.

Suppose there is a task network tni, s.t. |T (tni)| >
|T (tni+1)|. To achieve this, ε-methods must have been ap-
plied. Following the above assumption, these ε-methods are
only applied to the tasks introduced bymi. Since |T (tni)| >
|T (tni+1)|, all these newly introduced tasks must have been
decomposed into the empty task network, i.e. erased. Thus
the task that was decomposed by mi is a member of Πε.
It could have been deleted directly after the decomposition
step which created it. In the respective sequence of decom-
positions |T (tni)| = |T (tni+1)| holds. Applying this induc-
tively, we obtain |T (tni)| ≤ |T (tni+1)| for all i.

What remains is to show is that k is bounded. W.l.o.g. we
can assume that unit methods (methods for which |T | = 1)
are applied immediately before applying another method to
the newly introduced task. Otherwise this renaming could



be postponed. If |T (tni)| = |T (tni+1)| holds for a step
in the resulting sequence, then it is either a unit method,
or a regular method generating a task network of size s
where s − 1 ε-methods are applied immediately after the
decomposition. For any sequence tni →∗D . . . tni+l where
|T (tni)| = · · · = |T (tni+l)| only a single task t ∈ T (tni)
is changed into an other task in every step. If l > |C| + 12

there is at least one task network which is repeated. Hence
there is an equivalent but shorter sequence.

As the number of decompositions, not changing the
size of the task network, is limited by |C| + 1, the total
number of task networks is limited by |T (tnsol)|(|C|+1).�

Having this property at hand we can give an algorithm
that decides whether a task network tn is a solution of a
given planning problem P . The main idea of the algorithm
is to non-deterministically choose decompositions and ap-
ply them to the current task network until it is equivalent to
the task network provided in the input. By applying decom-
position methods of the ε-reduced planning problem to each
intermediate network, we can use Lemma 1 to give an upper
bound on the number of applied decompositions.

Theorem 1 VERIFYTN is in NP.

Proof: The non-deterministic algorithm given in Algo-
rithm 1 decides whether tns ∈ SolHTN (P) holds in a given
planning problem P . Each step in the algorithm has at most
polynomial complexity. If the algorithm accepts the input,
it has found an executable linearisation of tns and has con-
structed a task network isomorphic to tns by decomposing
tn(cI) and thus has shown that tns ∈ SolHTN (P) holds.

Provided tn(cI) →∗D tns holds, either tns = tn∅, which
is handled by line 2, or tns is not empty. Then we know
by using Lemma 1 that there is a decomposition of tn(cI)
into tns which has at most |T (tns)|(|C| + 1) intermediate
task networks tni s.t. tni+1 is obtained from tni by apply-
ing a single decomposition method mi with a task network
of size k ≥ 1, followed by at most k − 1 applications of
ε-methods from the ε-reduced planning domain. Our algo-
rithm only computes these intermediate steps, i.e. it consid-
ers in the ith iteration of the loop the task network tni, start-
ing with tn0 = tn(c). It then non-deterministically selects
a task and a method mi to apply to it (lines 8 and 9) and
a set of ε-methods, represented as a set E of tasks to be
deleted (line 10). These methods are immediately applied to
the method itself by deleting the respective tasks (line 11).
The newly obtained method is then applied to decompose
the just selected task in tni. Since a proper subset of tasks
of the method’s task network is selected, at most |T | − 1 ε-
methods are applied and thus the size of tn never decreases.
Hence there is a set of choices for our non-deterministic
algorithm which leads to the task network tns in at most
|T (tns)|(|C|+ 1) iterations of the loop. �

Combining the two results from Corollary 1 and Theo-
rem 1 we obtain that VERIFYTN is NP-complete.

Corollary 2 VERIFYTN is NP-complete.

2all compound tasks and one primitive task need to be traversed

1 function verify(P = (L,C,O,M, cI , sI), tns)
2 if |T (tns)| = 0 then return cI ∈ Πε;
3 if ∃t ∈ T (tns) : α(t) 6∈ O then return failure;
4 Guess a linearisation ω of tns
5 if ω is not executable then return failure;
6 tn := tn(cI); i := 0
7 while |T (tn)|≤|T (tns)| ∧ i ≤ |T (tns)|(|C|+1) do
8 Choose a task d ∈ T (tn)
9 Choose m = (α(d), (T,≺, α)) ∈M

10 Choose subset E ( T s.t. ∀x ∈ E : α(c) ∈ Πε

11 tnE := (T,≺, α)|T\D
12 tn := D(tn, d, (α(d), tnE))
13 i := i+ 1

14 if |T (tn)| 6= |T (tns)| then return failure;
15 Choose a bijection φ : T (tn)→ T (tns)
16 if ∃t ∈ T (tn) : α(tn)(t) 6= α(tns)(φ(t)) then
17 return failure

18 if φ(≺(tn)) 6= ≺(tns) then return failure;
19 return success

Algorithm 1: Non-deterministic polynomial-time Algo-
rithm, deciding whether tn is a solution of P

4 Plan Verification for Task Sequences
In the previous section, we have shown that plan verification
is NP-complete if a task network has to be verified. The
presented reason for NP-hardness was the task of finding a
executable linearisation of that task network. Consequently,
one might pose the question whether the verification prob-
lem is easier if such a linearisation is already given. In many
real world-scenarios we are provided with such a sequence,
e.g. in plan and goal recognition. Unfortunately, this section
shows that having such a sequence at hand does not make
the problem easier – it remains NP-complete.
Definition 12 (VERIFYSEQ) The problem VERIFYSEQ is
to decide, given an HTN planning domain P and a task se-
quence ω, whether ∃tn ∈ SolHTN (P) s.t. ω is an executable
linearisation of tn.

In addition to NP-completeness of this general problem,
we will also show it for many severely restricted domains.
However, we want to mention that there is a restriction on
planning problems making plan verification tractable.

Lemma 2 VERIFYSEQ is P-complete for HTN planning
problems with totally ordered methods.

Proof: These HTN planning problems can easily be trans-
formed into context-free grammars (Höller et al. 2014).
Thus VERIFYTN is equivalent to the word problem of such
grammars and thus P-complete (Jones and Laaser 1974). �

Please note that this lemma only applies to our HTN-
definition allowing a single initial task, while in Erol’s defi-
nition the initial task network must also be totally ordered.

The NP membership of the VERIFYSEQ problem for par-
tially ordered planning problems is a direct corollary from
the proof for Theorem 1. The presented algorithm checks
whether the task network tns is isomorphic to a task network
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Figure 1: Illustrative example for the reduction of vertex cover to VERIFYSEQ. The graph on the left is encoded as HTN
planning problem for cover of size 3. tI is decomposed into tnI (inside the upper ellipse). Several other decompositions, each
given by a connecting edge, refine it to ω (the bottom ellipse). The tn tasks occupy all instances of ta and tc, so that these tasks
can not be included in the cover. The te tasks ensure that one end of each edge is included in the cover. The tf tasks generate
the remaining tasks in ω.

tn obtained from the solution. Instead it could test whether
the input task network, in our case being a sequence, is a
specialization of tn by altering line 18 of the algorithm.

Corollary 3 VERIFYSEQ is in NP.

To show NP-hardness for the VERIFYSEQ problem, we
adapt a NP-hardness proof for parsing ID/LP grammars
provided by Barton (1985). He reduces the NP-complete
vertex cover (VC) problem (Karp 1972) to this problem.

Definition 13 (VERTEXCOVER) The VERTEXCOVER
problem is to decide, given a graph G = (V,E) and a num-
ber k, whether it is possible to find a subset of nodes S ⊆ V
with |S| ≤ k, the vertex cover, so that each of the edges is
adjacent to a node in the set S, i.e. ∀e ∈ E : e ∩ S 6= ∅.

We start by giving the proof for full HTN planning and
later discuss which restrictions can be imposed while pre-
serving NP-hardness.
Theorem 2 VERIFYSEQ is NP-hard.

Proof: Let G = (V,E) be a graph and k a number. If
k ≥ |V |, such a vertex cover obviously exists, so let k <
|V |. Now we need to construct a planning problem P and a
sequence of tasks ω, such that

∃tns : tns ∈ SolHTN (P) and ω is a linearisation of tns

⇔ G has a VC of size ≤ k
We define the planning problem P = (∅, C,O,M, tI , ∅)

corresponding to the graph G as follows.
The planning domain contains a primitive task tv for each

node in V . They have neither preconditions nor effects.

O = {tv | v ∈ V }
For each edge e ∈ E, a compound task te is introduced.
All edges have to be adjacent to (at least) one node in the
VC. There are two methods for each task te, decomposing
it in a task that represents the node at one end of the edge.
Applying one of them chooses the node in the VC.

ME = {(te, tn(tv)) | e ∈ E, v ∈ e}
A vertex cover is chosen by decomposing a task network
containing all te into primitive tasks. The remaining parts of

the planning problem and the input sequence ω ensure that
no more than k nodes are included in the VC. If the vertex
cover has size≤ k, there are at least |V |−k vertices that are
not included in the VC. The compound task tn (non-chosen)
represents one of these nodes. Since we do not know which
of the nodes will not be members of the VC, the domain
contains a decomposition methodmtn

v for each v ∈ V . Each
method mtn

v decomposes tn in |E| unordered copies of the
primitive task tv . The input sequence ω contains each task
that represents a node |E| times. This enforces that only ver-
texes in the cover can be chosen when decomposing a te.

MN = {(tn, ([|E|]3, ∅, {(n, tv) | n ∈ [|E|]})) | v ∈ V }

We are not finished defining the planning problem, but
before we explain the remaining part, let’s have a look at
Figure 1. The left side shows a graph with 5 vertices and
6 edges. Assume we are asked for a 3-VC. The planning
problem is given in Figure 1(b). The initial task produces
5−3=2 times tn as well as the 6 edge tasks te.

Now only generating the remaining instances of tasks rep-
resenting the vertices included in the cover is left. The com-
pound task tf provides these tasks. tf has a method for each
v ∈ V , decomposing it into a single primitive task tv .

MF = {(tf , tn(tv)) | v ∈ V }

Finally we define the method decomposing the initial task tI
by mtI = (tI , tnI). The task network tnI contains one in-
stance of each te, |V |−k times tnand (k− 1) · |E| times tf .
The latter ensures that it is possible to obtain |E| instances
of each vertex in the cover. The task network is totally un-
ordered. mtI is defined by

mtI = (tI , (TI , ∅, αI)) where

TI = {◦te | e ∈ E} ∪ {◦n1 , . . . , ◦n|V |−k, ◦
f
1 , . . . , ◦

f
(k−1)|E|}

αI = {(◦te, te) | e ∈ E} ∪ {(◦ni , tn) | i ∈ [|V | − k]}
∪ {(◦fi , tf ) | i ∈ [(k − 1)|E|]}

3We use [n] to abbreviate the set {1, . . . , n}



With the input sequence ω = t
|E|
v1 . . . t

|E|
v|V | , the planning

problem P is completed by

C = {tn, tf , tI} ∪ {te | e ∈ E}
M = {mtI} ∪ME ∪MN ∪MF

⇒: Let tns be a solution of P s.t. ω is a linearisation of
tns. Since tns is a solution, it does not contain any com-
pound tasks. Thus it does not contain any te tasks, each such
task in tnI has been decomposed into a primitive task tv
where v ∈ e. We will show that the set of all these v is a ver-
tex cover of G with size at most k. It is obvious that this set
is a vertex cover: for every edge one of its nodes was chosen.

Every decomposition for a compound task tn generates
exactly |E| instances of some primitive task tv for some
v ∈ V . Since ω contains only |E| instances of each tv , dif-
ferent decomposition methods must have been chosen for
each tn. Let C be the set of all types of primitive tasks ob-
tained by decomposing tn tasks. Clearly |C| = |V | − k
holds. Suppose any te was decomposed into a member tv
of C, then ω must contain at least |E| + 1 instances of tv ,
which is a contradiction. Hence the set of all primitive tasks
generated by decomposing te tasks is disjoint from C and
thus is a VC with size of at most k.
⇐: Let C be a vertex cover of G of size k. We describe

how tn(tI) can be decomposed into tns having ω as an exe-
cutable linearisation. We will choose tns as the task network
that contains each task tv |E| times and is totally unordered.
Clearly tns has ω as a possible linearisation and ω is triv-
ially executable. Initially tI will be decomposed using mtI

into an te task for each e ∈ E, |V | − k instances of tn and
(k − 1) · |E| instances of tf .

For each task tn we choose a different node v ∈ V \ C.
This is possible as |V \C| = |V |−k. Each tn is decomposed
using the method mtn

v , i.e. into |E| instances of V .
For each te task at least one of the nodes of e is a member

of C, let that node be tv
4. te is decomposed using the

method inserting tv . These decompositions will generate
|E| instances of nodes tv ∈ C. No node will be generated
more than |E| times. For each node tv ∈ C, |E| instances
must be created to obtain the task network tns. Using the
(k − 1)|E| instances of tf created by mtI , the missing
instances of nodes tv ∈ C can be obtained. After applying
these methods, tnI has been decomposed into |E| copies of
each node v ∈ V . None of the used methods introduces any
ordering constraint and no preconditions are present. We
have obtained the task network tns by decomposing tnI ,
which concludes the proof. �

Combining the two results from Corollary 3 and Theo-
rem 2 we obtain that VERIFYSEQ is NP-complete, too.

Corollary 4 VERIFYSEQ is NP-complete.

The given proof does not only apply to the class of full
HTN planning problems, but also to much more restricted
classes. The planning problem P defined in the proof does

4If both nodes are members of C either may be chosen as tv

neither contain preconditions nor effects, all its methods are
totally unordered, i.e. they don’t contain any ordering, its
decomposition methods are not recursive and the maximal
”depth” of decompositions is 2. We denote these classes –
in the same order – as HTN 0 pre

0 eff , HTNunordered , HTNacyc

and HTN 2dec. Please be aware that the first decomposition
step is only necessary because we allowed only a single ini-
tial task instead of an initial task network in our HTN defi-
nition. If an initial task network would be allowed, only one
decomposition step is necessary for the proof, i.e. the prob-
lem is already NP-hard when compound tasks are solely
allowed in the initial task network (but not in methods’ task
networks).

Corollary 5 VERIFYSEQ for the classes HTN 0 pre
0 eff ,

HTNunordered , HTNacyc and HTN 2dec and any of their
intersections is NP-complete.

Furthermore the presented proof does, with minimal mod-
ifications, also hold for the VERIFYTN problem. One can
conclude that VERIFYTN is NP-complete, even if neither
preconditions nor effects are allowed. In this case Corol-
lary 1 does not apply.

Corollary 6 VERIFYTN for HTN 0 pre
0 eff is NP-complete.

Our proofs for Theorem 1 and Theorem 2 can easily be
adapted for HTN planning with task insertion (TIHTN ).

Corollary 7 VERIFYSEQ for TIHTN is NP-complete.

5 Compatibility of Plans
So far we assumed that we do not have any information
about the decompositions which lead to the plan to be veri-
fied. Clearly, Corollary 1 still holds if the list of decomposi-
tions is provided, since it is only based on the need to show
that an executable linearisation of the input task network ex-
ists. However, even if executability of the task networks that
have to be checked can be assumed, and thus does not have
to be tested, the remaining problem is still NP-hard.

The remaining question is to decide whether the task net-
work is ”compatible” with the one obtained by applying the
decompositions. Informally compatibility means that the set
of task names are identical and one of the networks has a
more restrictive partial order ≺. Albeit this task might seem
trivial, it is not. In general, the identifier of the tasks in tn,
given by T (tn), are different from those of the task network
resulting from applying the given decompositions. As a con-
sequence, tasks with the same name in one task network
might be mapped to any such task in the other one.

Checking task network compatibility is also of interest for
planners in general. As task networks define partial plans,
they represent the search nodes in systems that use plan-
space search (e.g. in HTN, POCL or hybrid planning). There-
fore comparing task networks is crucial e.g. whenever vis-
ited lists are used. Recent work has shown that using visit
lists ensures termination of certain subclasses of HTN plan-
ning (Alford et al. 2012). Each newly generated task net-
work tnN is compared to a list of already visited task net-
works tni. The easiest variant of this test is to test isomor-
phism between tnN and each tni. It is easy to show that this



test is graph-isomorphism complete. Despite it is reasonable
to assume that GI-complete problems are not in P, they are
tractable in practical cases. This is especially true for the
task network isomorphism problem, since usually only a few
instances of the same task are contained in a plan, making
computation easier. If task compatibility is checked instead
of isomorphism the loop-detection procedure is tighter, i.e. it
reduces the search space even more. Hence studying its com-
plexity is important for planning systems. We define com-
patibility of two task networks and the respective decision
problem.
Definition 14 (Compatibility of Task Networks) Let tn1

and tn2 be task networks. tn1 is compatible with tn2, writ-
ten as tn1B tn2, if and only if there is a task network tn′1 =
(T (tn1),≺′1, α(tn1)) with ≺′1⊆≺ (tn1) s.t. tn′1

∼= tn2.
Definition 15 (PLANCOMPATIBILITY) The PLANCOM-
PATIBILITY problem is to decide, given two task networks
tn1 and tn2, whether tn1 B tn2 holds.

We prove that the PLANCOMPATIBILITY problem is NP-
complete by reducing the NP-complete subgraph isomor-
phism problem to PLANCOMPATIBILITY (Cook 1971).
Definition 16 (SUBGRAPHISO) The subgraph isomor-
phism problem (SUBGRAPHISO) is to decide, given two
graphs G = (VG, EG) and H = (VH , EH), whether G has
a subgraph5 G∗ = (V ∗G, E

∗
G) which is isomorph to H .

Theorem 3 PLANCOMPATIBILITY is NP-complete.
Proof: Membership: Let tn1 and tn2 be task networks. If
|T (tn1)| 6= |T (tn2)| the algorithm returns false, since no
such tn′1 can exist. Else, we can non-deterministically guess
a subset≺′1⊆≺ (tn1) and a bijection φ : T (tn1)→ T (tn2).
To test whether tn1 is isomorphic to tn2 under this bijection
is polynomial, since only O(|T (tn1)|2) tests are necessary.

Hardness: Let G = (VG, EG) and H = (VH , EH) be two
arbitrary graphs. We need to construct two task networks tn1

and tn2 s.t. tn1 is a specialization of tn2 if and only ifG has
a subgraph isomorphic to H . The construction and the idea
of the reduction is illustrated in Figure 2.

The task network tn1 will represent the structure of G.
It contains a task for every vertex and edge of G. All tasks
are labelled with the same name ◦. Each task, representing
an edge is ordered after the two tasks representing its nodes.
Formally we define the task network tn1 by

tn1 = (VG ∪ EG, {(v, e) | e ∈ EG, v ∈ e},
{(t, ◦) | t ∈ T (tn1)})

The task network tn2 encodes the graph H . The graph H
can have less vertices and edges thanG, however the number
of tasks in tn2 must be equal to the number in tn1. If not,
these two task networks can not be compatible. Thus we add
an appropriate number of isolated tasks to the task network
tn2. Apart from that the construction is the same, thus the
task network tn2 is defined by
tn2 = (VH ∪ EH ∪ {fi | i ∈ [|VG ∪ EG| − |VH ∪ EH |]},

{(v, e) | e ∈ EH , v ∈ e}, {(t, ◦) | t ∈ T (tn2)})
5A Graph I = (VI , EI) is a subgraph of a graph J = (VJ , EJ)

if and only if VI ⊆ VJ and EI ⊆ EJ ∩ (VI × VI)

G =

a

eab

b

ebc
c ecd d

eac

H =

y

exy

x

exz
z

eyz

(a)

tn1 =

G∗
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b

c

d

eab

ebc

eac

ecd

tn2 =

H

x

y

z

d1

exy

eyz

exz

d2

φ

(b)

Figure 2: Illustrative example for the reduction of SUB-
GRAPHISO to PLANCOMPATIBILITY. The two graphs are
given in 2(a). The corresponding task networks in 2(b). Be
aware the initially different cardinality of the node sets and
that the encoding results in task networks that contain no
nodes that are ordered transitively.

⇒: Let tn1 be compatible with tn2. We need to show that
there is a subgraph of G isomorphic to H . Since tn1 is com-
patible to tn2, a task network tn′1 = (T (tn1),≺′1, α(tn1))
where ≺′1⊆ ≺(tn1) exists being isomorphic to tn2. Let
φ : T (tn′1)→ T (tn2) be the respective isomorphism.

We define V ∗G = {v | v ∈ VG, φ(v) ∈ VH}, the set
of vertices of G (tasks of tn1) mapped by the isomorphism
to vertices of H (tasks of tn2). Similarly we define the set
E∗G = {e | e ∈ EG, φ(e) ∈ EH}. We will show that the
subgraph G∗ = (V ∗G, E

∗
G) is isomorph to H and that ψ =

φ|V ∗G is the respective isomorphism.
Let v1, v2 ∈ V ∗G be two arbitrary vertices of G∗. Then

ψ(v1) ∈ VH and ψ(v2) ∈ VH holds.
Case 1: e = v1v2 ∈ E∗G. Thus tn1 contains the ordering

constraints v1 ≺ e = v1v2 and v2 ≺ e. Since φ is an iso-
morphism, the task network tn2 contains the ordering con-
straints φ(v1) ≺ φ(e). Hence the edge φ(e) in tn2 is ordered
after two other tasks and is by construction a member ofEH .

Case 2: v1v2 /∈ E∗G. Assume that e = ψ(v1)ψ(v2) ∈
EH . Then tn2 contains e with two predecessors, ψ(v1) and
ψ(v2), in the partial order. Since ψ is an isomorphism, E∗G
contains the edge φ−1(ψ(v1))φ−1(ψ(v2)). As ψ and φ are
equal on V ∗G this is edge v1v2 which was assumed to not
exist.
⇐: Let G have a subgraph G∗ which is isomorphic to H

and let ψ : V ∗G → VH be that isomorphism. We show that
network tn′1 = (T (tn1),≺ (tn1)|V ∗G∪E∗G) is isomorphic to



tn2. First we define φ̃ : V ∗G ∪ E∗G → VH ∪ EH by

φ̃(x) :=

{
ψ(x) , iff x ∈ V ∗G
ψ(v1)ψ(v2) , iff x = v1v2 ∈ E∗G

Let further be φ an arbitrary bijective extension of φ̃ onto
T (tn′1) → T (tn2). We use φ as the isomorphism between
tn1 and tn2. Since both, tn1 and tn2, map all tasks to
the same task name, only the ordering constraints must be
checked.

Case 1: t1 ≺ t2 holds in tn′1. Then t1 ∈ V ∗G, t2 ∈ E∗G and
t1 is adjacent via t2 to some vertex v in G∗, i.e. t2 = t1v.
Since ψ is an isomorphism, the edge φ(t2) = ψ(t1)ψ(v)
must exist in H . Thus φ(t1) ≺ φ(t2) holds in tn2.

Case 2: t1 6≺ t2 holds in tn′1. If either t1 6∈ V ∗G ∪ E∗G
or t2 6∈ V ∗G ∪ E∗G it was mapped by φ to a task
t ∈ T (tn2) \ (VH ∪ EH) and thus has no ordering to
any other task in tn2. If either t1, t2 ∈ V ∗G or t1, t2 ∈ E∗G
then by definition there can not be an ordering between
φ(t1) and φ(t2) in tn2. Let w.l.o.g. be t1 ∈ V ∗G and
t2 = v1v2 ∈ E∗G. Suppose the (only possible) ordering
φ(t1) ≺ φ(t2) = ψ(v1)ψ(v2) would hold in tn2. Then t1 is
either v1 or v2, let it w.l.o.g. be v1. The vertex ψ(t2) would
be connected to ψ(v2) in H . Since ψ is an isomorphism
the edge v1v2 would also exist in G∗ and hence also the
ordering v1 = t1 ≺ v1v2 = t2 in tn′1. �

6 Plan Recognition
Here we give a brief excursion on what our results mean for
plan and goal recognition. This is motivated not only by sit-
uations where HTN plans have to be recognized, but also be-
cause HTN-like formalisms are used to define plan libraries
for plan recognition.

“Much of the past work in plan recognition has at least
tacitly been based on simple hierarchical task networks
. . . as the representation for plans.” (Geib 2004, p. 1)

Geib (2004) examines how the set of possible explana-
tions for a sequence of observations evolves when new ob-
servations are added. The plan library is given as an HTN-
style AND/OR graph and an explanation is a selection of
choices at OR-nodes that result in a plan that may start with
the given prefix. He thereby restricts his analysis on non-
recursive libraries but allows for more than one top-level-
goal. He identifies library properties that cause exponential
increase in the number of explanations.

This definition based on explanation sets makes it difficult
to give a hardness proof for plan recognition. Thus we give
an alternative definition as a decision problem. It is easy to
see that the general problem is semi-decidable. By using the
results of the previous sections, we show that it is NP-hard
even with additional assurances. We do allow for arbitrary
HTN planning problems do define the library of valid plans.

Definition 17 (PLANREG) The plan recognition problem
is the problem of deciding, based on a planning problem P
and a sequence of observations o, whether there is a plan
solving P where o is the prefix of a valid linearisation.

Though PLANREG and VERIFYTN are related problems,
only a prefix of a plan is known in plan recognition. Thus the
VERIFYTN problem can be seen as the special case of plan
recognition where (1) all actions of the plan have been seen
and (2) this information is given. Without this additional as-
surance, the given problem is semi-decidable, because it in-
cludes solving an HTN planning problem.
Theorem 4 PLANREG is semi-decidable.

Proof: Assume the problem is decidable, then there exists
a function f(P, o) → {>,⊥} that decides for an arbitrary
planning problem P and an arbitrary sequence of observa-
tions o, if P has a solution that has a linearisation with the
prefix o. We define a function h(P) := f(P, ε) that returns
whether there is a solution for an arbitrary HTN planning
problem, which has been shown to be semi-decidable. Our
assumption that the problem is decidable must be wrong.

What remains is to show that it is semi-decidable. If
there exists a solution for the planning problem that has
a linearisation with the given prefix, it can be found by
non-deterministically decomposing the initial task until all
tasks are primitive. Afterwards a linearisation is guessed
and the prefix is checked. �

Theorem 5 Given the assurance that all actions of the en-
tire plan have been seen, PLANREG is NP-complete
Proof: Having this assurance, PLANREG is equivalent to
VERIFYSEQ and thus NP-complete. �

7 Conclusion
In this paper we studied the problem of plan verification.
Verifying plans for classical planning problems is trivially
in P. We showed that, due to the additional requirements on
solutions in HTN planning, this test becomes NP-complete,
even if a witness for executability is provided. Furthermore,
it remains NP-complete if the structure of the HTN planning
problem is severely restricted. Such restrictions include the
absence of preconditions and effects, of ordering in meth-
ods, of recursion in the decomposition hierarchy, and the re-
striction of the depth of this hierarchy. In case the applied
decompositions are provided, plan compatibility has to be
tested, which is also NP-complete.

Plan verification is also of practical interest, as it naturally
occurs whenever plans have to be modified or visited lists for
plan-space planners are implemented. Finally we discussed
implications of our results to the complexity of plan and goal
recognition.
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