
Hybrid Planning
Theoretical Foundations and Practical Applications

Pascal Bercher
supervisor: Susanne Biundo

Institute of Artificial Intelligence,
Ulm University, Germany,

email: forename.surname@uni-ulm.de

Abstract
The thesis presents a novel set-theoretic formalization of
(propositional) hybrid planning – a planning framework
that fuses Hierarchical Task Network (HTN) planning with
Partial-Order Causal-Link (POCL) planning. Several sub
classes thereof are identified that capture well-known prob-
lems such as HTN planning and POCL planning. For these
problem classes, the complexity of the plan-existence prob-
lem is investigated, i.e., the problem of deciding whether
there exists a solution for a given planning problem.
For solving the problems of the respective problem classes, a
hybrid planning algorithm is presented. Its search is guided
by informed heuristics. Several such heuristics are intro-
duced, both for POCL planning problems (i.e., problems
without task hierarchy) and for hybrid planning problems
(i.e., heuristics that are “hierarchy-aware”).

1 Introduction
Hybrid planning (Biundo and Schattenberg 2001) combines
Hierarchical Task Network (HTN) planning with concepts
known from Partial-Order Causal-Link (POCL) planning.
The smooth integration of hierarchical planning with causal
reasoning enables a planning process that is similar to the
way humans solve their tasks: on the one hand, it is done
in a top-down manner, where initially abstract tasks become
refined into more concrete courses of action; on the other
hand, it is driven by causality: actions are inserted into
plans based on causal reasoning. That similarity has sev-
eral advantages when planning for humans: it enables the
realization of mixed-initiative systems that allow humans
to make decisions concerning the planning process. The
hierarchy further allows to incorporate expert knowledge
into the domain model, as such knowledge is often struc-
tured in a hierarchical manner. That is one of the main
reasons why many real-world planning applications are
solved via hierarchical planning systems (Nau et al. 2005;
Lin, Kuter, and Sirin 2008; Biundo et al. 2011).

The explicit representation of causal dependencies be-
tween actions enables to repair plans in case of execution
failures (Bidot, Schattenberg, and Biundo 2008), but also
to generate so-called plan explanations – a chain of argu-
ments explaining what purpose a specific action serves for

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the given problem. The action hierarchy further allows
for more flexible explanations w.r.t. the level of abstraction
(Seegebarth et al. 2012). The integration of these capa-
bilities enables the realization of intelligent assistance sys-
tems (Biundo et al. 2011) in various contexts of daily life,
as demonstrated by a system that assists a user in the task
of setting up a complex home theater (Honold et al. 2014;
Bercher et al. 2014; 2015).

The next section formally introduces hybrid planning and
its sub problem classes resulting from various restrictions on
the domain and problem description. Section 3 presents the
complexity results for the presented problem classes and fur-
ther restrictions thereof. Section 4 presents the hybrid plan-
ning algorithm PANDA that can solve planning problems of
all presented problem classes. Section 5 presents heuristics
for hybrid planning before Section 6 gives a short summary.

2 Hybrid Planning
Hybrid planning (Kambhampati, Mali, and Srivastava 1998;
Biundo and Schattenberg 2001) fuses Hierarchical Task Net-
work (HTN) planning (Erol, Hendler, and Nau 1996) with
Partial-Order Causal-Link (POCL) planning (McAllester
and Rosenblitt 1991; Penberthy and Weld 1992).

In hybrid planning, there are primitive and abstract (or
compound) tasks. Both primitive and compound tasks are
tuples t = 〈prec+, prec−, eff +, eff −〉 specifying the posi-
tive and negative preconditions and effects. Preconditions
and effects are represented as sets of ground atoms. As
usual, states are sets of ground atoms assuming the closed
world assumption. Primitive tasks correspond to standard
STRIPS actions1. Action and action sequence applicability
are defined as usual. Plans are tuples (PS ,≺,CL) consist-
ing of the following elements. The set of plan steps PS is
a set of uniquely labeled tasks l : t. Unique labeling is re-
quired to allow multiple occurrences of the same task within
a plan. The set ≺ of ordering constraints induces a partial
order on the plan steps in PS . The set CL contains the
causal links of the plan. A causal link l : t →ϕ l′ : t′ de-
notes that the precondition ϕ of the plan step l′ : t′ is sup-

1A STRIPS action is typically given as a tuple (prec, add, del)
consisting of a precondition, an add and a delete list. Here, we
additionally feature a set of negative preconditions to allow more
concise complexity analyses.

ported by the plan step l : t. If there is no causal link for a
precondition ϕ we call it an open (or unprotected) precon-
dition. Plans may also contain abstract tasks. These can-
not be executed directly. Instead, they need to be decom-
posed into more specific plans using so-called (decomposi-
tion) methods. A method m = 〈t, P 〉 maps an abstract task
t = 〈prec+, prec−, eff +, eff −〉 to a plan P that is a pre-
defined standard solution of t that “implements” that task
(Biundo and Schattenberg 2001). Decomposition of t within
a plan P ′ leads to a successor plan P ′′ in which t is replaced
by P . Ordering constraints imposed on t are passed down to
its sub tasks within P , as well as the causal links involving t.

Now, a planning domain D is given by the tuple
〈Ta, Tp,M〉 consisting of a finite set of abstract and prim-
itive tasks Ta and Tp, respectively, and a set of methods M .
A planning problem is given by a planning domain and an
initial plan Pinit . As it is the case in standard POCL plan-
ning, Pinit contains two special primitive tasks that encode
an initial state and a goal description. The task t0 has no
precondition and the initial state as effect. The task t∞ has
the goal description as precondition and no effects.

A plan Psol is a solution to a hybrid planning problem if
and only if the following criteria are met:

1. Psol is a refinement of Pinit w.r.t. the decomposition of
abstract tasks and the insertion of (primitive or abstract)
tasks, ordering constraints, and causal links.

2. Psol needs to be executable in the initial state. Thus,

(a) all tasks are primitive,
(b) there are no open preconditions, and
(c) there are no causal threats. That is, given a causal link

l : t →ϕ l′ : t′, we call the task l′′ : t′′ a threat to that
link if and only if the ordering constraints allow it to be
ordered between the tasks of the causal link and it has
an effect ¬ϕ. So, if ϕ ∈ prec+ of t′, then ϕ ∈ eff −

of t′′ threatens that link and, for the other case, if ϕ ∈
prec− of t′, then ϕ ∈ eff + of t′′ threatens that link.

Note that solution criterion 1. is inherited from hierarchi-
cal planning. Enforcing any plan to be a refinement of the
initial plan restricts the set of solutions to those that lie in the
“decomposition” hierarchy that is implicitly defined using
the decomposition methods2. Solution criterion 2. lists the
the standard POCL solution criteria (McAllester and Rosen-
blitt 1991; Penberthy and Weld 1992). These ensure that
every linearization compatible with the given ordering con-
straints is an executable action sequence thus satisfying the
goal description.

Hybrid planning problems Hybrid planning problems
are given by means of an initial plan consisting of primitive
and/or abstract tasks that may be partially ordered and that
plan as well as those referenced by the decomposition meth-
ods in the domain may contain causal links. Further, the
solution criteria explicitly allow the insertion of tasks into

2There is hence a strong relationship between the solutions of
hierarchical planning problems and the words within the language
of formal grammars (Höller et al. 2014).

plans. One could also define that criterion to not allow task
insertions. In both cases, we refer to the respective prob-
lem class as hybrid planning. If restricting one or more of
all these properties, one can express several problem classes
already known to the literature:

POCL planning problems Given the domain does not
contain abstract tasks, then the problem description is given
in terms of an initial primitive plan that may be partially or-
dered and that may contain causal links. We refer to such
a problem as a POCL planning problem. The literature or-
dinarily does not explicitly mention such “POCL planning
problems”; instead, POCL planning is used to refer to a
technique for solving classical planning problems, i.e., prob-
lems that are given in terms of an initial state and a goal de-
scription. Formally defining the set of all POCL planning
problems enables to study the plan-existence problem for
such problems – this is essential for generating heuristics for
both hybrid and POCL planning, as each search node during
planning constitutes such a planning problem.

PO planning problems When further restricting POCL
planning problems in such a way that the initial plan may
not contain causal links, we refer to the respective planning
problem as a Partial-Order (PO) planning problem. Analo-
gously to POCL problems, “PO problems” are not explicitly
mentioned in the literature. Instead, PO planning (or POP)
is used to refer to a planning technique solving classical
planning problems via search in the space of plans (that do
not show causal links). Kambhampati (1995) also refers to
such planners as non-causal link planners.

HTN planning problems In typical hierarchical planning
approaches, as opposed to hybrid planning, the insertion of
tasks is not allowed. So, we define HTN problems as a spe-
cial case of hybrid planning problems given (1) the solution
criterion 1. is altered in such a way that task insertion is pro-
hibited, and (2) neither the initial plan, nor any plan used by
any method in the domain uses causal links.

TIHTN planning problems To study the theoretical
impact of allowing tasks to be inserted into plans, we
introduced a new problem class, called HTN planning with
task insertion (TIHTN planning) (Geier and Bercher 2011).
Then, the only difference between HTN problems and
TIHTN problems is whether task insertion is allowed.

3 Complexity Results
The complexity of the plan-existence problem was studied
for various of the presented problem classes.

3.1 HTN and TIHTN planning
The set-theoretic propositional formalization of hybrid plan-
ning given in the last section is an extension of the formal-
ization given by Geier and Bercher (2011) to additionally
feature causal links in the domain. Their formalization of

HTN and TIHTN planning further does not use causal links
as a means to guarantee the executability of plans. Instead,
they require the existence of an applicable action sequence
(without explicitly representing their causal dependencies).
For the thesis and in ongoing work, we alter that solution
criterion s.t. a plan is regarded a solution if all its lineariza-
tions are applicable (as it is the defined for hybrid planning).
Since the domain does not feature causal links, abstract tasks
do not specify preconditions or effects as in hybrid planning;
they are merely names. For this formalization we showed
that HTN planning is still undecidable (Geier and Bercher
2011, Thm. 1), despite its severe simplifications of other
hierarchical planning approaches (Erol, Hendler, and Nau
1996; Biundo and Schattenberg 2001). Further, we proved
that allowing the insertion of tasks lowers to complexity to
at most EXPSPACE (Geier and Bercher 2011, Cor. 1), mak-
ing the plan-existence problem decidable. While PSPACE-
hardness follows from classical planning, tight bounds are
yet unknown. For our formalization of HTN planning, how-
ever, tight complexity bounds are already known (Alford,
Bercher, and Aha 2015).

3.2 Hybrid Planning
The plan-existence results proved for HTN and TIHTN plan-
ning can likely be transferred to hybrid planning, as the the-
oretical impact of causal links seems to be very limited for
the plan-existence problem.

3.3 PO and POCL planning
Both PO and POCL planning problems can be proved to be
PSPACE-complete – so, they are exactly as hard as classical
planning problems. Thus, the problem of transforming an
initial state into a goal state does not become harder by ad-
ditionally specifying an initial plan that needs to be refined
into such a solution. Since classical planning problems and
PO and POCL planning problems are all PSPACE-complete,
we can conclude that there is an encoding of the latter prob-
lems into classical planning problems without a space in-
crease more than polynomial. This idea is exploited by a
technique that makes state-based planning heuristics appli-
cable to the PO and POCL setting (Bercher, Geier, and Bi-
undo 2013). That technique is presented in the heuristics
section.

To obtain a heuristic that is well-informed on the one
hand, but tractable to calculate on the other, one needs to
investigate how much a given plan needs to be relaxed in or-
der to obtain a tractable problem class. Otherwise, a heuris-
tic could ignore information that does not contribute to the
hardness of the heuristic calculation, but could improve its
estimates. In POCL planning, there are basically two well-
informed heuristics available in the literature: the Relax
heuristic (Nguyen and Kambhampati 2001) and the additive
heuristic for POCL planning (Younes and Simmons 2003).
Both heuristics rely on delete-relaxation – that is, they ig-
nore negative effects of all actions within the domain, but
also those of the current plan for which a heuristic is to be
calculated. This is contrast to state-based planning, where
only the actions in the domain become delete-relaxed (since
the current search node is a state rather than a plan). Hence,

the question arises how hard it is to refine a given POCL
plan into a solution if that plan is not altered, but only the
actions of the domain are. It turns out that delete-relaxing
only the actions in the domain is not sufficient to obtain a
tractable problem class – it is still NP-complete (Bercher et
al. 2013). The source of the hardness lies in the interplay of
the partial order on the actions already present in the plan
and their negative effects. The result gives theoretical in-
sights required to design heuristics for POCL planning, but
we were also able to exploit it by means of an implemented
heuristic that is presented in the heuristics section.

4 Search
Planning is done by searching the space of partial plans. To
that end, the initial partial plan Pinit gets refined until it
satisfies all solution criteria. The respective generic hybrid
planning algorithm is depicted in Alg. 1 (Bercher, Keen, and
Biundo 2014). The corresponding planning system PANDA
(Planning and Acting in a Network Decomposition Archi-
tecture) is based on earlier work (Schattenberg 2009).

Algorithm 1: Hierarchical Refinement Planning
1 F ← {Pinit}
2 while F 6= ∅ do
3 P ← planSel (F)
4 if Flaws(P) = ∅ then return P
5 f ← flawSel (Flaws(P))
6 F ← (F \ {P}) ∪ { applyMod(m,P)

| m ∈ Mods(f, P) }
7 return fail

The algorithm maintains a set of candidate plans that have
been created via refining the initial partial plan Pinit and that
have not yet been chosen for refinement. We refer to that set
as fringe F . Initially, it contains only the initial partial plan
Pinit . While this fringe is not empty and no solution has
been generated, one of the partial plans in the fringe is cho-
sen for refinement (line 3). The strategy that determines the
selected partial plan constitutes the deployed search strategy.
In case of an informed search, such as A∗ or greedy search,
heuristic functions are required that estimate the quality or
goal distance of partial plans.

For the selected partial plan P , all its flaws Flaws(P) are
calculated. Flaws are syntactical representations of viola-
tions of solution criteria. Since only primitive plans are re-
garded executable (cf. solution criterion 2.(a)), any abstract
task induces a so-called abstract task flaw. The flaw classes
open precondition flaws and causal threat flaws (cf. solu-
tion criteria 2.(b) and 2.(c), respectively) are inherited from
standard POCL planning. Solution criterion 1 is always ful-
filled when using the PANDA algorithm, since it mimics the
allowed refinement options.

Plans with no flaws are solutions and returned (line 4). In
case there are flaws, one of them is picked to be resolved
(line 5). For a single flaw f , there may be several possibili-
ties how to resolve it. For instance, for an open precondition,
there might be several actions that can serve as a producer

for the respective causal link. Each possibility – called a
modification to the partial plan P – is calculated and applied
to P leading to a set of successor plans. Then, P is removed
from the fringe and its successors are inserted instead (cf.
line 6).

Now, the cycle starts over. In case the fringe becomes
empty, there is no solution to the problem; hence, fail is re-
turned (line 7).

Note that the algorithm is capable to solve all problem
classes mentioned in Section 2. Depending on the problem
class, termination might not be guaranteed. For instance,
since HTN planning is undecidable, termination may not be
guaranteed in case no solution exists.

5 Heuristics
The first proposed heuristics are designed for POCL plan-
ning problems (that is, for plans with a partial order on prim-
itive tasks that may contain causal links), the last heuristic
for hybrid planning can additionally cope with abstract tasks
within a plan.

5.1 Sample-FF heuristic for POCL problems
The membership part of the NP-completeness proof for par-
tially delete-relaxed POCL planning problems directly con-
stitutes a new heuristic that we call Sample-FF (Bercher et
al. 2013). That proof reveals that given a total order of the
actions within a plan, that plan can be refined into a solution
using only delete-relaxed actions within polynomial time.
Finding such a total order that actually admits a solution
is the source of the NP-hardness, however. We simulated
that NP-hard guessing part via sampling a fixed number of
linearizations. The solution extraction for a given lineariza-
tion of the actions is done using the FF heuristic (Hoffmann
and Nebel 2001). Hence, the proposed heuristic, Sample-
FF, first samples n total orders of the plan’s actions, then
solves the resulting problem using the FF heuristic, and uses
the number of actions of the solution as heuristic estimate.
In case several linearizations lead to a solution, the minimal
cost is chosen. In case all n linearizations turned out to be
unsolvable, we used the number of flaws as heuristic esti-
mates in order to prevent being blind. If the number of ex-
isting linearizations is smaller than n, then the non-existence
of a solution to these m ≤ n linearizations proves that the
plan cannot be refined to a solution and can hence be dis-
carded.

We have done an empirical evaluation using PANDA with
A∗ search and the planning problems taken from the IPC 1
to IPC 5. It revealed the following results: The additive
heuristic for POCL planning solved 292 out of 446 prob-
lems. The Relax heuristic was able to solve 194 problems.
For the Sample-FF heuristic, we evaluated 12 different ver-
sions that distinguish from each other by the number of used
samples (1, 3, 10, or 30) and the way in which present causal
links are handled. The best-performing variant solved 187
problems – slightly less than the Relax heuristic. However,
for one of the unsolvable planning problems, the Sample-FF
heuristic was the only one that was able to prove its unsolv-
ability, while the other heuristics all incurred timeouts.

5.2 State-based heuristics for POCL problems
Since there are basically only two heuristics for POCL plan-
ning, but a variety of well-informed heuristics for state-
based planning (Helmert and Domshlak 2009), we studied
whether these state-based heuristics can directly be made ap-
plicable to the POCL setting. The idea is to encode a given
plan P as a new classical planning problem, i.e., a prob-
lem without initial plan, but an initial state s (Bercher and
Biundo 2013; Bercher, Geier, and Biundo 2013). The pro-
posed encoding can be done in polynomial time and has the
property that any solution that can be obtained from P can
also be obtained from s and vice versa. Thus, rather than de-
veloping a new heuristic h estimating the goal distance for
plans, we can use the encoding transforming P into a state
s and then defining h(P) := h′(s) for an already existing
heuristic h′ that is defined for states.

We used PANDA with A∗ search for the empirical eval-
uation. Again, we used the planning benchmarks from the
IPC 1 to IPC 5. We have evaluated the proposed technique
using several state-based heuristics from the literature. We
compared them with the Relax heuristic and the additive
heuristic for POCL planning. To evaluate the state-based
planning heuristics we chose to use existing implementa-
tions from the Fast Downward planning system (Helmert
2006). To make them applicable within PANDA, we auto-
matically created PDDL domain and problem files for each
search node encoding the corresponding partial plan. These
files were passed to a modified version of Fast Downward
that exits after calculating the heuristic value for the initial
state. Due to the overhead of starting Fast Downward in
each search node, we did not evaluate run times. Instead,
we focused our evaluation on the number of solved prob-
lem instances given a maximum number of created search
nodes. The evaluation reveals that the encoding using the
LM-Cut heuristic (Helmert and Domshlak 2009) acts more
informed than both the Relax and the additive heuristic, as it
always solved more problems within the same search space
bounds. Since the LM-cut heuristic is admissible (and the
Relax and the additive heuristic are not), our transformation
together with the LM-cut heuristic constitutes the first ad-
missible heuristic for POCL planning.

5.3 Task Decomposition Trees as Basis for
Heuristics in Hybrid Planning

The previous heuristics were capable to estimate the goal
distance for primitive plans, i.e., for a plan in which all tasks
are primitive. In hybrid planning, such plans may addi-
tionally contain abstract tasks. Any well-informed heuristic
judging the goal distance for such plans thus has to con-
sider how abstract tasks may be decomposed. For that pur-
pose, we use a Task Decomposition Graph (TDG) (Elkawk-
agy, Schattenberg, and Biundo 2010; Elkawkagy et al. 2012;
Bercher, Keen, and Biundo 2014) that represents the task hi-
erarchy: A TDG contains all primitive and abstract tasks of
the planning domain. Any abstract task in the graph is con-
nected to any of its decomposition methods. Finally, any
method is connected with all tasks that are contained in the
plan referenced by that method. More formally, a TDG is

a 4-tuple 〈VT , VM , ET→M , EM→T 〉 consisting of the set of
task vertices VT , method vertices VM , edges ET→M con-
necting task to method vertices, and edges EM→T connect-
ing method vertices with its sub tasks VT . Fig. 1 depicts an
example TDG.

t0

m1

t1

m3 m4

t5 t6

t2

m2

t3

m5 m6

t7 t8

t4

Figure 1: Example TDG (Bercher, Keen, and Biundo 2014)
depicted as AND/OR graph. The symbols t0, t1, t3 and
t2, t4, . . . , t8 represent abstract and primitive task vertices,
respectively. The symbols m1 through m6 depict method
vertices for the abstract tasks t0, t1, and t3.

These TDGs can be used to calculate informed heuristics
that incorporate the task hierarchy. The heuristic judges the
number of remaining modifications to turn the given plan
into a solution, but it can be easily modified to judge the cost
of the tasks that still need to be inserted via decomposition.
Since the resulting heuristic admissible, we call it minimal
modification effort (MME) heuristic3 (Bercher, Keen, and
Biundo 2014).
Definition 1 (MME Heuristic).
Let 〈VT , VM , ET→M , EM→T 〉 be a TDG.

hT (vt) :=

{
|prec+(vt)|+ |prec−(vt)| if vt is primitive
1 + min

(vt,vm)∈ET→M

hM (vm) else

For a method vertex vm = 〈PS ,≺,CL〉, we set:

hM (vm) :=
∑

(vm,vt)∈EM→T

hT (vt)− |CL|

Then, for a partial plan P = 〈PS ′,≺′,CL′〉 that was gener-
ated during search, we define:

hMME(P) := hM (P)

The estimated number of modifications for making a
primitive task t executable is the number of its precondi-
tions, since for every precondition a causal link has to be
inserted and each causal link insertion is done using a sin-
gle modification. In the case of an abstract task (the “else”
case of hT), we need to apply exactly one modification for

3The heuristic presented here is a slight modification of the
original MME heuristic.

its decomposition plus the estimate for the sub plan that is
introduced via decomposing that task. To obtain admissible
estimates, we minimize over all possible decompositions.

The effort to refine a plan into a solution (heuristics hM

and hMME, respectively) is given by the sum of all the heuris-
tics for the task that are contained within that plan. Since
such plans may already contain causal links, we subtract
their number in order to be admissible.

In the empirical evaluation we used PANDA with greedy
search and the proposed MME heuristic. We compared it
with other heuristics for hybrid planning, such as the num-
ber of flaws. As a further baseline, we employed unin-
formed search strategies such as breadth first and depth first
search. We also simulated the search behavior of the hi-
erarchical planning systems SHOP2 (Nau et al. 2003) and
UMCP (Erol, Hendler, and Nau 1994). We evaluated how
many problems were solved given a certain size of the ex-
plored search space. The evaluation reveals that MME is
the best-performing heuristic among all evaluated configu-
rations.

6 Summary
The thesis introduces hybrid planning as a means to pro-
vide intelligent user assistance. The integration of various
planning techniques, such as plan generation, repair, and ex-
planation is demonstrated in an intelligent assistance sys-
tem that helps a user with his task of setting up a complex
home theater. Several sub problem classes of hybrid plan-
ning are investigated that arise under several restrictions,
such as (dis)allowing task insertion or (dis)allowing causal
links in the domain model. The complexity of the respec-
tive plan-existence problem is investigated including syntac-
tical restrictions, such as problems with no negative precon-
ditions or effects (delete-relaxation). The thesis introduces
a hybrid planning algorithm, called PANDA, that is capable
of solving problems of all introduced problem classes. Fi-
nally, for each of these classes, heuristics are introduced and
empirically evaluated. Some of these heuristics are the first
admissible heuristics for the respective problem class.

Acknowledgment
This work is done within the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems” funded by the German Re-
search Foundation (DFG).

References
Alford, R.; Bercher, P.; and Aha, D. 2015. Tight bounds for
HTN planning. In Proc. of the 25th Intl. Conf. on Automated
Planning and Scheduling (ICAPS). AAAI Press.
Bercher, P., and Biundo, S. 2013. Encoding partial plans for
heuristic search. In Proc. of the 4th Workshop on Knowledge
Engineering for Planning and Scheduling (KEPS), 11–15.
Bercher, P.; Geier, T.; Richter, F.; and Biundo, S. 2013. On
delete relaxation in partial-order causal-link planning. In
Proc. of the 2013 IEEE 25th Intl. Conf. on Tools with Artifi-
cial Intelligence (ICTAI), 674–681. IEEE Computer Society.

Bercher, P.; Biundo, S.; Geier, T.; Hoernle, T.; Nothdurft, F.;
Richter, F.; and Schattenberg, B. 2014. Plan, repair, execute,
explain - how planning helps to assemble your home theater.
In Proc. of the 24th Intl. Conf. on Automated Planning and
Scheduling (ICAPS), 386–394. AAAI Press.
Bercher, P.; Richter, F.; Hörnle, T.; Geier, T.; Höller, D.;
Behnke, G.; Nothdurft, F.; Honold, F.; Minker, W.; Weber,
M.; and Biundo, S. 2015. A planning-based assistance sys-
tem for setting up a home theater. In Proc. of the 29th Na-
tional Conf. on Artificial Intelligence (AAAI), 4264–4265.
AAAI Press.
Bercher, P.; Geier, T.; and Biundo, S. 2013. Using state-
based planning heuristics for partial-order causal-link plan-
ning. In Advances in Artificial Intelligence, Proc. of the 36nd
German Conf. on Artificial Intelligence (KI), 1–12. Springer.
Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid plan-
ning heuristics based on task decomposition graphs. In Proc.
of the 7th Annual Symposium on Combinatorial Search
(SoCS), 35–43. AAAI Press.
Bidot, J.; Schattenberg, B.; and Biundo, S. 2008. Plan re-
pair in hybrid planning. In Advances in Artificial Intelli-
gence, Proc. of the 31st German Conf. on Artificial Intelli-
gence (KI), 169–176. Springer.
Biundo, S., and Schattenberg, B. 2001. From abstract crisis
to concrete relief (a preliminary report on combining state
abstraction and HTN planning). In Proc. of the 6th European
Conf. on Planning (ECP), 157–168. AAAI Press.
Biundo, S.; Bercher, P.; Geier, T.; Müller, F.; and Schatten-
berg, B. 2011. Advanced user assistance based on AI plan-
ning. Cognitive Systems Research 12(3-4):219–236. Special
Issue on Complex Cognition.
Elkawkagy, M.; Bercher, P.; Schattenberg, B.; and Biundo,
S. 2012. Improving hierarchical planning performance by
the use of landmarks. In Proc. of the 26th National Conf. on
Artificial Intelligence (AAAI), 1763–1769. AAAI Press.
Elkawkagy, M.; Schattenberg, B.; and Biundo, S. 2010.
Landmarks in hierarchical planning. In Proc. of the 20th
European Conf. on Artificial Intelligence (ECAI), 229–234.
IOS Press.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1994. UMCP: A
sound and complete procedure for hierarchical task-network
planning. In Proc. of the 2nd Intl. Conf. on Artificial Intelli-
gence Planning Systems (AIPS), 249–254. AAAI Press.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complex-
ity results for HTN planning. Annals of Mathematics and
Artificial Intelligence 18(1):69–93.
Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In Proc. of the 22nd Intl. Joint
Conf. on Artificial Intelligence (IJCAI), 1955–1961. AAAI
Press.
Helmert, M., and Domshlak, C. 2009. Landmarks, criti-
cal paths and abstractions: What’s the difference anyway?
In Proc. of the 19th Intl. Conf. on Automated Planning and
Scheduling (ICAPS), 162–169. AAAI Press.
Helmert, M. 2006. The fast downward planning system.

Journal of Artificial Intelligence Research (JAIR) 26:191–
246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR) 14:253–302.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language classification of hierarchical planning problems.
In Proc. of the 21st European Conf. on Artificial Intelligence
(ECAI), volume 263, 447–452. IOS Press.
Honold, F.; Bercher, P.; Richter, F.; Nothdurft, F.; Geier,
T.; Barth, R.; Hörnle, T.; Schüssel, F.; Reuter, S.; Rau, M.;
Bertrand, G.; Seegebarth, B.; Kurzok, P.; Schattenberg, B.;
Minker, W.; Weber, M.; and Biundo, S. 2014. Companion-
technology: Towards user- and situation-adaptive function-
ality of technical systems. In 10th Intl. Conf. on Intelligent
Environments (IE), 378–381. IEEE.
Kambhampati, S.; Mali, A.; and Srivastava, B. 1998. Hybrid
planning for partially hierarchical domains. In Proc. of the
15th National Conf. on Artificial Intelligence (AAAI), 882–
888. AAAI Press.
Kambhampati, S. 1995. Admissible pruning strategies based
on plan minimality for plan-space planning. In Proc. of
the 14th Intl. Joint Conf. on Artificial Intelligence (IJCAI),
1627–1633. Morgan Kaufmann.
Lin, N.; Kuter, U.; and Sirin, E. 2008. Web service compo-
sition with user preferences. In ESWC’08: Proc. of the 5th
European Semantic Web Conf., 629–643. Springer.
McAllester, D., and Rosenblitt, D. 1991. Systematic nonlin-
ear planning. In Proc. of the 9th National Conf. on Artificial
Intelligence (AAAI), 634–639. AAAI Press.
Nau, D. S.; Ilghami, T.-C. A. O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning
system. Journal of Artificial Intelligence Research (JAIR)
20:379–404.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Wu, D.; Ya-
man, F.; Muñoz-Avila, H.; and Murdock, J. W. 2005. Ap-
plications of SHOP and SHOP2. Intelligent Systems, IEEE
20:34–41.
Nguyen, X., and Kambhampati, S. 2001. Reviving partial
order planning. In Proc. of the 17th Intl. Joint Conf. on Ar-
tificial Intelligence (IJCAI), volume 17, 459–466.
Penberthy, J. S., and Weld, D. S. 1992. UCPOP: A sound,
complete, partial order planner for ADL. In Proc. of the 3rd
Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR), 103–114. Morgan Kaufmann.
Schattenberg, B. 2009. Hybrid Planning & Scheduling.
Ph.D. Dissertation, University of Ulm, Germany.
Seegebarth, B.; Müller, F.; Schattenberg, B.; and Biundo,
S. 2012. Making hybrid plans more clear to human users
– a formal approach for generating sound explanations. In
Proc. of the 22nd Intl. Conf. on Automated Planning and
Scheduling (ICAPS), 225–233. AAAI Press.
Younes, H. L. S., and Simmons, R. G. 2003. VHPOP: Ver-
satile heuristic partial order planner. Journal of Artificial
Intelligence Research (JAIR) 20:405–430.

