
Change the Plan – How Hard Can That Be?

Gregor Behnke and Daniel Höller and Pascal Bercher and Susanne Biundo
Institute of Artificial Intelligence, Ulm University, D-89069 Ulm, Germany
{gregor.behnke, daniel.hoeller, pascal.bercher, susanne.biundo}@uni-ulm.de

Abstract

Interaction with users is a key capability of planning
systems that are applied in real-world settings. Such a
system has to be able to react appropriately to requests
issued by its users. Most of these systems are based
on a generated plan that is continually criticised by
him, resulting in a mixed-initiative planning system. We
present several practically relevant requests to change a
plan in the setting of hierarchical task network planning
and investigate their computational complexity. On the
one hand, these results provide guidelines when con-
structing algorithms to execute the respective requests,
but also provide translations to other well-known plan-
ning queries like plan existence or verification. These
can be employed to extend an existing planner such that
it can form the foundation of a mixed-initiative planning
system simply by adding a translation layer on top.

Introduction
Planning systems deployed to real-world applications ought
to interact with their users in order to integrate their wishes
and preferences into the plans they generate. There are sev-
eral possible ways to achieve this integration. Either the user
specifies some metric on plans (Fox and Long 2003), e.g.,
by providing action costs, or he specifies his preferences
using a dedicated formalism (Sohrabi, Baier, and McIlraith
2009; Sohrabi and McIlraith 2008). We argue that these ap-
proaches might fail in many real-world scenarios, most fre-
quently because the user is not able to specify a-priori all
restrictions and preferences he wants to impose on the so-
lution. This can either be caused by the employed planning
formalism not being capable of expressing them or the fact
that new requirements frequently arise if a solution is pre-
sented to him. This gives rise to the paradigm of mixed-
initiative planning, which aims at integrating the user into
the planning process itself. An established method to do so
is to repeatedly present the user with a plan (i.e. a solution to
the planning problem), ask his opinion about the plan, and
if he is not content to modify it appropriately. Such schemes
were, e.g., applied in route-planning (Ferguson et al. 1996),
planning of Mars-rover activities (Ai-Chang et al. 2004), and
military mission planning (Myers et al. 2003). Arguably, the

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

planning formalism employed by a mixed-initiative plan-
ning system should be similar to the one used by its users
to ease communication and interaction. In this paper we
study mixed-initiative planning systems that employ hier-
archical task network (HTN) planning (Erol, Hendler, and
Nau 1996). In HTN planning a plan must in addition to be-
ing executable also be obtained by repeatedly refining ab-
stract actions into more concrete courses of action. HTN
domains are often a natural way to describe the domain
in real-world planning applications (and thus particularly
in mixed-initiative planning). It is usually easier for mod-
ellers to think in terms of hierarchical domains, as humans
tend solve problems in a top-down fashion (Byrne 1977;
Fox 1997, Sec. 2). HTN domains are also well suited to en-
code domain-specific search strategies – reducing practical
complexity due to search although its theoretical complexity
(e.g. in terms of plan existence) becomes harder.

The most critical part of a mixed-initiative planning sys-
tem is handling the modification request posed by the user.
Based on the experiences with MAPGEN – the Mars-rover
planning system (Ai-Chang et al. 2004) – Smith (2012;
2013) presented a collection of requests to change plans in
a classical setting. More specifically, we study some of the
proposed requests and their HTN counterparts by investi-
gating their computational complexity. We will show that,
while most of the classical requests can be addressed in
polynomial time or PSPACE, the same problems are compu-
tationally more difficult for HTN planning problems, rang-
ing from NP to undecidable. In addition, the proofs through-
out this paper provide translations of the user’s requests to
standard planning queries like plan existence, plan verifica-
tion, or finding an executable linearisation of a partially or-
dered plan. Insights into the complexity of user requests is
also useful in general, as it enables the designer of a mixed-
initiative planning system to select appropriate algorithms
for dealing with them. Most notably, one should be aware of
the fact that certain request the users can pose are in general
undecidable, i.e., there should be a mechanism that handles
this case or switches to a decidable problem after a certain
time.

We start with a brief introduction for the formalism of
HTN planning followed by a discussion on how to interpret
the user’s requests correctly in the case of HTN planning.
Thereafter we provide an investigation of a request that has

been previously studied in the field of mixed-initiative HTN
planning: plan sketching (Myers et al. 2003). Lastly, several
request based on Smith’s (2012; 2013) description are dis-
cussed.

Hierarchical planning
We start by giving an introduction to HTN planning (Erol,
Hendler, and Nau 1996) using a simplistic formalism pro-
posed by Geier and Bercher (2011). The central concept of
HTN planning is the task network, describing a partially or-
dered set of tasks. Since a task network can contain the same
action more than once, we distinguish between a task – a
unique identifier – and its task name – describing the name
of the respective action, e.g., move-a-b.
Definition 1 (Task Network) A task network tn over a set
of task names X is a tuple (T,≺, α), where
• T is a finite, possibly empty, set of tasks
• ≺ ⊆ T × T is a strict partial order on T
• α : T → X labels every task with a task name
TNX is defined as the set of all task networks over the task
names X . As a short-hand notation, we write T (tn) = T ,
≺(tn)=≺ and α(tn)=α for a task network tn = (T,≺, α).
Further we define tn(x) = ({1}, ∅, {(1, x)}) to be the task
network that contains exactly one task with the task name x.
Two task networks tn = (T,≺, α) and tn′ = (T ′,≺′, α′)
are isomorphic, written tn ∼= tn′, if and only if there ex-
ists a bijection σ : T → T ′, such that ∀t, t′ ∈ T it
holds that (t, t′) ∈ ≺ if and only if (σ(t), σ(t′)) ∈ ≺′ and
α(t) = α′(σ(t)). To ease notation, we define restrictions on
relations, functions and task network using the bar notation.
Definition 2 (Restriction) Let R ⊆ D × D be a relation,
f : D → V a function and tn be a task network. Then the
restrictions of R and f to some set X are defined by

R|X :=R ∩ (X ×X)

f |X := f ∩ (X × V)

tn|X := (T (tn) ∩X,≺(tn)|X , α(tn)|X)

Based upon the definition of a task network, an HTN plan-
ning problem is defined as follows.
Definition 3 (Planning Problem) A planning problem is a
6-tuple P = (L,C,O,M, cI , sI), with
• L, a finite set of proposition symbols
• C, a finite set of compound task names
• O, a finite set of primitive task names with C ∩O = ∅
• M ⊆ C×TNC∪O, a finite set of decomposition methods
• cI ∈ C, the initial task name and sI ∈ 2L, the initial state
For each primitive task name o ∈ O, its operator or ac-
tion is given by a tuple that defines its precondition and
its effect, the latter in terms of an add-, and a delete list:
(prec(o), add(o), del(o)) ∈ 2L × 2L × 2L.
The original formalism of Erol, Hendler, and Nau (1996)
allows for an initial task network instead of a single initial
task. Since the former version can be compiled into the lat-
ter, more simplistic one, we employ the latter. In order to ob-
tain a valid plan in HTN planning, one starts with the initial

compound task and repeatedly applies decomposition meth-
ods to compound tasks until all tasks in the current task net-
work are primitive.

Definition 4 (Decomposition) A method m = (c, tnm) ∈
M decomposes a task network tn1 = (T1,≺1, α1) into a
task network tn2 by replacing task t, written tn1−−→t,m tn2, if
and only if t ∈ T1, α1(t) = c, and ∃tn′ = (T ′,≺′, α′) with
tn′ ∼= tnm and T ′ ∩ T1 = ∅, where

tn2 := (T ′′,≺1 ∪ ≺′ ∪ ≺X , α1 ∪ α′)|T ′′ with

T ′′ := (T1 \ {t}) ∪ T ′

≺X := {(t1, t2) ∈ T1 × T ′ | (t1, t) ∈ ≺1} ∪
{(t1, t2) ∈ T ′ × T1 | (t, t2) ∈ ≺1}

We write tn1 →∗D tn2, if tn1 can be decomposed into tn2
using an arbitrary number of decompositions.

The original formulation of HTN planning by Erol,
Hendler, and Nau (1996) and the simplistic reformulation
by Geier and Bercher (2011) defined a task network to be
executable, if there exists a linearisation of its tasks that is
executable. The related formalisms hybrid planning (Biundo
and Schattenberg 2001) and POCL planning (Penberthy and
Weld 1992), on the other hand require all linearisations to
be executable. We will restrict our investigation to the for-
mer formalism.

Definition 5 (Executable Task Network) A task network
(T,≺, α) is executable in a state s ∈ 2L, if and only if all
its tasks are primitive and there exists a linearisation of its
tasks t1, . . . , tn that is compatible with ≺ and a sequence of
states s0, . . . sn such that s0 = s and prec(α(ti)) ⊆ si−1
and si = (si−1 \del(α(ti)))∪add(α(ti)) for all 1 ≤ i ≤ n.

Using the previous definition we can describe the set of
solutions to a planning problem P . We deviate from the def-
inition given by Geier and Bercher (2011), in that we al-
low a solution to have more ordering constraints than those
required by the decomposition it was generated by. This is
done to prevent problematic interactions with users, who are
presented with a solution and ask to add an ordering con-
straint, but the planner refuses to do so, while the plan is
still executable and can clearly be generated by decompo-
sition. For example, a solution might contain the actions a
and b unordered and both linearisations are executable. If we
use the original solution criterion, the task network where a
is ordered strictly before b is not a solution, since the ad-
ditional ordering constraint a < b cannot be derived from
the decomposition hierarchy, but is only compatible with it.
Such a case seems to be extremely confusing for a user and
should be avoided.

Definition 6 (Solution) A task network tnS is a solution to
a planning problem P , if and only if

(1) tnS is executable in sI ,
(2) tn(cI)→∗D tnD,
(3) tnS = (T (tnD),≺′, α(tnD)) where ≺(tnD) ⊆ ≺′.
Sol(P) denotes the sets of all solutions of P .

HTN planning semantics –
how should we interpret the domain when

changing a plan?
In the previous section we have outlined the criteria a task
network must fulfil in order to be considered a solution to
an HTN planning problem: it has to be executable and it
must reside in the refinement space of the HTN problem,
i.e., it must be possible to obtain it through a sequence of
decompositions and ordering insertions form the initial task
network. If such a plan is presented to the user and he ut-
ters a request to change the plan, we have to consider what
we deem an appropriate solution. Obviously, the plan must
comply with the request itself, but the question arises which
of the solution criteria for HTN planning the changed plan
must also fulfil. While undoubtedly executability must be
preserved, the question whether it must also lie with the re-
finement space has to be discussed.

If we only require the changed plan to be executable, we
essentially view the HTN domain as a mere guide or heuris-
tic for the search process in order to obtain a solution. Fur-
ther this allows the planner, when changing a plan upon the
user’s request, to ignore the knowledge and semantics con-
tained within the HTN structure of the domain completely.
This poses a problem, since HTN planning problems ordi-
narily do not specify a goal state to be reached, but aim
at performing a certain set of (compound) actions (Erol,
Hendler, and Nau 1996). This makes the task hierarchy an
integral part of the problem description and hence restricts
the set of allowed solutions. If it would be ignored, any exe-
cutable sequence of actions would be considered a solution,
which seems not to be appropriate.

One possible interpretation of an HTN domain – apart
from providing a structural guide for the search – is that
it provides a more expressive planning formalism. Ignoring
the decomposition hierarchy also ignores criteria for exe-
cutability (or otherwise the plan’s validity) that are not en-
coded as preconditions and effects but rather as decompo-
sition methods. Earlier work has shown that HTN planning
is strictly more expressive than classical planning under two
separate views, which shows that such criteria exist: On the
one hand, deciding whether a given planning problem has
a solution is undecidable (Erol, Hendler, and Nau 1996;
Geier and Bercher 2011), which entails that there is no
way to translate an arbitrary HTN planning problem into a
classical planning problem1. On the other hand, there are
results about the structural restrictions the planning prob-
lem can possibly enforce upon its solutions. We (2014;
2016) showed that the structures of HTN solutions are
strictly more expressive than solutions for classical prob-
lems. This enables domain modellers to express restrictions
to the plans and thus the “state changes” in the scenario us-
ing the hierarchy, which are not describable by preconditions
and effects on a finite set of literals.

To conclude, we deem it necessary and appropriate to re-
quire that a plan lies within the problem’s refinement space

1However there are translations for several more restrictive sub-
classes of HTN domains which are commonly found in application
domains (Alford et al. 2016; Alford, Kuter, and Nau 2009).

and thus still satisfies the respective hierarchical solution cri-
terion, in order to ensure that the changed plan complies with
the restrictions of the planner’s application domain. This
means that whenever a plan has been changed, we (at least)
have to verify that it is a plan in the HTN sense.

Planning with given actions
We start our investigation of user requests posed to mixed-
initiative planning systems by looking into a specific type of
request that has been discussed in prior work. Myers (1997)
proposed a mechanism called “plan sketching” handling
“must contain” constraints for HTN planning. Her approach
lets the user provide a set of actions and ensures that the
generated solution contains these actions. In addition to re-
quirements on primitive tasks, i.e., those actually contained
in the solution, her mechanism also allows for requirements
on compound tasks, i.e., forcing that the solution has been
obtained such that these tasks were intermediate steps. A
precise definition of a plan sketch and plan sketch compli-
ance is given below. The intuition is that if a compound task
c is contained in the sketch, a plan complies with it if it is
possible to decompose the initial task network such that c
occurs at some point during decomposition in the current
task network.

Definition 7 Let P = (L,C,O,M, cI , sI) be a planning
problem and S ⊆ C ∪ O a sketch. A task network tn∗ ∈
Sol(P) complies with S if there is a sequence of task net-
works, such that

tn(cI) = tn0 →∗D tn1 →∗D . . .→∗D tnn = tn∗

and S ⊆
⋃n
i=0

⋃
t∈T (tni)

α(tni)(t)

We call the problem, given an HTN planning problem P
and a sketch S, to determine whether P has a solution that
complies with S, SKETCH-COMPLIANCE. Based upon
earlier results by Erol, Hendler, and Nau (1996), we can
prove that this problem is strictly semi-decidable.

Theorem 1 The problem SKETCH-COMPLIANCE is
strictly semi-decidable.

Proof: Undecidability: If the sketch S is chosen as the empty
set, the problem is equivalent to the plan existence problem,
which is known to be undecidable (Erol, Hendler, and Nau
1996; Geier and Bercher 2011).

Enumerability: We can transform a SKETCH-
COMPLIANCE instance into an ordinary plan existence
problem and use the property that the set of solutions to a
given planning problem is enumerable (Erol, Hendler, and
Nau 1996). Let P = (L,C,O,M, cI , sI) be a planning
problem and S a sketch. First we add for every s ∈ S
a new proposition s to L. For every s ∈ S ∩ O we add
the add-effect s to s. For every s ∈ S ∩ C we add a new
primitive task name ns without preconditions and the sole
add-effect s. It is added to the task network of every method
(s, tn) which can decompose s without any further ordering
constraints.

Lastly two new tasks – the primitive task g and the com-
pound task c∗I – are added. An additional decomposition

method (c∗I , tnc∗I) is added for the latter with

tnc∗I = ({1, 2}, {(1, 2)}, {(1, cI), {2, g}})

where g has {s | s ∈ S} as its precondition and no effects.
In the constructed planning problem, c∗I is used as the initial
task instead of cI .

Any solution to the new planning problem contains g as
its last task and g is executable is this task network. Thus all
swere made true, implying that for all s ∈ S∩C an instance
of ns was inserted into the plan and for all s ∈ S ∩ O
that the task s is contained in the plan. Consequently
the solution complies with the sketch. Also a solution to
a SKETCH-COMPLIANCE problem can trivially be
transformed into a solution to the just constructed HTN
planning problem. �

The proof provides a scheme to compile a SKETCH-
COMPLIANCE instance into a standard HTN planning
problem. By applying the scheme ordinary HTN planners
– like SHOP or UMCP – could be used to solve the prob-
lem instead of the specialised algorithm developed by My-
ers (1997). This would lift the restriction of her algorithm,
which is only applicable to so-called acyclic domains. A
planning problem is acyclic if for all compound tasks c ∈ C
there is no task network tn∗ such that tn(c) →∗D tn∗ and
tn∗ contains a task labelled with c, i.e., no compound task
can be achieved via decomposition from itself. Formally an
HTN planning problem is defined as follows

Definition 8 An HTN planning problem P =
(L,C,O,M, cI , sI) is acyclic if a total order < on C
exists such that for all methods (c, tn) ∈ M all compound
tasks in tn are smaller than c according to <.

In addition to the fact that the algorithm only treats acyclic
problems, she does not provide any bound on the complex-
ity of the algorithm (only for parts thereof). Using the proof
of the theorem – which does not introduce cycles into the
domain – and the result by Alford, Bercher, and Aha (2015),
stating that plan existence for acyclic planning problems
is NEXPTIME-complete, we can conclude the following
corollary, which enables an estimation of the actual com-
plexity of her algorithm.

Corollary 1 The problem SKETCH-COMPLIANCE for
acyclic planning problems is NEXPTIME-complete.

Intuitively, a user might also pose the request to avoid cer-
tain actions when generating a plan. The respective decision
problem would ask, whether given a set A of task names
there is a solution that does not contain any element of A.
This problem can trivially be solved by simply removing
all tasks in A from the domain. The proof of the following
proposition is straightforward and is thus omitted.

Proposition 1 The problem ACTION-AVOIDING is
strictly semi-decidable.

Changing plans
Plan sketching enables a user to pose a specific kind of re-
strictions on the actions prior to the planner generating a

plan, which is a useful instrument in mixed-initiative plan-
ning. It does not cover cases where a plan has already been
generated and presented to the users, which should be con-
sidered when generating a solution. In practice this is not
sufficient, since – as argued before – the planning system
has also to integrate requests to change an already gener-
ated plan. Such requests include, e.g., the wish to add cer-
tain actions or to reorder them in a specific way. In this
section we discuss several practically motivated requests,
based on a talk given by Smith (2012; 2013). We provide
formal definitions of these requests for HTN planning prob-
lems and study their computational complexity. Handling of
most of these requests is already available in mixed-initiative
planning systems for classical planning, like MAPGEN (Ai-
Chang et al. 2004). In the case of HTN planning there are –
to our knowledge – no systems available that can handle the
requests presented.

While we focus on the computational complexity of those
requests, the respective membership proofs often provide
schemes to compile them into standard enquiries usually
posed to an HTN planning system, like plan existence. Us-
ing these schemes it would be straightforward to imple-
ment the requests in any state-of-the-art planning system.
This enables a mixed-initiative planning system’s designer
to employ a standard planning algorithm without the need to
change or adapt it to the mixed-initiative system it is used in.
Similarly, it is rather easy to extend the capabilities of plan-
ners, in terms of the enquiries they can handle, significantly
by adding a translation layer on-top of the actual planning
routine.

Most of the results in this section are based on a result
of Behnke, Höller, and Biundo (2015), who showed that de-
termining whether a given task network is a solution to a
given planning problem is NP-complete. This problem is
commonly also called plan verification.
Definition 9 The problem VERIFY-TN is, given a plan-
ning problem P and a task network tn, to decide whether
tn ∈ Sol(P).
Proposition 2 VERIFY-TN is NP-complete.

Moreover they showed that the problem is even NP-
complete if the planning problem is totally unordered, i.e.,
all task networks in the planning domain do not contain any
ordering constraints (∀(c, tn) ∈ M : α(tn) = ∅) and all
primitive actions are precondition-free. This means that only
the number of instances of each primitive action in a task
network matters when determining whether it is a solution
to the planning problem or not.

Changing Order
We start with an enquiry which we expect a user to make
quite often: the request to change the order of the actions in
a given plan, uttered e.g. as “Can I rearrange the tasks such
that ...?”. For example it might be requested that a mars rover
first has to take a picture of its surrounding before it can take
a surface sample, but the planner has arranged the actions the
other way round to conserve energy. The planner’s task is to
determine whether it is possible to comply with the change
while remaining enough energy to operate safely.

Obviously, there are several varieties of the problem de-
pending on which kinds of ordering constraints he is allowed
to enforce and on whether the planner can make additional
changes to the plan and if so to which extent. We restrict
our investigation to requests containing only a single order-
ing constraint, as extending the presented results to cases
involving multiple constraints or disjunctive requests (like
“Establish that either action a or action b is before c.”) is
straightforward. We assume in our formulation that the user
asks for the ordering t1 < t2 to be established in the current
plan.

We start with the most restrictive version, where we forbid
the planner to alter the plan in any way, except the change
explicitly requested by the user.

Definition 10 We define the problem ORDER as:
Given a planning problem P , a task network tn ∈
Sol(P), and two tasks t1, t2 ∈ T (P), is the task network
(T (tn),≺(tn) ∪ {(t1, t2)}, α(tn)) also a solution to P?

Surprisingly deciding this problem is already NP-
complete as stated by the following theorem. However, this
is only based on a peculiarity of the HTN formalism, which
requires a solution to have only a single executable linearisa-
tion and not that all linearisations to be executable. Inserting
an additional ordering constraint might exclude this lineari-
sation and requires to determine whether another executable
linearisation exists. If the criterion for a solution would re-
quire that all linearisations are executable (which can be de-
termined in polynomial time (Nebel and Bäckström 1994))
this request would therefore be in P. The respective request
in classical planning is to reorder a plan in a given way. This
is trivially polynomial, since the change can be performed
and executability be tested.

Theorem 2 ORDER is NP-complete.

Proof: Membership: Given the task network tn, we first have
to check whether the ordering t2 < t1 is already contained
in tn. If so, the answer to the problem is no. Else, we can
insert the ordering and obtain tn′. Since tn is a solution, tn′
is also reachable from cI via decomposition and insertion
of ordering constraints. What remains is to check whether
tn′ has an executable linearisation, which can be done by
guessing one and checking it.

Hardness: We can reduce from the problem of determin-
ing whether a task network has an executable linearisation
which in turn is known to be NP-complete (Erol, Hendler,
and Nau 1996; Nebel and Bäckström 1994, Thm. 14 & 15).
Given a task network tn we can construct a planning domain
as follows. First we add for every task name n occurring in
tn a new primitive task an, which has no preconditions and
the preconditions of n as its effects. Further two new prim-
itive tasks e and b are added to the problem. Next we con-
struct the task network tn∗ which will be used as the input
to the ORDER problem. It contains the tasks of tn with the
same order, one instance of e and b and and the appropriate
amount of an tasks to ensure that tn∗ is executable. Formally

we define

tn∗ = (T (tn) ∪ T ∗,≺ (tn)∪ ≺∗, α(tn) ∪ α∗) where

T ∗ = {1, 2} ∪ {t | t ∈ T (tn)}
≺∗ = {(t, 1), (2, t) | t ∈ T (tn)}
α∗ = {(1, e), (2, b)} ∪ {(t, nα(tn)(t)) | t ∈ T (tn)}

The only decomposition method in the planning problem is
(cI , tn

∗). The question to be posed is whether it is possible
to insert the ordering 1 < 2 into the task network tn.

The initial task network tn∗ is clearly executable as
for any task t ∈ T (tn) the respective task t could just be
ordered right before t ensuring that it is executable. If the
ordering 1 < 2 is inserted into the plan, these tasks cannot
be used any more to ensure the executability of any task
t ∈ T (tn). Thus this task network is only a solution to the
planning problem if the original task network tn has an
executable linearisation. �

In most practical cases however requiring that none of the
other ordering constraints can be altered seems to be overly
restrictive. Alternatively the planner can be allowed to add
new ordering constraints or to remove some of those present
in the current plan. In general, as few orderings as possible
should be changed to keep the plan as similar to the original
plan as possible. This seems necessary to enable the user to
understand the performed changes and the structure of the
new plan easily. Only if no plan fulfilling the given restric-
tions exists, the planner might weaken them with a proper
warning to the user.

The problem is to determine the minimal number of or-
dering constraints that have to be changed in order to allow
for the ordering t1 < t2 to be inserted into the task network.
Apparently the more general problem to determine whether
it is possible at all to rearrange the tasks of a task network
compliant to t1 < t2 such that the task network is a solu-
tion is NP-complete. From this we can easily deduce NP-
completeness of the minimisation problem.

Definition 11 We define the problem REORDER as:
Given a planning problem P , a task network tn ∈ Sol(P),
and two tasks t1, t2 ∈ T (P), is there a partial ordering ≺
such that (T (tn),≺, α(tn)) is a solution to P and the order-
ing t1 < t2 is contained in ≺?

Theorem 3 REORDER is NP-complete.

Proof: Membership: A partial order ≺ containing t1 <
t2 can be guessed and the resulting task network can be
checked using the NP algorithm for VERIFY-TN. Note that
this does not result in a NPNP2 algorithm, since the applica-
tion of the VERIFY-TN algorithm is the last step and its
result will be returned without alteration.

Hardness: We reduce from the VERIFY-TN problem for
totally unordered task networks without preconditions. Let
tn be a task network to be verified and P be the respective
problem. If tn contains any ordering constraints, it cannot be
a solution of P . We alter P as follows. First a new primitive

2NPNP denotes the class of problems solvable via an NP algo-
rithm that can query another NP algorithm at every step.

task a, without any preconditions or effects is added to P .
Second we replace the initial abstract task cI with the new
c′I for which we define the following two methods

m1 = (c′I , ({1, 2}, {(1, 2)}, {(1, cI), (2, a)}))
m2 = (c′I , (T (tn) ∪ {1}, {(1, t) | t ∈ T (tn)},

α(tn) ∪ {(1, a)}))

The question put to the REORDER solver is whether it is
possible to reorder the task network of m2 such that t < 1
for an arbitrary t ∈ T (tn). The task network in question is
clearly a solution, and if the order t < 1 is to be fulfilled,
the method m1 has to be applied in order to decompose c′I .
Thus if it is possible to reorder the tasks, the task network
tn was a solution to P . �

In the two requests investigated so far, we were restricted
not to alter the actions contained in the task network but
were only allowed to rearrange them. In certain situations
this might be a too strict constraint, e.g., if a new action has
to be inserted to accommodate for the new order. A simple
solution would be to allow for arbitrary changes to the task
network and requiring that the result contains a given order-
ing constraint. Since the original task network the user posts
its request for only provides the tasks between an ordering
constraint shall be established, the actual task network can
be disregarded leading to the following problem definition.

A classical version of this request asks the same question,
whether there is a plan that contains two actions in a specific
order, which can be encoded into the problem with appro-
priate preconditions and effects. PSPACE-completeness can
be obtained via a reduction from plan existence.

Definition 12 We define the problem ORDER-SOLUTION
as:
Given a planning problem P and two task names n1, n2 ∈
O, is there a task network tn ∈ Sol(P) such that there
are t1, t2 ∈ T (tn), α(tn)(t1) = n1, α(tn)(t2) = n2, and
t1 < t2 ∈ ≺(tn).

Unsurprisingly – after considering Thm. 1, this problem is
strictly semi-decidable.

Theorem 4 ORDER-SOLUTION is strictly semi-decidable.

Proof: Undecidability: We can reduce from the plan exis-
tence problem for general HTNs, which is known to be un-
decidable (Erol, Hendler, and Nau 1996; Geier and Bercher
2011). Let P be a planning problem. We add three new task
names to P: the primitives n1 and n2 and the abstract c∗I ,
which replaces cI as the initial abstract task. The sole de-
composition method for c∗I decomposes it into the following
task network

tn = ({1, 2, 3}, {(1, 2)}, {(1, n1), (2, n2), (3, cI)})

Any solution to the original problem P translates to a solu-
tion of the new problem containing n1 < n2 and vice versa.
Thus enquiring for a solution to the new problem containing
n1 < n2 solves the plan existence problem.

Enumerability: The solutions to P are enumerable and
each solution can be tested whether it contains n1 < n2. �

In most practical cases the changes that can reasonably be
applied to a solution in order to fulfil a given request is small.
Without such a restriction the planner would practically be
allowed to create a completely new task network. Such a be-
haviour should be prohibited to ensure a stable presentation
of plans to the user.

A simple model to restrict the changes that can be applied
to a plan is to bound their number of by some small constant.
This leads to the following version of the ORDER problem
and the result that it is NEXPTIME-complete.

Definition 13 We define the problem FORCE-ORDER as:
Given a planning problem P , a task network tn ∈ Sol(P),
two tasks t1, t2 ∈ T (P), and an integer k. Can tn be trans-
formed into a solution tn′ ∈ Sol(P) with at most k of the
following operations
• adding a new primitive task
• removing a task from the task network
• adding an ordering constraint
• removing an ordering constraint.
such that neither t1 nor t2 are removed and tn′ contains the
ordering constraint t1 < t2.

Theorem 5 FORCE-ORDER is NEXPTIME-complete.

Proof: Membership: Given a task network tn we can apply
up to k of the described operations randomly in exponential
time3. We can test for the resulting task network whether it
is a solution or not and whether it satisfies t1 < t2 in non-
deterministic polynomial time, which leads to a NEXPTIME
decision procedure.
Hardness: We reduce from the plan existence problem for
acyclic HTN planning problems (see Definition 8), which
is known to be NEXPTIME-complete (Alford, Bercher, and
Aha 2015). Let P be an acyclic HTN planning problem.

First, two new primitive tasks names n1 and n2 – without
preconditions and effects – and a new compound task c∗I are
added to the domain. The latter will be the initial compound
task of the domain. Also the following two decomposition
methods (c∗I , tn1) and (c∗I , tn2) are added, where

tn1 = ({1, 2}, {(1, 2)}, {(1, n1), (2, n2)})
tn2 = ({1, 2, 3}, {(2, 1)}, {(1, n1), (2, n2), (3, cI)})

The question posed is whether it is possible to achieve the
order 2 < 1 in the task network tn1. This is obviously
possible if and only if the original planning problem has
a solution. What remains is to determine k appropriately.
Since the original planning problem is acyclic any solution
contains no more than pmax = δ|O| primitive tasks, where
δ is the largest size of a task network in any method. Also
any solution contains no more than 1

2pmax(pmax + 1)

ordering constraints. Since pmax = δ|O| ≤ |P||P| ≤ 2|P|
2

we can choose k to be an appropriate exponential, e.g.,

3Since k is encoded logarithmically, we cannot do this in poly-
nomial time.

k = 2 · 2|P|4 . As k is encoded logarithmically, the encoding
can be performed in polynomial time. �

The interested reader might notice that the problem is
mainly NEXPTIME-complete in the number k – the num-
ber of allowed changes. Since one can argue, as done above,
that k should have a small value (e.g. ≤ 10), this might not
be a problem in practice. This could be justified by further
fixed parameter tractability investigations.

Changing actions
Another type of user requests relates directly to the actions
of a plan. In this paper we distinguish three varieties of such
enquiries, they either ask to add, to remove, or to replace
a certain action given a current plan. In this section we re-
strict the discussion of these problems to the variant sim-
ilar to the original ORDER problem. Since the proofs for
the analogue problems to REORDER, ORDER-SOLUTION,
and FORCE-ORDER proceed similarly, we omit them for the
sake of brevity.

The seemingly most trivial operation to be performed is to
replace some action in a solution with another action and re-
quire that the resulting task network is still a solution to the
planning problem. A scientist might, e.g., request to replace
taking a photo with the ordinary camera with an action using
the infra-red camera. In a classical setting this is clearly solv-
able in polynomial time. One has to replace the action and
check whether the resulting plan is still executable. In the
case of HTN planning this problem becomes NP-complete
since we have to verify that the new solution can still be
generated by the decomposition hierarchy.

Definition 14 We define the problem EXACT-REPLACE as:
Given a planning problem P , a task network tn ∈ Sol(P), a
task t ∈ T (tn) and a primitive task name p ∈ O, is the task
network tn′ where t is labelled with p also a solution to P?

Theorem 6 REPLACE is NP-complete.

Proof: Membership: By replacing the task name associated
with t with p we obtain a new task network tn∗. Using the
NP algorithm for the VERIFY-TN problem, we can decide
whether tn∗ is also a solution to the planning problem.

Hardness: We can reduce totally unordered precondition-
free VERIFY-TN to the REPLACE problem. Let tn∗ be a
task network to be verified and P the respective planning
problem. If tn∗ is empty, we determine whether cI can be
decomposed into the empty task network in polynomial time
using the procedure proposed by Behnke, Höller, and Bi-
undo (2015).

Else, let a be a new primitive task name (without any pre-
conditions or effects) that does not occur in P , i.e., a /∈
O ∩ C. We construct a new task network tn′ which is iden-
tical to tn∗ with the only difference that we replace the task
name of an arbitrary task t by a. Let the task name of t in
tn∗ be b. Finally an additional method (cI , tn

′) is added to
the planning problem.

The VERIFY-TN problem can now be decided by
asking whether b can be replaced by a in tn′. �

Similarly, the users might ask to add an action to a solu-
tion, e.g., if performing a chemical analysis of a sample can
be added to a rover’s plan. For classical planning this task
is still polynomial, as every possible position for the new
action can be examined and checked. In the HTN setting,
however, the question is whether the additional task can be
obtained via decomposition in addition to the original task
network.

Definition 15 We define the problem ADD as:
Given a planning problem P , a task network tn ∈ Sol(P),
and a primitive task name p ∈ O, is there a task network
tn′ which is tn with an instance of p added such that tn′ ∈
Sol(P)?

Theorem 7 ADD is NP-complete.

Proof: Membership: By adding the task name p to tn we
obtain a new task network tn∗. Using the NP algorithm for
the VERIFY-TN problem, we can decide whether tn∗ is
also a solution to the planning problem.

Hardness: We reduce VERIFY-TN to the ADD prob-
lem. Let tn∗ be a task network to be verified and P the
respective planning problem. Let a be a new primitive and
c′I a new compound task name. We add them and the
two decomposition methods m1 = (c′I , tn

∗) and m2 =
(c′I , ({1, 2}, ∅, {(1, cI), (2, a)})) to the planning problem.

The VERIFY-TN problem can now be decided by
asking whether a can be added to tn∗. �

Lastly, users might also enquire whether it is possible to
remove an action from a given plan. This might, e.g., happen
if a scientist objects to moving the rover as suggested by the
planner, in order to ensure that the rock sample is not pol-
luted by dust created by moving the wheels. The same rea-
soning as for the ADD request holds, making it polynomial
for classical planning and NP-complete for HTN planning.

Definition 16 We define the problem REMOVE as:
Given a planning problem P , a task network tn ∈ Sol(P),
a task t ∈ T (tn), is the task network tn|T (tn)\{t} also a
solution to P?

Theorem 8 REMOVE is NP-complete.

Proof: Membership: By removing the task twe obtain a new
task network tn∗. Using the NP algorithm for the VERIFY-
TN problem, we can decide whether tn∗ is also a solution
to the planning problem.

Hardness: We can reduce VERIFY-TN to the REMOVE
problem. Let tn∗ be a task network to be verified and P the
respective planning problem.

Let a be a new primitive task name that does not occur
in P , i.e., a /∈ O ∪ C and t be a task that does not occur
in tn. We construct a new task network tn′ = (T (tn) ∪
{t},≺(tn), α(tn)∪{(t, a)}) which is tn but with a new task
t with the task name a added. Finally the method (cI , tn

′) is
added to the planning problem.

The VERIFY-TN problem can now be decided by
asking whether t can be obtained from tn′. �

Changing Causality
We allege that in real-world settings users might also want
to change the internal causality of a plan. An example for
such a request is to change a given plan such that it avoids a
specific way to produce an effect.

Suppose we have a rover with two chemical analysis sets
for rocks (X and Y) on board. Both can determine the prop-
erty A of a rock. In addition to determining the property A,
the setX can simultaneously determine propertyB, too, and
set Y can also determine the propertyC. The goal is to know
all three properties A,B, and C of a rock. In the initial plan
– automatically generated by a planner – bothX and Y have
to be used and (by chance) X’s result for A is used. A sci-
entist now requests not to use X’s result as he fears that A’s
sensor is contaminated from the last rock sample, while Y ’s
sensor isn’t. Based upon a formal description of this problem
we show that it is in fact NP-complete.

Definition 17 We define the problem AVOID-EFFECT as:
Given a planning problem P , a task network tn ∈ Sol(P),
a task name n ∈ P , and an effect (either add or delete) e of
n, is tn also a solution if e would not be an effect of n?

Theorem 9 STRICT-AVOID-EFFECT is NP-complete.

Proof: Membership: Given the task network tn, a task name
n and an effect e, we can remove the effect e from all in-
stances of n in tn, guess a linearisation of tn and check
whether it is executable. Since neither tasks nor orderings
are added or removed tn can always be obtained from cI .

Hardness: The hardness proof is structurally similar to the
proof of Thm. 2. We reduce from the problem of determining
whether a task network has an executable linearisation (Erol,
Hendler, and Nau 1996; Nebel and Bäckström 1994, Thm.
14 & 15). Let tn be a task network for which we have to
determine whether it has an executable linearisation.

We construct a new task network tn∗ which initially is
equal to tn and modify it as follows. First, we add two new
actions with names a and b (which do not occur in tn) to
tn∗ such that a is ordered before all tasks in tn and b after
all these tasks. Both tasks have an add effect with the new
predicate e, which also does not occur in tn otherwise. Sec-
ond, a new action nt is added to tn∗ for every task t in tn,
which has the preconditions of t as its effects and e as its
precondition.

The resulting task network tn∗ has an executable lineari-
sation, namely any one where every nt is ordered just before
its task t. We use the STRICT-AVOID-EFFECT problem to
determine whether tn∗ has an executable linearisation, if the
effect e of a should not be used, any task nt must be ordered
strictly after b to be applicable. Thus the task network is
executable if and only if the original task network tn has an
executable linearisation. �

Conclusion
Handling user requests is a central capability for any mixed-
initiative planning system, if it is to be successfully de-
ployed. In this paper, we have presented a comprehensive
list of such requests, mainly based on practical experience

described by Smith (2012; 2013) and a system of My-
ers (1997). We started by determining the computational
complexity of HTN plan sketching (Myers 1997). As most
of the requests proposed by Smith are formulated for clas-
sical planning, we have re-formulated them for HTN plan-
ning. To do so, we have discussed the role of an HTN plan-
ning problem’s structures and restrictions when fulfilling the
user’s requests to change a plan. Taking the request to estab-
lish a specific ordering constraint as an example, we have
discussed several appropriate variants of the problem, vary-
ing in the type and amount of changes to the plan allowed.
We proved tight complexity bounds – ranging from NP-
complete to strict semi-decidability – for all those requests,
which can easily be extended to those cases not explicitly
discussed in the paper. Furthermore, the membership proofs
of those theorems provide a comprehensive list of reductions
to other planning enquiries, like plan existence. Using those
compilations one can easily add the respective capabilities
on-top of an existing planning to obtain the scaffold of a
mixed-initiative planning system. As far as we know we can
also claim that we have provided a first theoretical founda-
tion of mixed-initiative planning in terms of an investigation
of computational complexity.

Acknowledgments
This work was done within the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems” funded by the German Re-
search Foundation (DFG).

References
Ai-Chang, M.; Bresina, J.; Charest, L.; Chase, A.; Hsu, J.-J.;
Jonsson, A.; Kanefsky, B.; Morris, P.; Rajan, K.; Yglesias,
J.; et al. 2004. MAPGEN: mixed-initiative planning and
scheduling for the mars exploration rover mission. Intelli-
gent Systems, IEEE 19(1):8–12.
Alford, R.; Bercher, P.; and Aha, D. 2015. Tight bounds
for HTN planning. In Proceedings of the 25th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 7–15. AAAI Press.
Alford, R.; Behnke, G.; Höller, D.; Bercher, P.; Biundo, S.;
and Aha, D. 2016. Bound to plan: Exploiting classical
heuristics via automatic translations of tail-recursive HTN
problems. In Proceedings of the 26th International Con-
ference on Automated Planning and Scheduling (ICAPS).
AAAI Press.
Alford, R.; Kuter, U.; and Nau, D. S. 2009. Translating
HTNs to PDDL: A small amount of domain knowledge can
go a long way. In Proceedings of the Twenty-First Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
1629–1634. AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2015. On the
complexity of htn plan verification and its implications for
plan recognition. In Proceedings of the 25th International
Conference on Automated Planning and Scheduling (ICAPS
2015), 25–33. AAAI Press.

Biundo, S., and Schattenberg, B. 2001. From abstract crisis
to concrete relief (a preliminary report on combining state
abstraction and HTN planning). In Proceedings of the 6th
European Conference on Planning (ECP), 157–168.
Byrne, R. 1977. Planning meals: Problem solving on a real
data-base. Cognition 5:287–332.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complex-
ity results for HTN planning. Annals of Mathematics and
Artificial Intelligence 18(1):69–93.
Ferguson, G.; Allen, J. F.; Miller, B. W.; et al. 1996.
TRAINS-95: Towards a mixed-initiative planning assis-
tant. In Proceedings Third Conference AI Planning Systems
(AIPS), 70–77.
Fox, M., and Long, D. 2003. Pddl2. 1: An extension to pddl
for expressing temporal planning domains. Journal Artifi-
cial Intelligence Research (JAIR) 20:61–124.
Fox, M. 1997. Proceedings of the 4th European Conference
on Planning (ECP). Springer Berlin Heidelberg. chapter
Natural hierarchical planning using operator decomposition,
195–207.
Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJ-
CAI), 1955–1961.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language classification of hierarchical planning problems.
In Proceedings of the 21st European Conference on Artifi-
cial Intelligence (ECAI), 447–452.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2016.
Assessing the expressivity of planning formalisms through
the comparison to formal languages. In Proceedings of the
26th International Conference on Automated Planning and
Scheduling (ICAPS). AAAI Press.
Myers, K. L.; Jarvis, P.; Tyson, M.; and Wolverton, M. 2003.
A mixed-initiative framework for robust plan sketching. In
Proceedings of the 13th International Conference on Auto-
mated Planning and Scheduling (ICAPS), 256–266.
Myers, K. L. 1997. Abductive completion of plan sketches.
In Proceedings of the Fourteenth National Conference on
Artificial Intelligence and Ninth Conference on Innovative
Applications of Artificial Intelligence (AAAI/IAAI), 687–
693. AAAI Press.
Nebel, B., and Bäckström, C. 1994. On the computational
complexity of temporal projection, planning, and plan vali-
dation. Artificial Intelligence 66(1):125–160.
Penberthy, S. J., and Weld, D. S. 1992. UCPOP: A sound,
complete, partial order planner for ADL. In Principles
of Knowledge Representation and Reasoning: Proceedings
of the Third International Conference (KR). Morgan Kauf-
mann. 103–114.
Smith, D. E. 2012. Planning as an iterative process. In
Proceedings of the 26th AAAI Conference on Artificial In-
telligence, 2180–2185. AAAI Press.
Smith, D. E. 2013. The challenges of interactive science
planning. Summer School of the 23rd International Confer-
ence on Automated Planning and Scheduling (ICAPS).

Sohrabi, S., and McIlraith, S. A. 2008. On planning with
preferences in HTN. In Proceedings of the 12th Inter-
national Workshop on Non-Monotonic Reasoning (NMR),
241–248.
Sohrabi, S.; Baier, J.; and McIlraith, S. A. 2009. HTN
planning with preferences. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
1790–1797.

