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Abstract. Recently, it has been shown that ontologies with large datasets can be
efficiently materialized by a so-called abstraction refinement technique. The tech-
nique consists of the abstraction phase, which partitions individuals into equiva-
lence classes, and the refinement phase, which re-partitions individuals based on
entailments for the representative individual of each equivalence class. In this pa-
per, we present an abstraction-based approach for materialization in DL-Lite, i.e.
we show that materialization for DL-Lite does not require the refinement phase.
We further show that the approach is sound and complete even when adding dis-
junctions and nominals to the language. The proposed technique allows not only
for faster materialization and classification of the ontologies, but also for effi-
cient consistency checking; a step that is often omitted by practical approaches
based on query rewriting. A preliminary empirical evaluation on both real-life
and benchmark ontologies demonstrates that the approach can handle ontologies
with large datasets efficiently.

1 Introduction

Over many years, Description Logics (DLs) have been very popular languages for
knowledge representation and reasoning. Among the various fragments of Description
Logics, DL-Lite [3, 1] is a family of languages specifically designed for ontology-based
data access (OBDA). In this setting, an ontology with background knowlege (a TBox)
can be seen as a conceptual view over data repositories (ABoxes), and data can be
accessed via query answering services. Common techniques for query answering in
DL-Lite are (pure) rewriting [3] and combined approaches [13, 5, 6]. In the rewriting
approaches, OBDA systems exploit the background knowledge and rewrite the input
query so that the rewritten queries are sufficient to retrieve the complete query answer
when evaluated over the unmodified data. As the rewritten queries can be very large
or complex [12], several optimization techniques have been proposed with the aim of
reducing or simplifying the rewritten queries [16, 17, 9, 2]. Combined approaches com-
plement the pure rewriting approaches; they also work for DL fragments that allow
for qualified existential quantification. In contrast to pure rewriting, the combined ap-
proaches not only rewrite the input query, but also partially or completely expand the
data taking the ontology/schema into account. The latter operation is called data com-
pletion or ontology materialization. It plays an important role in the overall performance
of the combined approaches, given the fact that the data is often very large in the OBDA
applications. In addition, performing ontology materialization only, OBDA systems are
already able to provide the complete answers for instance queries. In this paper, we
investigate the application of the novel materialization technique via abstraction refine-
ment [7] for DL-Lite ontologies.



The existing abstraction refinement approach consists of two phases: the abstrac-
tion phase and the refinement phase. In the abstraction phase, individuals in the ABox
are partitioned into equivalence classes, which are then used to construct a so-called
abstract ABox. Entailments of the abstract ABox are transformed to entailments for
the original ABox, which might result in some individuals no longer belonging to the
same equivalence class. Therefore, the previous steps are repeated in the refinement
phase, e.g. individuals are re-partitioned, until, eventually, the fixed-point is reached.
The approach presented in this paper can be regarded as an enhancement of the existing
abstraction refinement approach tailored towards ontologies in DL-Lite and beyond.
We make the following contributions:

– We present an abstraction-based approach for materialization for DL-LiteHtcore, an
extension of DL-Litecore with role inclusions and disjunctions. The limited form of
existential restrictions in DL-Lite enables an efficient way to transform entailments
from the abstract ABox to the original ABox. In addition, the presented approach
does not require the refinement phase. This allows not only for faster materializa-
tion but also for efficient consistency checking of the ontologies. Query answering
only makes sense if the ontology is consistent. Therefore, checking consistency is
necessary, but this step is often omitted in many query rewriting systems.1

– We show that the presented approach is also sound and complete when adding
nominals. Moreover, it can be extended to ontology classification, a non-trivial rea-
soning task in the presence of nominals.

– We evaluate our approach on both real-life and benchmark ontologies. The em-
pirical results demonstrate that the size of the ABoxes can be reduced by orders
of magnitude and, as a result, reasoning via abstraction is often much faster than
reasoning over the original ontology.

2 Preliminaries

The syntax of DL-LiteHOtcore is defined using a vocabulary consisting of countably in-
finite disjoint sets NC of atomic concepts, NO of nominals, NR of atomic roles, and
NI of individuals. A role is either atomic or an inverse role r−, r ∈ NR. We define
the inverse R− of a role R by R− := r− if R = r and R− := r if R = r−. Com-
plex concepts and axioms are defined recursively in Table 1. An ABox is a finite set
of concept assertions of the form A(a) and role assertions of the form R(a, b) with
A ∈ NC , R ∈ NR ∪ {r− | r ∈ NR}, and a, b ∈ NI . A TBox is a finite set of role and
concept inclusions. An ontology O, written as O = A∪ T , consists of an ABox A and
a TBox T . W.l.o.g. we do not distinguish between the axioms R(a, b) and R−(b, a) as
well as R v S and R− v S−. We use con(O), rol(O), ind(O), nom(O) for the sets of
atomic concepts, atomic roles, individuals, and nominals occurring in O, respectively.
By DL-LiteHtcore we denote the fragment of DL-LiteHOtcore that disallows nominals.

An interpretation I = (∆I , ·I) consists of a non-empty set ∆I , the domain of I,
and an interpretation function ·I , that assigns to each A ∈ NC a subset AI ⊆ ∆I , to

1 If ⊥ is allowed in the language, consistency checking can be reduced to querying instances of
⊥ but it also requires reasoning over the whole data.



Table 1. The syntax and semantics of DL-LiteHOtcore

Syntax Semantics
Roles:

atomic role R RI ⊆ ∆I ×∆I
inverse role R− {〈e, d〉 | 〈d, e〉 ∈ RI}

Concepts:
atomic concept A AI ⊆ ∆I
nominal o oI ⊆ ∆I , ||oI || = 1
top > ∆I

bottom ⊥ ∅
negation ¬C ∆I \ CI
conjunction C uD CI ∩DI
disjunction C tD CI ∪DI
existential restriction ∃R {d | ∃e ∈ ∆I : 〈d, e〉 ∈ RI}

Axioms:
concept inclusion C v D CI ⊆ DI
role inclusion R v S RI ⊆ SI
concept assertion A(a) aI ∈ AI
role assertion R(a, b) 〈aI , bI〉 ∈ RI

each o ∈ NO a singleton subset oI ⊆ ∆I , ||oI || = 1, to each r ∈ NR a binary relation
rI ⊆ ∆I ×∆I , and to each a ∈ NI an element aI ∈ ∆I . This assignment is extended
to roles and to complex concepts as shown in Table 1. An interpretation I satisfies an
axiom α (written I |= α) if the corresponding condition in Table 1 holds. Given an
ontology O, I is a model of O (written I |= O) if I |= α for all axioms α ∈ O; O is
consistent ifO has a model; andO entails an axiom α (writtenO |= α), if every model
of O satisfies α.

For an ontology O, we say that O is concept-materialized if O |= A(a) implies
A(a) ∈ O for each A ∈ con(O) and a ∈ ind(O);O is role-materialized ifO |= r(a, b)
implies r(a, b) ∈ O for each r ∈ rol(O) and a, b ∈ ind(O); O is (fully) materialized if
it is both concept and role materialized. The concept-, role-, and/or (full) materialization
of an ontology O is the smallest super-set of O that is concept-, role-, and/or fully ma-
terialized respectively. Given an ontology, traditional reasoning tasks include ontology
materialization: computing the materialization of the ontology, ontology classification:
computing all entailed concept inclusions between atomic concepts in the ontology, and
consistency checking: checking if the ontology is consistent.

3 Reasoning by Abstraction

The general idea of reasoning via abstraction is to reduce reasoning over a large ABox
to reasoning over a smaller one. Specifically, one first builds a suitable abstraction
of the original ontology; performs reasoning over the abstraction; and then transfers
entailments of the abstraction to corresponding entailments of the original ontology.
Correctness of the reduction is based on homomorphisms between ABoxes.
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Fig. 2. Visualization of the ABoxes A from Example 4 and its
abstraction B from Example 5, where the dotted lines show the
homomorphism from B to A induced by the abstraction

Definition 1. Let A and B be ABoxes. A mapping h : ind(B) → ind(A) is called a
homomorphism (from B to A) if, for every assertion α ∈ B, we have h(α) ∈ A, where
h(C(a)) := C(h(a)) and h(R(a, b)) := R(h(a), h(b)).

Example 1. Consider the ABoxes A = {A(a), A(b), R(a, b)}, B1 = {A(u)}, and
B2 = {A(v), R(v, v)} visualized in Figure 1. Then the mappings h1 = {u 7→ a} and
h2 = {u 7→ b} are homomorphisms from B1 to A; and the mapping h3 = {a 7→
v, b 7→ v} is a homomorphism from A to B2.

The following property of homomorphisms allows us to establish the relation between
entailments of one ontology and those of the other.

Lemma 1. Let A and B be ABoxes, and h : ind(B) → ind(A) a homomorphism from
B toA. Then, for every TBox T and every axiom α, B∪T |= α impliesA∪T |= h(α).

Note that Lemma 1 is not restricted to DL-LiteHOtcore and it holds for any DL with (classi-
cal) set-theoretic semantics, e.g. SROIQ [10]. The following two corollaries illustrate
aspects of homomorphisms that are of particular relevance for our approach, namely
that consistency and (concept) entailments are preserved under homomorphisms.

Corollary 1. Let A and B be ABoxes, h : ind(B) → ind(A) a homomorphism from B
to A, a ∈ ind(A) and b ∈ ind(B) such that h(b) = a. Then, for every TBox T and
concept C, B ∪ T |= C(b) implies A ∪ T |= C(a).

Corollary 2. Let A and B be ABoxes. If there exists a homomorphism from B to A
then, for every TBox T , A ∪ T is consistent implies B ∪ T is consistent.

The abstraction is obtained by partitioning individuals in the original ABox into equiva-
lence classes and by using just one representative individual for each equivalence class.
Entailments of the representatives are then transferred to the corresponding entailments
for individuals in the equivalence classes.

If we use the individual u in Example 1 as the representative for a and b, then,
for any TBox T , one can transfer any newly entailed concept assertion for u to the
corresponding assertions for a and b by Corollary 1. However, not all entailments for a
and b can necessarily be computed this way.



Example 2 (Example 1 continued). Consider a TBox T = {A v C, ∃R− v B}. We
have B1 ∪ T |= C(u). By Corollary 1, we obtain C(a), C(b) entailed by A ∪ T . We
are, however, not able to obtainB(b) via homomorphisms from B1 toA, althoughB(b)
is entailed by A ∪ T .

Also in Example 1, since there is a homomorphism from A to B2, for any TBox T , if
B2∪T is consistent thenA∪T is consistent by Corollary 2. Furthermore, if we use the
individual v as the representative for a and b (ignoring that there is no homomorphism
from B2 toA), then we can compute all entailments for a and b based on the entailments
of v. However, we might transfer facts that are not entailed by A ∪ T .

Example 3 (Example 2 continued). We have B2 ∪ T |= {B(v), C(v)}. If we take v
as representative of both a and b, then we obtain B(a), B(b), C(a), C(b). However,
B(a) is not entailed by A ∪ T .

As demonstrated in Example 2 and Example 3, it is often easy to obtain either
sound or complete results but it is challenging to obtain both. The SHER approach [4]
addresses this issue by computing complete but possibly unsound entailments of the
ontology using a compressed, so-called summary ABox and by using justification tech-
niques [11] to refine the summary. The abstraction refinement approach [7] computes
sound but possibly incomplete entailments. To ensure completeness further refinement
steps are employed based on the newly derived entailments. In the next section, we
present an enhancement of the existing abstraction refinement approach that is only
based on the abstraction. We show that indeed no refinement is needed to obtain both
sound and complete entailments for DL-LiteHOtcore ontologies. To simplify presenta-
tion, we first present the solution for DL-LiteHtcore and then discuss the extensions for
DL-LiteHOtcore .

4 Abstraction for DL-LiteHt
core

To construct the abstraction of the original ABox, we partition individuals in the orig-
inal ABox into equivalence classes and use just one representative individual for each
equivalence class. The equivalence classes are characterized by the type of individuals,
which can be syntactically computed from the original ABox.

Definition 2. Let A be an ABox and a an individual. The type of a (w.r.t. A) is a pair
τ(a) = 〈τC(a), τR(a)〉 where τC(a) = {A | A(a) ∈ A} and τR(a) = {R | ∃b :
R(a, b) ∈ A}.

Example 4. Let A = {A(a), A(b), R(a, b)} be as in Example 1 (cf. Figure 1). Then,
we have τ(a) = 〈{A}, {R}〉 and τ(b) = 〈{A}, {R−}〉.

The abstract ABox is then constructed by introducing one representative and the
respective assertions for each type.

Definition 3. The abstraction of an ABox A is an ABox B =
⋃
a∈ind(A) Bτ(a), where,

for each type τ(a) = 〈τC , τR〉, Bτ(a) = {A(vτ(a)) | A ∈ τC} ∪ {R(vτ(a), wRτ(a)) |
R ∈ τR}, where vτ(a) and wRτ(a) are fresh, distinguished abstract individuals for each
type τ(a).



Example 5. The abstraction forA in Example 4 is the ABox B = Bτ(a) ∪Bτ(b), where
Bτ(a) = {A(vτ(a)), R(vτ(a), wRτ(a))}, Bτ(b) = {A(vτ(b)), R−(vτ(b), wR

−

τ(b))} (cf. Fig-
ure 2).

Note that the size of the abstraction of a small ABox may be larger than the size of the
original ABox, but for ontologies with a large ABox, many individuals have the same
type and, hence, abstractions are small.

Intuitively, the abstraction of an ABox is a disjoint union of small ABoxes witness-
ing each individual type realized in the ABox. There always exist homomorphisms from
the abstraction to the original Abox.

Definition 4. LetA be an ABox andB its abstraction as in Definition 3. The abstraction
B induces a mapping h : ind(B)→ ind(A) such that:

h(vτ ) ∈ {a ∈ ind(A) | τ(a) = τ},
h(wRτ ) ∈ {b ∈ ind(A) | R(h(vτ ), b) ∈ A}.

Lemma 2. Let A be an ABox, B the abstraction of A. Then, for every mapping h
induced by B, h is a homomorphism from B to A.

Proof. The mapping h is a homomorphism from B toA since, for everyC(vτ ) ∈ B, we
have h(C(vτ )) = C(a) ∈ A and, for every R(vτ , wRτ ) ∈ B, we have h(R(vτ , wRτ )) =
R(a, b) ∈ A for some a, b. ut

Once the abstract ABox B of the original ABox A has been constructed, instead of
performing reasoning over A, we perform reasoning over B and transfer entailments
from the abstraction back to the original ABox using Corollary 1. Intuitively, for each
type τ , the abstract individual vτ is the representative for all individuals of this type.
Therefore, for every TBox T and eachA(vτ ) entailed by B∪T , we obtainA(a), where
τ(a) = τ and A(a), is entailed by A∪ T . This gives rise to a procedure for computing
the concept materialization of an ontology, which we present in Algorithm 1.

Since materializing an inconsistent ontology would extend the ABox with all pos-
sible assertions for the atomic concepts and roles, and individuals used in the ontology,
we can furthermore observe that B∪T can also be used to check consistency ofA∪T .

Algorithm 1 Procedure for computing the concept materialization of an ontology
Input: An ontology O = A ∪ T
Output: Returns the concept materialized ontology O
1: Compute the abstraction B of A according to Definition 3
2: Compute the concept materialization B′ ∪ T of B ∪ T
3: ∆B = {A(vτ ) ∈ B′ | A(vτ ) /∈ B}
4: for all A(vτ ) ∈ ∆B do
5: for all a ∈ ind(A) s.t. τ(a) = τ do
6: A = A ∪ {A(a)}
7: end for
8: end for
9: return A ∪ T



Algorithm 2 Procedure for checking consistency of an ontology
Input: An ontology O = A ∪ T
Output: Returns true if O is consistent and false otherwise
1: Compute the abstraction B of A according to Definition 3
2: if B ∪ T is inconsistent then
3: return false
4: else
5: return true
6: end if

We use this to devise a procedure for checking consistency of an ontology in Algo-
rithm 2. In practice the steps performed by this algorithm can also be directly integrated
into Algorithm 1.

Soundness of the algorithms follows directly from our previously shown results.

Lemma 3 (Soundness). Let A be an ABox, B its abstraction, and T a TBox. Then, we
have:

(1) B ∪ T is inconsistent implies A ∪ T is inconsistent;
(2) for every type τ and every concept C, B ∪ T |= C(vτ ) implies A ∪ T |= C(a),

where a ∈ ind(A) s.t. τ(a) = τ .

Proof. The lemma is a straightforward consequence of the fact that the abstraction in-
duces homomorphisms to the original ABox according to Lemma 2. Applying the con-
trapositive of Corollary 2 and Corollary 1 yields the desired result and, hence, soundness
of the algorithms. ut

Example 6. ConsiderO = A∪T with T = {A v C, ∃R− v B} from Example 2 and
A from Example 1 as input for Algorithm 1. Figure 2 visualizes A and its abstraction
B. By materializing B∪T , we obtain∆B = {C(vτ(a)), C(vτ(b)), B(vτ(b))} in Line 3.
Note that while B(wRτ(a)) is in the materialized abstraction B′, it is not part of ∆B. By
updating A using ∆B (Lines 4 to 8), we obtain A = A ∪ {C(a), C(b), B(b)}, where
all added concept assertions are entailed by the original ontology.

The procedure in Algorithm 1 differs from the abstraction refinement procedure in
the existing approach for Horn ALCHOI [7] in that, for each type τ , only assertions
of vτ are used to update the original ABox. As demonstrated in Example 6, although
B(wRτ(a)) ∈ B

′, it is not in ∆B and, hence, it is not used for extending A. In addition,
unlike the algorithm in the existing approach, Algorithm 1 incorporates no refinement
step, i.e. there is no repetition of Lines 1–8 until no new assertions can be added to
the original ABox A. Such a repetition is required to obtain completeness for the Horn
ALCHOI procedure. We next show that the current procedure is nevertheless com-
plete for DL-LiteHtcore, that is, the resulting ontology is (concept) materialized when the
procedure terminates.

We can immediately show soundness of the algorithms as there always exist homo-
morphisms from the abstraction B to the corresponding original ABox A as in Defini-
tion 4. But we do not have a similar property for completeness, i.e. there might exist no



homomorphism from A to B. To show completeness, we construct an extension of B
such that there exists a homomorphism fromA to the extension that maps a to vτ(a) for
each individual a ∈ ind(A); and we show that the abstraction entails exactly the same
concept assertions as its extension does.

Example 7 (Example 6 continued). Let B+ be an ABox obtained from B in Example 6
by adding the role assertion R(vτ(a), vτ(b)), and h a mapping from A to B+ defined
as h(a) = vτ(a), h(b) = vτ(b). Since h(A) = {A(vτ(a)), A(vτ(b)), R(vτ(a), vτ(b))} ⊆
B+, h is a homomorphism from A to B+. Therefore, using Corollary 1, we can obtain
all entailed assertions of a and b based on entailed assertions of vτ(a) and vτ(b) w.r.t.
B+ ∪ T . Furthermore, B+ ∪ T and B ∪ T entail the same set of concept assertions.
Hence, the abstraction B is sufficient for obtaining all entailed assertions of A ∪ T .
Indeed, the ABox A after updating already contains all entailed concept assertions.

As demonstrated in Example 7, for this particular TBox and ABox, the abstraction
is sufficient to obtain all entailed concept assertions of the original ontology. In the
following lemma, we show that the same property holds for any TBox and ABox.

Lemma 4. Let O = A ∪ T be a DL-LiteHtcore ontology, B the abstraction of A, and
B+ = B ∪ {R(vτ(a), vτ(b)) | R(a, b) ∈ A}. Then, we have:

(1) B ∪ T is consistent implies B+ ∪ T is consistent;
(2) for every atomic concept A and individual v, B+ ∪ T |= A(v) implies B ∪ T |=

A(v).

Proof. If B ∪ T is inconsistent, then the lemma trivially holds. We assume B ∪ T
is consistent and let I be an arbitrary model of B ∪ T . Next, we construct a model
J of B+ ∪ T such that J |= A(v) implies I |= A(v) for every atomic concept A
and individual v. Then it follows that B+ ∪ T is consistent, i.e. Claim (1) holds, and
B+ ∪ T |= A(v) implies J |= A(v), which implies I |= A(v). Since I is arbitrary,
we obtain B ∪ T |= A(v), i.e. Claim (2) holds. Such a model J is obtained from I by
setting ∆J = ∆I and defining the interpretation function as follows:

vJ = vI for every individual v

AJ = AI for every atomic concept A

rJ = rI ∪ {〈vIτ(a), v
I
τ(b)〉 | R(vτ(a), vτ(b)) ∈ B

+ and O |= R v r}

∪ {〈vIτ(b), v
I
τ(a)〉 | R(vτ(a), vτ(b)) ∈ B

+ and O |= R v r−}
for every atomic role r

We will show J |= B+ ∪ T by showing that it entails every axiom in B+ ∪ T . Since
I |= B ∪ T and the interpretation of atomic concepts and individuals remains the same
in J , we have J entails every concept assertion in B+. And, clearly, from the definition
of J , it follows that J entails every role assertion in B+.

We now show by induction that, for every DL-LiteHtcore concept C, we have CJ =
CI . Then, for every concept inclusion C v D ∈ T , we have CJ = CI ⊆ DI = DJ ,
i.e. J |= C v D.

– Cases C = A | ¬A | > | ⊥ are trivial as the interpretation of atomic concepts in I
and in J are identical.



– Case C = ∃r, where r ∈ NR; the case ∃r− is symmetric. We have d ∈ (∃r)J iff
there exists e ∈ ∆J s.t. 〈d, e〉 ∈ rJ . If 〈d, e〉 ∈ rI , then d ∈ (∃r)I . Otherwise,
from the definition of J , 〈d, e〉 results from one of the cases in the role extension.
We consider the case d = vIτ(a), e = vIτ(b) for some individuals a and b, where
R(vτ(a), vτ(b)) ∈ B+,O |= R v r,O 6|= R v r−; other cases are analogous.
By definition of B+, we have R(vτ(a), vτ(b)) ∈ B+ iff R(a, b) ∈ A. This is the
case iff R(vτ(a), wRτ(a)) ∈ B by Definition 3. Since O |= R v r and I |= B, we
obtain 〈vIτ(a), (w

R
τ(a))

I〉 ∈ rI , i.e. d = vIτ(a) ∈ (∃r)I . Since d is arbitrary, we have
(∃r)J = (∃r)I .

– Case C = ¬D. By induction hypothesis DJ = DI and since ∆J = ∆I , we have
(¬D)J = ∆J \DJ = ∆I \DI = (¬D)I , i.e. CJ = CI .

– CasesC = C1tC2 andC = C1uC2. By induction hypothesis, we haveCJ1 = CI1
and CJ2 = CI2 . Therefore, (C1 t C2)

J = CJ1 ∪ CJ2 = CI1 ∪ CI2 = (C1 t C2)
I .

Similarly, we obtain (C1 u C2)
J = (C1 u C2)

I .

For every role inclusion R v S ∈ T , by the definition of J and from I |= R v S, we
have J |= R v S, which proves J |= B+ ∪ T and, hence, finishes this proof. ut

Using Lemma 4, we can establish completeness of Algorithm 1 and Algorithm 2.

Lemma 5 (Completeness). LetA be an ABox, B its abstraction, and T a DL-LiteHtcore
TBox, then we have:

(1) B ∪ T is consistent implies A ∪ T is consistent;
(2) for every atomic concept A and individual a, A ∪ T |= A(a) implies B ∪ T |=

A(vτ(a)).

Proof. Let B+ be the ABox in Lemma 4 and h a mapping from A to B+ s.t. h(a) =
vτ(a), for every a ∈ ind(A). By the definitions of B and of B+, for each A(a) ∈ A,
we have A(vτ(a)) ∈ B, which implies A(vτ(a)) ∈ B+. By the definition of B+, for
each R(a, b) ∈ A, we have R(vτ(a), vτ(b)) ∈ B+. Hence, h is a homomorphism from
A to B+. By Claim (1) of Lemma 4 and Corollary 2, consistency of B ∪ T implies
consistency of B+ ∪ T , which implies consistency of A ∪ T , i.e. Claim (1) holds.
Similarly, by Corollary 1 and Claim (2) of Lemma 4, we have, for each atomic concept
A and individual a, A ∪ T |= A(a) implies B+ ∪ T |= h(A(a)). Since h(A(a)) =
A(vτ(a)), this implies B ∪ T |= A(vτ(a)) and Claim (2) holds. ut

5 Implementation and Evaluation

We have implemented a prototype system Orar2 for reasoning in DL-LiteHtcore. To eval-
uate the feasibility of our approach, we tested Orar on several real-life and benchmark
ontologies and compared the performance of Orar with that of the other popular rea-
soners. The empirical evaluation results show the approach can reduce the size of the
ABoxes significantly (by orders of magnitude), which results in great performance im-
provements.

2 https://github.com/kieen/OrarHSHOIF



Table 2. Test ontologies with the number of TBox axioms (# ax.), atomic concepts (# con.), roles
(# rol.), individuals (# ind.), concept and role assertions (# ast.), inferred assertions (# inferred
ast.) by our system

Ontology # ax. # con. # rol. # indiv. # assert. # inferred assert.
NPD 354 208 90 785 656 1 392 196 1 517 844
DBPedia+ 1 748 442 806 3 822 351 27 094 909 30 239 281
IMDb 131 88 39 6 505 584 27 757 894 33 769 170
LUBM 10 80 43 25 207 426 850 433 1 086 472
LUBM 50 80 43 25 1 082 818 4 445 949 5 676 226
LUBM 100 80 43 25 2 179 766 8 954 615 11 434 996
LUBM 500 80 43 25 10 847 183 44 573 624 56 914 960
UOBM 10 110 69 35 242 491 1 926 897 2 324 962
UOBM 50 110 69 35 1 227 123 9 751 681 11 768 772
UOBM 100 110 69 35 2 461 347 19 571 755 23 617 264
UOBM 500 110 69 35 12 375 804 98 374 692 118 717 591

The test ontologies are from popular benchmarks and also used in the evaluations
of other approaches. NPD3 is an ontology about petroleum activities, DBPedia+4 is an
extension of the DBPedia ontology, and IMDb5 consists of the Movie ontology and the
dataset extracted from the IMDb website. While NPD, DBPedia+, and IMDb contain
real-life data, LUBM and UOBM are popular benchmarks with synthetic data of the
university domain. The datasets in LUBM and UOBM can be generated in arbitrary
sizes, indicated by the number of universities. We use LUBMn and UOBMn to denote
the datasets for n universities of LUBM and UOBM, respectively. We extracted the rele-
vant DL fragment from those ontologies, i.e. we eliminated axioms not in DL-LiteHtcore.
Table 2 presents detailed information about the test ontologies with the number of TBox
axioms, atomic concepts, roles, individuals, and (inferred) assertions. NPD, IMDb, and
LUBM are in DL-LiteHcore while DBPedia+ and UOBM are in DL-LiteHtcore.

We used Orar to check consistency and compute the concept materialization of the
test ontologies and compared the reasoning time of Orar and of the other well-known
reasoners HermiT 1.3.8, JFact 5.0.0, Pellet 2.3.6, and Konclude 0.6.2. All tests were
run on an Intel Xeon E5-2660V3 2.60GHz machine with 250 GB heap size for the Java
VM and with a timeout of five hours. Table 3 presents information about the abstrac-
tions and the size of the abstract ABoxes in comparison with the size of the original
ABoxes. In NPD, IMDb, and LUBM, many individuals have the same types. For those
ontologies, the size of the original ABoxes are reduced by up to four orders of magni-
tude. Particularly, for LUBM the abstract ABoxes are of nearly constant size regardless
of the sizes of the original ABoxes. This can be explained by the simple patterns used
to generate data in LUBM. The individuals in DBPedia+ and UOBM are more diverse.
For DBPedia+, the number of types is relatively large due to the large number of con-
cepts and roles; the size of the abstract ABox is approximately 10% of the original one.

3 http://sws.ifi.uio.no/project/npd-v2
4 https://www.cs.ox.ac.uk/isg/tools/PAGOdA
5 https://sites.google.com/site/ontopiswc13/home/imdb-mo



Table 3. Number of types, abstract individuals, assertions, and size of the abstract ABox in com-
parison with the original ABox

Abstraction % of Original ABoxOntology
# types # indiv. # assert. % indiv. % assert.

NPD 1 005 15 580 18 244 1.983 1.310
DBPedia+ 226 530 1 775 630 2 770 261 46.454 10.224
IMDb 438 1 224 1 692 0.019 0.006
LUBM 10 29 154 158 0.074 0.019
LUBM 50 27 148 152 0.014 0.003
LUBM 100 27 148 152 0.007 0.002
LUBM 500 27 148 152 0.001 0.001
UOBM 10 11 391 97 944 124 661 40.391 6.470
UOBM 50 25 541 225 420 289 762 18.370 2.971
UOBM 100 34 872 310 513 400 938 12.616 2.049
UOBM 500 64 903 593 539 769 843 4.796 0.783

Table 4. Reasoning time (without loading time) in seconds, where “−” stands for timeout

Concept Materialization Consistency CheckingOntology
Orar Konclude Pellet HermiT JFact Orar Konclude Pellet HermiT JFact

NPD 5 11 39 579 − 3 8 27 284 −
DBPedia+ 163 176 631 2 029 − 48 148 417 292 −
IMDb 34 220 775 983 − 30 7 684 568 −
LUBM 10 2 4 9 9 3 651 2 1 8 6 2 606
LUBM 50 10 28 53 61 − 10 2 52 34 −
LUBM 100 18 67 149 133 − 16 3 135 94 −
LUBM 500 90 359 1 601 979 − 80 10 1 476 642 −
UOBM 10 8 18 23 − − 3 16 16 47 3 073
UOBM 50 25 106 148 − − 13 90 115 624 −
UOBM 100 42 227 353 − − 23 187 274 1 421 −
UOBM 500 160 1 636 3 846 − − 117 1 225 3 287 − −

For UOBM, the sizes of the abstract ABoxes are approximately 6% and 1% of the sizes
of the original ones for UOBM 10 and UOBM 500, respectively. Table 4 shows the
reasoning time of Orar (with Konclude as the internal reasoner for the abstraction) in
comparison with the reasoning time of the other reasoners. In general, the reasoning
time correlates with the size reduction of the ontologies. For concept materialization,
Orar outperforms the other reasoners on all ontologies. For consistency checking, Kon-
clude is faster than Orar for IMDb and LUBM. The reason is that reasoning on those
ontologies is even faster than other operations required in Orar like computing types and
generating the abstract ABoxes. For the other ontologies, Orar outperforms all reason-
ers. Note that the purpose of our evaluation was not to show the superiority of Orar, but
to demonstrate that our approach can improve the performance of any existing reasoner
when handling large data. Although we used Konclude inside Orar, it can be replaced
by any reasoner.



6 Extensions and Variations

In this section, we discuss the extension of the presented approach to DL-LiteHOtcore and
present a variation of the abstract ABox, which can also be used in our approach.

6.1 Reasoning with Nominals

Since Lemma 1 even holds for the very expressive language SROIQ, Algorithm 1 and
Algorithm 2 are sound for DL-LiteHOtcore . Before we show that they are also complete for
DL-LiteHOtcore , we first illustrate the advantage of using the abstraction-based approach
for classification of DL-LiteHOtcore ontologies. This reasoning task has not been covered
so far as for DL-LiteHtcore classification requires reasoning only over the TBox (after
checking consistency of the ontology).

Classification of an ontology containing nominals requires reasoning over both
TBox and ABox. This even holds for rather simple languages such as DL-LiteHOtcore and
even OWL 2 RL where nominals can only occur in a restricted form (∃R.o) [14]. The
following example demonstrates that class subsumption between two concepts might
depend on the existence of some assertions.

Example 8. Consider a TBox T = {A v o,∃R− v o,∃R− v B,C v ∃R}. We
observe that A v B holds depending on the existence of instances of the role R, which
can be enforced if C has some instances. Indeed, consider A = {C(a)}, we have
A∪T |= A v B. In any interpretation I with AI = ∅ the subsumption trivially holds.
If, however, there is some element d ∈ AI , we show that d must also be in BI . By
A v o, we get d ∈ oI . Since C(a) ∈ A, C v ∃R ∈ T , and aI ∈ CI , there is some d′

such that 〈aI , d′〉 ∈ RI . Since ∃R− v o,∃R− v B ∈ T , d′ ∈ oI ∩ BI and, since o
is a nominal concept, we have d = d′ ∈ AI ∩BI and the subsumption also holds. It is
easy to see, however, that ∅ ∪ T 6|= A v B.

Since the abstractions are often smaller than the original ABoxes, classification over the
abstraction will be more efficient than classification over the original ontology.

Lemma 6. Let A ∪ T be a DL-LiteHOtcore ontology and B the abstraction of A. Then,
for every atomic concepts A,B ∈ con(A∪ T ), A∪ T |= A v B iff B ∪ T |= A v B.

By Lemma 1 and Lemma 2, the “only-if” direction of Lemma 6 holds. We now
briefly show the “if” direction of Lemma 6; and also show that Algorithm 1 and Algo-
rithm 2 are complete for DL-LiteHOtcore . We rely on the following extension of Lemma 4.

Lemma 7. Let O = A ∪ T be a DL-LiteHOtcore ontology, B the abstraction of A, and
B+ = B ∪ {R(vτ(a), vτ(b)) | R(a, b) ∈ A}. Then, we have:

(1) B ∪ T is consistent implies B+ ∪ T is consistent;
(2) for every atomic concept A and individual v, B+ ∪ T |= A(v) implies B ∪ T |=

A(v); and
(3) for every atomic concepts A and B, B+ ∪ T |= A v B implies B ∪ T |= A v B.



Proof (Sketch). Intuitively, we follow similar steps as in the proof of Lemma 4. The
only difference is to extend the interpretations to cover nominals. Reconsider the in-
terpretations I and J in the proof of Lemma 4. We define J as before and let the
interpretations of nominals in J and in I be identical. Then, all claims in the existing
proof remain sound. Furthermore, since the interpretations of atomic concepts in I and
in J are identical, we have B+ ∪ T |= A v B implies AJ ⊆ BJ , which implies
AI ⊆ BI , i.e. I |= A v B. Since I is arbitrary, we have B ∪ T |= A v B. ut
As shown in the proof of Lemma 5, there exists a homomorphism h from A to B+ that
maps a to vτ(a) for each a ∈ ind(A). By Lemma 7 and Lemma 1, it follows that the
“if” direction of the Lemma 6 holds and that Lemma 5 holds also for DL-LiteHOtcore .

6.2 Alternative Abstraction
The key idea of the abstraction-based approach is to build a suitable, ideally small ab-
stract ABox, which can be used to obtain sound and complete entailments of the input
ontology. The abstract ABoxes from Definition 3 induce homomorphisms to the orig-
inal ABox but not necessarily vice versa. This directly guarantees soundness but not
completeness. Completeness of the approach is guaranteed by Lemma 4 and Lemma 5,
which show that the abstract ABox B entails exactly the same assertions as its exten-
sion B+, to which there is a homomorphism from the original ABox. This suggests an
alternative definition of abstractions similar to the extension B+ of B in Lemma 4.

Definition 5. The abstraction of an ABox A is an ABox C = {A(vτ(a)) | A(a) ∈
A} ∪ {R(vτ(a), vτ(b)) | R(a, b) ∈ A}, where τ(a) and τ(b) are the types of a and b,
respectively, and vτ(a) and vτ(b) are a fresh, distinguished abstract individuals.

Example 9. Consider the ABox A = {A(a), A(b), R(a, b)} as in Example 1. The ab-
straction of A by Definition 5 is the ABox C = {A(vτ(a)), A(vτ(b)), R(vτ(a), vτ(b))}.
In Example 9 there are homomorphisms both from A to C and from C to A; C is just
a copy under renaming of A. Therefore, it is easy to see that using C as an abstract
ABox, we obtain both sound and complete entailments for A w.r.t. any TBox. In gen-
eral, there is always a homomorphism from A to C, e.g. the mapping h defined as
h(a) = vτ(a), a ∈ ind(A), but not necessarily a homomorphism from C to A. This im-
mediately guarantees completeness of the approach but not soundness. However, based
on our previously shown results, we can show that all results we obtained using C are
sound. Let A be an ABox, C the abstraction of A by Definition 5, B the abstraction of
A by Definition 3, and B+ the extension of B defined in Lemma 4. Since C ⊆ B+,
by monotonicity, for every concept A and individual vτ(a) ∈ ind(C), we obtain that
C ∪ T |= A(vτ(a)) implies B+ ∪ T |= A(vτ(a)), which implies B ∪ T |= A(vτ(a)) by
Lemma 4. Furthermore, by Lemma 3 we haveB∪T |= A(vτ(a)) impliesA∪T |= A(a).
Therefore, we have C ∪ T |= A(vτ(a)) implies A ∪ T |= A(a).

In Definition 5, the abstract ABox C uses just one individual vτ for each type τ , and,
therefore, it requires less individuals than the abstract ABox B in Definition 3. However,
for each type τ and each role R occurring in τ there is exactly one role assertion,
e.g. R(vτ , wRτ ), in B, whereas vτ could have many R-successors/predecessors in C. In
our experiment with both types of abstract ABoxes, the abstract ABoxes constructed
according to Definition 5 are often larger than the ones using Definition 3.



7 Related Work

Several ontology reasoning techniques have been proposed to handle large data. The
RDFox [15] and WebPIE [18] systems utilize parallel computing to perform a rule-
based materialization for OWL 2 RL. The PAGOdA system [20] approximates the TBox
and then performs OWL 2 RL rules to compute lower-bound and upper-bound entail-
ments, which help to determine entailments for individuals quickly. Wandelt and Möller
propose a technique for instance retrieval based on modularization [19]. A closely re-
lated work to our approaches is the SHER approach [4]. It merges individuals to obtain
a compressed, summary ABox, which is then used for (refutation-based) consistency
checking or query answering. Since merging is only based on concept assertions, the
resulting summary ABox is an over-approximation of the original ABox. Therefore, if
the summary ABox is consistent, then so is the original ABox, but not vice versa. In
case the summary ABox is inconsistent, explanation techniques [11] are used to repair
the summary. In contrast to the summary approach, the abstract ABox created in the
presented approach immediately allows for both sound and complete results. Note that
for DL-Lite ontologies, the previous abstraction refinement approach [7] performs rea-
soning over the abstract ABox twice as it continues doing refinement after transferring
the entailments from the first abstraction to the original ABox.

8 Conclusions

We have presented a scalable abstraction-based approach for reasoning in DL-LiteHtcore
and its extensions for DL-LiteHOtcore . For DL-LiteHtcore, we focus on concept materializa-
tion and consistency checking of the ontology as computing the role materialization can
be done simply by expanding the existing role assertions according to the role hierarchy;
and computing the class hierarchy requires only the TBox (after checking consistency
of the ontology). For DL-LiteHOtcore , we show that the presented approach for concept
materialization and consistency checking remains sound and complete. Furthermore,
it can be easily extended to ontology classification, a non-trivial task in DL-LiteHOtcore .
Computing the role materialization of DL-LiteHOtcore ontologies is not as simple as in
DL-LiteHtcore as role assertions can be derived not only from the role hierarchy but also
from axioms of nominals. It is possible to use the abstraction to obtain also the role
assertions as presented in our recent work for Horn SHOIF [8].

The languages we consider in this paper do not make the Unique Name Assumption
(UNA), which is often adopted in DL-Lite. But the presented approach also works for
DL-LiteHtcore with UNA; for DL-LiteHOtcore , it does not make sense to adopt UNA. As
noted in the work about different dialects of the DL-Lite family [1], we can construct
a model for a DL-LiteHtcore ontology with UNA from a model of that ontology without
UNA by “cloning” the domain elements so that different individuals are interpreted
differently. Entailments are preserved in the resulting model, therefore, the results for
DL-LiteHtcore without UNA remain valid in DL-LiteHtcore with UNA.
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