
This is a solution! (. . . but is it though?)
Verifying solutions of hierarchical planning problems

Gregor Behnke and Daniel Höller and Susanne Biundo
Institute of Artificial Intelligence, Ulm University, D-89069 Ulm, Germany

{gregor.behnke, daniel.hoeller, susanne.biundo}@uni-ulm.de

Abstract

Plan-Verification is the task of determining whether a plan
is a solution to a given planning problem. Any plan verifier
has, apart from showing that verifying plans is possible in
practice, a wide range of possible applications. These include
mixed-initiative planning, where a user is integrated into the
planning process, and local search, e.g., for post-optimising
plans or for plan repair. In addition to its practical interest,
plan verification is also a problem worth investigating for the-
oretical reasons. Recent work showed plan verification for hi-
erarchical planning problems to be NP-complete, as opposed
to classical planning where it is in P. As such, plan verifica-
tion for hierarchical planning problem was – until now – not
possible. We describe the first plan verifier for hierarchical
planning. It uses a translation of the problem into a SAT for-
mula. Further we conduct an empirical evaluation, showing
that the correct output is produced within acceptable time.

1 Introduction
The task of plan verification plays a significant role in both
planning research and application. In mixed-initiative plan-
ning, a solution is usually presented to the user and the
system inquires for his opinion of it, which is (in general)
interpreted as a request to alter the current plan in some
way (Ai-Chang et al. 2004; Fernández-Olivares et al. 2006;
Ferguson, Allen, and Miller 1996). The necessary modifica-
tions can, e.g., be performed by changing the plan and veri-
fying the result. If it is a solution, the user is given the new
plan for critique, if not, the user has to be informed of the
failure to adhere to his wishes. For researchers, it is crucial
to be able to check correctness of planners and their results
using an independent technique (i.e. an algorithm which is
not planning). A plan verifier provides such an independent
system. Like in mixed-initiative planning, local search pro-
cedures (Gerevini and Serina 2002) usually change a current
plan in some way – in order to obtain a solution, to lower
costs via post-processing, or to repair a plan whose execu-
tion has failed. After these changes have been performed, the
resulting plan must (again) be a solution to the original plan-
ning problem. This is ensured by applying a plan verifier.
Lastly, when planners participate in planning competitions,
all produced solutions need to be checked for correctness.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, the classical planning literature rarely consid-
ers the task of plan verification, due to its simplicity in the
classical setting. For more extended classical formalisms,
like PDDL+, there are dedicated verification tools, the best-
known of which is VAL, which also provides verification
for pure classical planning (Howey, Long, and Fox 2004).
For hierarchical planning – which we consider in form of
Hierarchical Task Network (HTN) planning (Erol, Hendler,
and Nau 1996) – there are until now neither such tools
nor are plan verification capabilities integrated into any
planning system or application, although HTN planning is
widely used in planning-based applications (Nau et al. 2005;
Bercher et al. 2014; 2015). Recently, we have shown that
HTN plan verification is an NP-complete problem (Behnke,
Höller, and Biundo 2015). We present the first HTN plan
verifier which lays the necessary groundwork for future re-
search in this area.

We propose an approach for HTN plan verification based
on a translation into a SAT formula, which is satisfiable if
and only if a given plan is a solution to the planning prob-
lem. By this translation, we utilise the efficiency of modern
SAT solvers. The translation process itself requires a bound
K, which (intuitively spoken) is the maximum height of the
decomposition hierarchy any witness for a plan being a so-
lution can have. Such a bound was used to show that HTN
plan verification is in NP. We show that our previous esti-
mation (2015) was unnecessarily high, and that for existing
benchmark domains it can be reduced by a factor of up to
1000, by providing two new, more succinct estimations for
K. Without this reduction, it would be impossible to build
the SAT formulae which would have well over one billion
clauses in many cases. The presented reductions are not only
applicable for our plan verification technique, but might also
be used for other verification approaches or even as a block-
ing technique for planning itself. To show that the transla-
tion approach is usable in practice, we conducted an em-
pirical evaluation involving several hierarchical benchmark
domains, which have either been used in the past to test the
performance of hierarchical planning or plan recognition ap-
proaches. In our experiments, we show that the translation
approach is able to verify all provided solutions and to re-
ject non-solutions, within reasonable time. Most instances
are solved in under 100 seconds, while only a few hard ones
needed up to 1123 seconds.

2 Formal Framework
This section introduces the HTN formalism by Geier
and Bercher (2011) with some extensions (see Höller et
al. 2016). In HTN planning, there are two distinct types of
tasks, primitive tasks (also called actions) are those that can
be executed directly; compound tasks (also called abstract)
need to be decomposed until only primitive tasks are left.
We will call these sets A and C, respectively. Let N be the
set of all task names, i.e., N = A ∪ C.

Tasks are organised in so-called task networks, which
represent partial plans. A task network is a triple tn =
(T ,≺, α). T is a non-empty set of identifiers. The func-
tion α : T → N maps the identifiers to the actual task
names. That way, a task network can contain a task more
than once. A set≺ : T ×T of ordering constraints defines a
partial ordering on the identifiers. We will use T (tn),≺(tn)
and α(tn) to denote the set of identifiers of a task network,
its ordering and the task name mapping, respectively. If two
task networks tn = (T ,≺, α) and tn ′ = (T ′,≺′, α′) differ
only in their identifiers, i.e. there is a bijection σ : T → T ′

so that for all identifiers t, t′ ∈ T holds that [(t, t′) ∈ ≺] ⇔
[(σ(t), σ(t′)) ∈ ≺′] and α(t) = α′(σ(t)), they are called
isomorphic (written tn ∼= tn ′).

The set of decomposition methods M defines how com-
pound tasks may be refined. A method m ∈ M is a pair
(c, tn) of a compound task c ∈ C and a task network tn ,
called the method’s subnetwork. When a task c is decom-
posed, it is removed from the task network, the subnetwork
is added and all the ordering constraints that have been in
the network for c are introduced for the added tasks.

Formally, a method (c, tn) decomposes a task network
tn1 = (T1,≺1, α1) into a task network tn2 = (T2,≺2, α2)
if t ∈ T1 with α1(t) = c and if there exists a task network
tn ′ = (T ′,≺′, α′) with tn ′ ∼= tn and T1∩T ′ = ∅. The task
network tn2 is defined as

tn2 = ((T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, (α1 \ {t 7→ c}) ∪ α′)
≺D ={(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪

{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 6= t ∧ t2 6= t}

To denote that a task network tn can be decomposed into tn ′

by applying an arbitrary number of decompositions, we will
write tn →∗TD tn ′.

Applicability and state transition of primitive tasks is de-
fined in a STRIPS-like manner using a set of state-fluents L.
The functions prec, add , and del (all functions A → 2L)
map a primitive task to its preconditions, add- and delete-
effects, respectively. Whether a primitive task a is applica-
ble to a state s is given by the function τ : A × 2L →
{true, false} with τ(a, s) ⇔ prec(a) ⊆ s. Given that
τ(a, s) holds, the state resulting from the application is given
by the state transition function γ : A × 2L → 2L with
γ(a, s) = (s \ del(a)) ∪ add(a).

Now we can define an HTN planning problem as a tuple
P = (L,C,A,M, s0, tnI , g, δ) with δ = (prec, add , del).
L is a set of propositional environment facts, C and A the
sets of task names, M the set of decomposition methods,

s0 ∈ 2L the initial state, g ∈ 2L the goal description and
tnI the initial task network.

A task network tn = (T ,≺, α) is a solution to a planning
problem P if and only if
• all tasks are primitive,
• tnI →∗TD (T ,≺′, α) with ≺ ⊇ ≺′,
• all sequences (t1t2 . . . tn) of the task identifiers that are

in line with ≺ are applicable, and
• for all these sequences sn = γ(α(tn), γ(α(tn−1), . . .
γ(α(t1), s0) . . .)) is a goal state, i.e., sn ⊇ g.

We will denote the set of all solutions to an HTN planning
problem P as Sol (P).

The formalism is similar to the one used by the UMCP
planner (Erol, Hendler, and Nau 1994), but slightly more re-
strictive than the one used in SHOP2 (Nau et al. 2003), as we
do not allow decomposition methods to have preconditions.
This is not a real restriction, since one can always compile a
planning problem with method preconditions into one with-
out them by inserting a new primitive task into each method
having the method’s precondition as its precondition, no ef-
fect, and preceding all other tasks in the method. In fact,
SHOP2 uses this transformation already internally.

3 HTN Plan Verification
We have previously (2015) defined HTN plan verification as
the problem of determining whether a task network tn is a
solution to a planning problem P . Instead of verifying a task
network tn, we restrict ourselves to verifying task sequences
π (or in other words a totally ordered task network). By def-
inition, every linearisation of a solution to an HTN planning
problem must be executable and reach a goal state, so this
restriction is mere technicality. In practice, HTN planners
like SHOP2 (Nau et al. 2003) often generate such totally or-
dered solutions. The problem of verifying task sequences is
formally defined as follows:
Definition 1 (VERIFYSEQ). Given a planning problem P
and a sequence of primitive tasks π = (t1, . . . , tn), the prob-
lem VERIFYSEQ is to decide whether for
tn(π) = ([n], {(i, i+1) | 1 ≤ i < n}, {(i, ti) | 1 ≤ i ≤ n})
the relation tn ∈ Sol (P) holds.

Clearly, we can separate the problem VERIFYSEQ into
two independent subproblems: to verify executability and to
determine whether the task sequence is a valid decompo-
sition of the initial plan. Since checkers for the first (like
VAL (Howey, Long, and Fox 2004)) are readily available,
we will focus on the latter task that is defined as:
Definition 2 (DECOMPSEQ). Given a planning problem
P and a sequence of primitive tasks π. The problem DE-
COMPSEQ is to decide whether tnI →∗TD tn(π) holds.

Both VERIFYSEQ and DECOMPSEQ are NP-
complete (Behnke, Höller, and Biundo 2015). This
shows that the difficulty in verifying solutions to HTN
planning problems lies in finding a valid decomposition
leading to π. This is more than merely checking constraints
contained in the given sequence, as we first have to find
these constraints – in form of applied methods.

l0

l1

l2

l3

p1 p2 p3 p4

Figure 1: A decomposition tree. Grey boxes indicate prim-
itive tasks and black circles abstract tasks. The right figure
shows an assignment of the tasks to layers and positions.

4 Translating DECOMPSEQ into SAT
In this section we describe how a plan verification problem
(P, π) can be transformed into a SAT-formula and show
that the translation is correct. A satisfying assignment of
the formula will represent a decomposition tree (Geier and
Bercher 2011), a means to describe the process of decompo-
sition which led from the initial task network to a solution.
The vertices of the tree represent the tasks (both compound
and primitive) that occur in task networks tn during the de-
composition of the initial task network, while its directed
edges represent which task was decomposed into which
other tasks. An example of such a decomposition tree is de-
picted in Figure 1. As shown by Geier and Bercher (2011,
Prop. 1), a task network tn is a solution if and only if a de-
composition tree, whose leafs are the actions of tn, exists
such that ≺(tn) is a superset of the ordering constraints im-
posed by the methods applied in the tree. Since the original
formulation of decomposition trees was done for HTN prob-
lems where the initial plan only contains a single abstract
action, we (technically) have to change the tree into a forest,
since every task in the initial plan is a root of a separate part
of the tree. To show equivalence one introduces a new arti-
ficial initial task, which has only a single method containing
the original initial plan.

Our formula is constructed such that it can express every
possible decomposition tree rooted at the initial task network
whose height is limited to a value K and whose leafs con-
stitute the tasks of π. If the formula is satisfiable, we can
construct a valid decomposition tree for π from the valua-
tion, if not we have shown that no such tree – with a height
of up to K – exists. This reduction has some similarities to
the Steiner Tree problem, where given a graph G = (V,E)
and a set of vertices S ⊆ V we are asked to find the small-
est subtree of G which contains all nodes from S. In our
setting the initial abstract task, and the nodes representing
tasks in the given sequence are the nodes of S and we have
to decide whether a subtree of the graph of all possible de-
compositions – fulfilling some additional criteria – exists.
As such, our encoding bears some similarities to the one
proposed for the Steiner Tree problem by Kautz, Selman,
and Jiang (1997), which is based on a DFS traversal of the
Steiner Root. Since our graph is acyclic, directed and the
nodes in S are very specifically placed, the formula we con-
struct is significantly simpler than theirs.

To ensure correctness of our technique, we have to deter-
mine a value for K such that if there is a decomposition tree
whose leafs are π, then there is also one which has a height

of at most K. Note that requiring the existence of K is not
a restriction to the model but is a directly implied by the se-
quence to be verified. In previous work, we have shown that
such a bound Ktheo exists, meaning that a deeper recursion
can never be necessary (Behnke, Höller, and Biundo 2015).
Section 5 describes how to compute a succinct bound forK.

The formula describes the tree in terms ofK layers, where
the layer l contains exactly the tasks having the distance l
from any of the roots of the tree. The assignment of a de-
composition tree into layers is illustrated in Figure 1. Here
the tasks in the initial plan always belong to layer 0, while
the tasks contained in π might occur at any layer. To make
our construction easier, we assume from this point on that if
a primitive task is contained in layer i, it is also contained
in all layers j > i. With this, π has to be equal to the Kth
layer of the decomposition tree – to be more precise it has to
be a valid total ordering of the Kth layer. Each task in each
layer is also assigned a position in that layer as shown in Fig-
ure 1. Primitive tasks which are also contained in the previ-
ous layer will always have the same position they had in the
previous layer. Due to the fact that the task networks in all
methods are non-empty, we know that the number of tasks in
a layer cannot decrease (which would require a method with
an empty task network). Given that π has a fixed length and
that the tasks in the Kth layer have to be equal to π, every
layer prior to the Kth can contain at most |π| tasks.

To ease the description of the SAT formula, we make the
following assumptions and introduce the following abbre-
viation: We assume that the task identifiers T in all meth-
ods are the natural numbers from 1 to |T |. We further de-
fine ∆ = max(c,tn)∈M |T (tn)| as the size of the largest
method. The formula will contain several at-most-one con-
straints, stating that only a single atom of a given set can be
true, which we denote by the functor M. The intuitive way
to encode M leads to a quadratic number of clauses (each
pair of variables excluding each other). In some of our eval-
uation domains this would lead to a very high numbers of
clauses (up to 442 trillion), making the construction of the
SAT formula and with that verification hard or even practi-
cally impossible. So we have used the so-called binary en-
coding for all our at-most-one constraints, which reduces the
number of clauses needed to express the constraint over n
variables to n log n while only introducing log n additional
variables (Frisch et al. 2005). This resulted in 390 million
clauses for the largest instance. We will not define the SAT
formula F in disjunctive normal form (as required by most
SAT solvers) but rather as a general formula, since the trans-
formation into DNF can be performed easily and only in-
creases the number of clauses linearly.

All variables contained in the formula will have a super-
scipt l and a subscript p indicating the layer and position they
belong to. Figure 1 shows an example for the assignment
of a decomposition tree to such layers and positions. The
overall structure of the formula is depicted visually in Fig-
ure 2. While constructing the formula, we will use the terms
“child” and “father” of t to refer to the tasks connected to t
in the next and the previous layer, respectively. The formula
contains seven different kinds of variables, who represent
the following statements.

• alp – task a is selected
• ml

p – method m is applied to alp
• used lp – the position has some selected task
• abs lp – the task is abstract
• cPos lp1,p2,t – the decomposition of alp1 leads to a task
al+1
p2 such that it is the task t of the applied method, or

if alp1 is primitive then al+1
p2 is kept to the next layer

• ch lp1,p2 – al+1
p2 is a successor of alp1

• bef lp1,p2 – alp1 is ordered before alp2
Initially we divide the formula F into three parts, which

encode the decomposition tree, describe the task network to
be verified, and the initial task network.

F = decomposition ∧ solution ∧ initialTN

The decomposition formula can be subdivided into the for-
mulae pertaining to each layer of the graph and to each posi-
tion therein. This is possible as the tasks in each layer do not
influence each other – with the exception of their ordering.

decomposition =

K∧
l=0

 |π|∧
p=1

dec(l, p)

 ∧ order(l)

Next, we can subdivide each such formula into nine formu-
lae describing the decomposition process. We will next ex-
plain the meaning of each of these formulae.

dec(l, p) = selectAction(l, p) ∧methodChildren(l, p)∧
maintainOrder(l, p) ∧ applyMethod(l, p)∧
mustBeChildOf (l, p) ∧ fatherMustExist(l, p)∧
childImpliesChildOf (l, p) ∧maintainPrimitive(l, p)

The first four subformulae ensure that every satisfying
valuation of F describes a valid tree, in the sense that every
possible node position is used only once, that every node in
a non-last layer has a successor in the next, and every node
in a non-first layer has a predecessor in the previous layer.
Additionally, they contain clauses which introduce abbrevi-
ation literals (like used and ch) which will be used later on
to allow for a smaller formula.

selectAction enforces that at most a single action can be
chosen at each position. It further requires to mark the re-
spective position as used and (if so) abstract.

selectAction(l, p) = M
a∈A

alp∧(∨
a∈A∪C

alp

)
↔ used lp ∧

(∨
c∈C

clp

)
↔ abs lp

The mustBeChildOf formulae state that each task must be
the child of a task in the previous layer (his father), ensuring
that tasks are only added through decomposition.

mustBeChildOf (l, p) =

∆∧
t=1

|π|
M
p′=1

cPos l+1
p′,p,t∧

|π|,∆
M

p′=1,t=1
cPos lp,p′,t ∧ used lp →

|π|∨
p′=1

∆∨
t=1

cPos lp,p′,t

Similarly, fatherMustExist describes that the father must
exist, and that it must be abstract if it is not the first child of
the father (since primitive tasks can have only a single child
– their own copy in the next layer).

fatherMustExist(l, p) =

|π|∧
p′=1

∆∧
t=1

cPos lp,p′,t → used l+1
p′ ∧

if t 6= 1 ∨ p 6= p′ then cPos lp,p′,t → abs l+1
p′ else true

Lastly childImpliesChildOf introduces an abbreviation of
the cPos variables, to make the ordering formulae smaller.

childImpliesChildOf (l, p) =

|π|∧
p′=1(

chlp,p′ →
∆∨
t=1

cPos lp,p′,t

)
∧

∆∧
t=1

cPos lp,p′,t → ch lp,p′

The applyMethod and methodChildren formulae are the
most important part of the overall formula, as they encode
the mechanism of decomposition itself, which is the creation
of a method’s subtasks in the next layer. applyMethod en-
forces that if a compound task is chosen at some position, an
applicable decomposition method has to be applied and that
at most one method can be applied.

applyMethod(l, p) = M
m∈M

ml
p∧ ∧

m=(c,tn)∈M

ml
p → clp

 ∧(abs lp → ∨
m∈M

ml
p

)
The methodChildren formula comprises three main

parts. The first asserts that, if a certain method with s sub-
tasks is applied at the position p, then p has to have exactly
s children in the next layer. The second determines the tasks
assigned to these children, while the last encodes the order-
ing contained in the method.

methodChildren(l, p) =
∧

m=(c,tn)∈M

[∧
t∈T (tn)

[

ml
p →

 |π|∨
p′=1

cPos lp,p′,t

 ∧ ∆∧
t=|T (tn)|+1

|π|∧
p′=1

¬cPos lp,p′,t

∧

 |π|∧
p′=1

cPos lp,p′,t ∧ml
p → α(tn)(t)l+1

p′

]∧
∧

(tb,ta)∈≺(tn)

|π|∧
pa=1

|π|∧
pb=1

ml
p ∧ cPos lp,pb,tb ∧ cPos lp,pa,ta

→ bef l+1
pb,pa

]
We allow for the tasks contained in a method to be po-

sitioned at arbitrary positions in the next layer. This intro-
duces additional non-determinism, which is generally dis-
couraged when constructing SAT formulae. We have also

experimented with a version of the formula where the po-
sitioning of tasks is kept from one layer to the next. Using
this formula we have observed that it seems empirically to
be harder to prove satisfiability. We presume that this is due
to the fact that satisfiability of the formula does not depend
on the choice of the position – if the formula is satisfiable,
any positioning is valid.

The maintainPrimitive formula ensures that every prim-
itive task in a layer is also present in the next layer. It also
enforces that those inherited primitive tasks do not change
their positions. This allows for fast pruning of wrong choices
through unit propagation, as the primitive tasks of the task
network to be verified are asserted in the last layer.

maintainPrimitive(l, p) =
∧
o∈O

ol−1
p → olp ∧ cPos l−1

p,p,1

The maintainOrder formula enforces that if two tasks
were ordered in the previous layer all the tasks which were
generated from them, either by decomposition or by main-
taining primitives, will inherit their ordering.

maintainOrder(l, p2
1) =

|π|∧
p22=1

|π|∧
p11=1

|π|∧
p12=1

ch lp11,p21∧

ch lp12,p22 ∧ bef lp11,p12 → bef l+1
p21,p

2
2

The order clauses ensure that the partial order in each layer
is always valid. Here, we allow adding additional ordering
constraints, which does not influence the correctness of the
formula, as the same ordering constraint could have been
added when choosing the linearisation π.

order(l) =

|π|∧
p1=1

|π|∧
p2=1,p2 6=p1

(
bef lp1,p2 → ¬bef

l
p2,p1

|π|∧
p3=1,p3 6=p1,p3 6=p2

bef lp1,p2 ∧ bef lp2,p3 → bef p1,p3

)
The last part of the planning problem to be encoded is the

initial task network. It is inserted as the content of the zeroth
layer of the decomposition tree by the following formula.

initialTN =

(∧
t∈T (tni)

α(tn)(t)0
t ∧ used0

t∧

if α(tn)(t) ∈ C then abs0
t else ¬abs

0
t

)
∧

(|π|∧
t=|T (tni)|+1

(∧
a∈A
¬a0

t

)
∧ ¬used0

t ∧ ¬abs
0
t

)
∧

∧
(tb,ta)∈≺(tni)

bef 0
tb,ta
∧

(∧
t∈T (tni)

applyMethod(0, t)∧

methodChildren(0, t) ∧ selectAction(0, t)

)

Figure 2: Structure of the constructed formula. A decompo-
sition tree corresponding to the one in Fig. 1 is marked red.

Finally, the task sequence π itself is encoded by enforc-
ing that the tasks in the last layer are the primitives of the
solution, and that they are totally ordered as given in the se-
quence.

solution =

|π|∧
p=1

π(p)Kp ∧ bef Kp,p+1

Figure 2 contains a simplified (e.g. omitting ordering con-
straints) visual representation of a verify SAT formula where
K = 3, |π| = 4, and |M | = 3. The selected actions are
not depicted, but the structure of the decomposition tree is
highlighted in red. The depicted tree is the one presented in
Figure 1. Here we see that for every abstract task a method
(white circles) is chosen, leading to the appropriate children
in the next layer, while every primitive task is directly inher-
ited to the next layer (marked by the dashed lines).

The following theorem provides that the presented con-
struction is in fact correct.
Theorem 1. Given a DECOMPSEQ problem (P, π) and a
bound K, then F constructed using the bound K is satisfi-
able if and only if π ∈ Sol (P) and the height of π’s decom-
position tree is at most K.

Proofsketch: ⇒ Let F be satisfiable. Then the val-
uation of F specifies for every abstract task a sin-
gle method which should be applied to it, due to the
constraint applyMethod . Further in any layer of the
formula, there are exactly the children of the chosen
method as enforced by methodChildren . The clauses
from selectAction,mustBeChildOf , fatherMustExist and
childImpliesChildOf ensure that no additional actions are
contained in the formula. From these observations, we know
that the asserted actions and their interconnections form a
valid decomposition tree. Lastly, the leafs of the represented
tree are the tasks contained in π. Using Proposition 1 of
Geier and Bercher (2011), we know that π is a solution.
⇐ Let π be a solution to P . Following the aforementioned
theorem and the premises of this theorem, there is a valid
decomposition tree whose leafs are π and whose height is at
mostK. We can construct a satisfiable valuation forF by as-
signing each node in the decomposition tree to its layer and
arbitrarily to a position within that layer, which is not occu-
pied by a primitive task in the previous layer. Any primitive
task is also asserted at its position in all following layers.
Using this assignment we can construct a satisfying valua-
tion for selectAction , mustBeChildOf , fatherMustExist ,

childImpliesChildOf and maintainPrimitive . By tracing
the ordering constraints contained in the decomposition tree,
we can also create a valuation satisfying the maintainOrder
constraints. Since the decomposition tree is valid, it specifies
a single decomposition method for every abstract task and
the methods’ subtasks are contained in the following layer,
which ensures that our constructed valuation also fulfils the
methodChildren and applyMethod clauses. As the leafs of
the decomposition tree are the tasks of π (in the correct or-
der) we have constructed a satisfying valuation for F . �

5 Height of Decomposition Trees
The constructed formula is based on the value K – an upper
bound to the height of a decomposition tree that can lead to
the task sequence to be verified. Obviously, it is often possi-
ble to construct a tree of arbitrary height for a given solution,
given there is a subnetwork in a method containing only a
single task. The value of K can be limited to the smallest
height necessary such that a decomposition tree leading to
the solution exists. As a part of proving that VERIFYSEQ
is in NP we proved1 that if a task network tn is reachable
from the initial task network tni there is always a sequence
of S = 2|T (tn)|(|C| + 1) decompositions which leads to
that task network (Behnke, Höller, and Biundo 2015). S is
clearly an upper bound, which we call Ktheo , since in any
layer of the decomposition tree at least a single decomposi-
tion method has to be applied.

A better bound can be derived based on the task schema
transition graph (TSTG), which was implicitly introduced
by Alford et al. (2016a). Its vertices are the tasks of the
domain and it contains an edge (u, v) if u has a method
containing the task v. If this graph is acyclic, the domain
is called to be acyclic2. If so, we can use the length of the
longest path l in the graph as an upper bound KTSTG , since
it is not possible to apply more than l decompositions in a
row to the same task without reaching only primitive tasks.

Another bound is based on a compilation for HTN plan-
ning problems originally introduced by Höller et al. (2014).
It removes all methods having subnetworks with less than
2 tasks in it. Afterwards, the number of tasks in each layer
of the decomposition tree will grow by at least one (or all
tasks are already primitive), since at least one method has
to be applied in each layer. This gives the natural bound
Kunit = |π|−|T (tni)|

δ−1 for the height of the tree, where δ is
the size of the smallest method in the domain.

6 Evaluation
In order to show that our approach is feasible for verify-
ing plans in existing HTN planning domains, we have im-
plemented our transformation and conducted an empirical
evaluation. The code of the implementation can be found at
https://www.uni-ulm.de/in/ki/panda.

1The paper erroneously states a bound of |T (tn)|(|C| + 1), as
we did not take decompositions into account that occurred after the
task network has reached the size of tn.

2Plan verification for acyclic domains is still NP-complete.

Contrary to classical planning, there is no well-
established set of benchmark domains for hierarchical plan-
ning. Hence, we used several benchmark domains for Hy-
brid Planning (Biundo and Schattenberg 2001), a formalism
which extends standard HTN planning in that it adds pre-
conditions and effects to abstract tasks and allows for so-
called causal links inside methods (McAllester and Rosen-
blitt 1991). For our evaluation, we have stripped both these
extensions from all domains. As we have generated the so-
lutions to be verified using the reduced problems, this reduc-
tion does not influence the evaluation. For more detailed de-
scriptions of these domains, we refer to Bercher, Keen, and
Biundo (2014). Further, we used the Monroe domain (Blay-
lock and Allen 2005), which is a benchmark domain from
plan and goal recognition. It seems to be an appropriate chal-
lenge, as it has a large set of methods, actions, and constants.
It seems well suited to test a plan verification system, since
plan verification can be seen as a special case of plan recog-
nition (where the observed action sequence has ended). For
all test instances, we have generated an arbitrary solution
which was subsequently verified. Since all our benchmark
domains are given in a lifted formalism and our translation
works on a grounded one, we have first grounded all actions
and methods and pruned them if obviously possible (remov-
ing actions with preconditions occurring neither as effects
nor in the initial state, abstract tasks without methods, and
methods containing removed tasks). We have also removed
all constants not contained in the solution to be verified from
the problem when they cannot appear in free variables of any
methods (i.e. parameters of the abstract task that do not oc-
cur in the subnetwork). In this case, they cannot possibly be
part of any decomposition tree leading to the solution.

Table 1 summarises some properties for the grounded do-
mains and the values of the three variants to bound K. It
was not possible to compute Kunit for the Monroe domain,
since the compiled domain would have contained too many
methods. Similarly some SmartPhone instances have acyclic
TSTGs, making the computation of KTSTG for these in-
stances impossible. We have denoted these cases with∞ in
the table. We were able to compute a suitably small bound
K for all our benchmark domains. However, if we were to
encounter a domain where unit compilation is not possible
for practical reasons and whose TSTG is acyclic, we would
have to fall back to the theoretical upper bound, which can
be extremely high, but is always finite. For the evaluation we
have used the SAT solver cryptominisat5 (Soos 2016),
which was amongst the top-performing SAT solvers at the
SAT Competition 2016. The experiments were conducted on
an Intel Xeon E5-2660 with 503 GB available RAM.

We were able to verify the plans of all our benchmark
problems in less than 451 seconds, while only four instances
took more than 100 seconds. As shown in Figure 3a, the
time needed for verification correlates with both plan length
and the number of actions in the domain, while neither is a
dominating factor. If we look at the dependence of time of
both of these values, we see that a combination of a long
plan in a large grounded domain seems to result in a longer
computation time (see Figure 4). We also tested whether it
is possible to verify any of the solutions with a smaller value

domain Ktheo Kunit KTSTG |L| |C| |A| |M |
min max min max min max min max min max min max min max

UMTranslog 70 1258 5 37 3 6 19 88 4 16 7 22 4 17
Satellite 20 510 5 17 1 4 8 70 1 17 7 78 11 541
SmartPhone 132 324 11 15 3 ∞ 44 47 5 8 16 18 14 99
Woodworking 12 48 2 4 1 2 32 59 1 4 6 24 4 76
Monroe 198 11032 ∞ ∞ 4 8 1220 3152 32 265 436 6017 408 5476

Table 1: Height and statistics of the evaluation domains. We tested 21 UMTranslog instances, 22 Satellite instances, 3 Smart-
Phone instances, 5 Woodworking instances, and 50 Monroe instances.

of K to test the conciseness of our upper bounds. In total 11
of the Monroe instances were solvable with a bound up to 3
smaller than the computed K, while only one instance each
from the SmartPhone and the Satellite domain were solvable
with a bound 1 less than the computed one.

In a second evaluation we showed that the presented
technique not only verifies solutions, but also refutes non-
solutions. We generated non-solutions by randomly apply-
ing applicable actions until a plan of the same length as the
solution to that problem had been reached. For every prob-
lem five such sequences were generated (505 in total). For all
but five of the randomly generated plans, the verifier showed
that they are non-solutions. The remaining five have been
manually checked to be solutions. We also checked various
non-solutions to be correctly classified. The random solu-
tions have been excluded from the further evaluation, i.e.,
our diagrams for non-solutions do not include these data-
points. The time needed to refute these non-solutions was
always less than 120 seconds, as depicted in Figure 3b. In-
terestingly – and contrary to usual expectations in SAT solv-
ing – it was usually easier to refute an incorrect plan than to
show that solutions were indeed solutions. We suspect that
this is due to certain combinations of primitive tasks which
cannot occur together (usually caused by the decomposition
hierarchy) in any solution. They form a small unsatisfiable
subset of the formula’s clauses, which the solver might de-
tect early showing unsatisfiability.

Lastly, we have also evaluated our verifier on non-
solutions which are similar to actual solutions (see Fig-
ure 3c). For every instance five “almost solutions” were gen-
erated by randomly selecting an action within a solution and
replacing it with another random primitive action from the
domain. This may result in an unexecutable plan, but since
our formula does not check executability, we can reasonably
assume that the results are identical to the case where the
resulting plan would be executable. Our evaluation shows
higher (up to 1123 seconds) runtimes for these “almost so-
lutions”, which is expected as the formulae for these task
networks should be “almost satisfiable”. Such SAT formulae
are in general deemed hard. However all these non-solutions
were refuted in time and most of them in an acceptably low
timeframe – less than 300 seconds.

7 Related Work
The overall idea to use logic-based techniques in hierarchi-
cal planning is not entirely new. Most notably, there are
two translations of planning problems into SAT (Mali and

Kambhampati 1998) and Answer Set Programming (Dix,
Kuter, and Nau 2003). However both differ significantly in
the employed formalism (although both call it HTN plan-
ning for historic reasons). Mali and Kambhampati’s for-
malism restricts the model by disallowing recursion (which
we can handle completely), and simultaneously allowing
for both task sharing (Alford et al. 2016b) and task inser-
tion (Geier and Bercher 2011). All these features make their
hierarchical planning language far less expressive and in
conjunction with the fact, that their problems don’t contain
an initial task network, equivalent to classical planning. Dix,
Kuter, and Nau on the other hand use a formalism which is
equivalent to ours, with the sole additional restriction that
the task networks in all methods must be totally ordered.
As such, they are using the older formalism of SHOP, not
the new one of SHOP2 which allows for partial order in
methods. In the case of HTN plan verification, this restric-
tion lowers the complexity of the problem from NP to P, as
the problem becomes equivalent with parsing a word of a
context free grammar (Höller et al. 2014).

There has also been a lot of work in the community
on verification of HTN planning domains and problems.
Their objective for these investigations was not to determine
whether a certain plan is a solution to a given planning prob-
lem, but rather to check some criterion (ususally ensuring in-
ternal consistency) of the model. Examples include the work
of Goldman (2009), Biundo and Schattenberg (2001), Mc-
Cluskey, Liu, and Simpson (2003), or Marthi, Russell, and
Wolfe (2007) (for a survey see Bercher et al. (2016)).

Shivashankar et al. (2013) have proposed a new hierar-
chical planning formalism, called Hierarchical Goal Net-
work (HGN) planning, which uses networks of sub-goals
instead of networks of sub-tasks. In this formalism plan ver-
ification is presumably easier, but – so far – there have nei-
ther been theoretical or practical investigation for plan ver-
ification. Further HGNs are seemingly less expressive than
HTNs, as every HGN can be compiled into an HTN, while
the reverse is yet unknown and potentially impossible (Al-
ford et al. 2016b). While this can be beneficial when de-
signing planning algorithms, a plan verifier should always
be able to handle the most general formalism, i.e., HTNs.

Other techniques for verifying HTN plans can be thought
of. For example, one could also use the existing transla-
tion of HTNs into ConGolog (Shapiro, Lespérance, and
Levesque 2002) and subsequently use one of the existing
verifiers for ConGolog. However we deem such translations
to be future work.

5 10 15 20 25 30 35

0
10

0
20

0
30

0
40

0

plan length

S
AT

 s
ol

vi
ng

 ti
m

e
in

 s
ec

●● ●● ●●● ● ●●

●

● ●● ●●●
●

● ●●● ●●●● ●●● ● ●● ●● ● ●● ● ●● ● ●●

●
●● ●● ●●

● ●

●

●●

●

●●
●
●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●● ●

● ●●
●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●●

●

0 1000 2000 3000 4000 5000 6000

0
10

0
20

0
30

0
40

0

number of actions

S
AT

 s
ol

vi
ng

 ti
m

e
in

 s
ec

●●●●●●●●●●

●

●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●

●●

●

● ●

●

● ●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●●●

●● ●
●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●●

●

(a) Runtime on actual solutions.

5 10 15 20 25 30 35

0
20

40
60

80
10

0
12

0

plan length

S
AT

 s
ol

vi
ng

 ti
m

e
in

 s
ec

●●●●
●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●

●●

●

●

●

●●●●●

●●●
●
●

●●●●● ●●●●●●●●●●●●●●●

●●●●●

●●●●●
●●●●●

●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●● ●●●●●
●●●●●

●
●

●
●
●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●
●

●

●
●

●●●●●

●

●

●

●

●

●●●●●

●●●●●

●
●
●
●●

●
●●

●●

●●●●●

●●●●●

●●●●●

●●●●●

●

●●

●

●

●●●●●

●●
●●●

●●●●●
●●●●●

●●●●●

●●●●●
●●
●●●●●●●●

●●●●
●

●●●●●

●●●●●

●●●●●

●

●●●
●

●●●●●

●
●

●
●

●
●●●

●●

●

●

●●●●

●●

●

●

●●●●●

●●
●
●

●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●

●

●

●

●

●

0 1000 2000 3000 4000 5000 6000

0
20

40
60

80
10

0
12

0

number of actions

S
AT

 s
ol

vi
ng

 ti
m

e
in

 s
ec

●●●●
●●

●●

●

●

●

●●●●●

●●●
●
●

●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●
●●●●●
●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●

●●●●●

●
●

●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●
●

●

●
●

●●●●●

●

●

●

●

●

●●●●●

●●●●●

●
●
●
●●

●
●●

●●

●●●●●

●●●●●

●●●●●

●●●●●

●

●●

●

●

●●●●●

●●
●●●

●●●●●
●●●●●
●●●●●

●●●●●
●●
●●● ●●●●●

●●●●
●

●●●●●

●●●●●

●●●●●

●

●●●
●

●●●●●

●
●

●
●

●
●●●

●●

●

●

●●● ●

●●

●

●

●●●●●

●●
●
●

●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●

●

●

●

●

●

(b) Runtime on non-solutions, generated
by randomly applying actions until the
same length as in Fig 3a was reached.

5 10 15 20 25 30 35

0
20

0
40

0
60

0
80

0
10

00

plan length

S
AT

 s
ol

vi
ng

 ti
m

e
in

 s
ec

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●

●
●
●
●●

●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●● ●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●●●●● ●●●●●

●
●●●●

●●●●●
●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●●

●●
●●●

●●●●●

●●
●●●

●●●●●●●●●●
●●●●●

●

●
●
●

●

●●●●●
●●●●●

●●●●●●●●●●
●●●●
●

●●●●●

●
●●

●

●

●●●●●
●●●●●●●●●● ●●●●●

●●●●● ●●●
●●

●●●●●●●●●●
●●●●●

●●●●●●●●●●

●●●●●

●●●●●●●●●● ●●●●●●●●●●

●

●●●

●

●●●●●

●

●
●

●

●

●
●
●

●

●

●●●●● ●●●●●

●

●
●●

●

●●●●●●●●●●

●

●

●

●

●

0 1000 2000 3000 4000 5000 6000 7000

0
20

0
40

0
60

0
80

0
10

00

number of actions

S
AT

 s
ol

vi
ng

 ti
m

e
in

 s
ec

●●

●
●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●

●
●●●●

●●●●●
●●●●● ●●●●●

●●●●● ●●●●●●●●●●●●●●●

●●
●●●

●●●●●

●●
●●●

●●●●●●●●●●
●●●●●

●

●
●
●

●

●●●●●
●●●●●

●●●●●●●●●●
●●●●
●

●●●●●

●
●●

●

●

●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●
●●

●●●●●●●●●●
●●●●●

●●●●●●●●●●

●●●●●

●●●●●●●●●● ●●●●●●●●●●

●

●●●

●

●●●●●

●

●
●

●

●

●
●
●

●

●

●●●●● ●●●●●

●

●
●●

●

●●●●●●●●●●

●

●

●

●

●

(c) Runtime on non-solutions, generated
by replacing a single action in a solution.

Figure 3: For each sub-figure the top diagram shows the runtime in relation to the length of the plan, while the bottom one
depicts the runtime in relation to the number of ground action in the domain. The colours encode the domain (see Table 1).

●●●●●●● ●●●●●●● ●●●●●●●●● ●●● ●●●●●● ●●●●●●●● ●●●●●●● ●●●●●●●●● ●●●●●●●● ●●●●●●●●●●● ●●●●●●●●
●●●●●●●● ●●●●●●●●●●●● ●●●● ●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●●● ●●●● ●●●● ●●● ●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●●●●● ●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

5 10 15 20 25 30 35

0
10

00
20

00
30

00
40

00
50

00
60

00

plan length

nu
m

be
r

of
 a

ct
io

ns

Figure 4: Length of the plan to be verified and number of
grounded actions in the domain, where the time to verify
the solution is indicated by the colour of the point. The red
indicates higher and yellow lower times. The colour was de-
termined according to the logarithm of the verification time.

8 Conclusion
In this paper we studied the practical aspects of the task
of plan verification. It has a wide range of applications in
planning-based systems, e.g., whenever it is necessary to
post-optimise plans based on local-search, and is one of the
requirements when conducting a planning competition.

We presented the first plan verifier for HTN plans,
which solves the problem by translating it (due its NP-
completeness) into a SAT formula. We showed that our tech-
nique allows to verify HTN plans in reasonable time and is
thus useable in practice. Although the solving times for the
created formulae are already low, it might prove beneficial to
further reduce the size of the formula or to investigate new
structures that could be applied when constructing the for-
mula. By combining our approach with methods from SAT-
based classical planning, it might be possible to construct
a SAT-based HTN planning system. Such a planner could
subsequently also be used to implement requests to change
a solution – based on the theoretical results of Behnke et
al. (2016) – with a procedure different from local search. As
such, this paper lays the groundwork for both the practical
investigation of plan verification, as well as for a novel plan-
ning techniques for HTN planning.

9 Acknowledgements
We want to thank Pascal Bercher and the anonymous re-
viewers for their help to improve the paper. This work
was done within the Transregional Collaborative Research
Centre SFB/TRR 62 “Companion-Technology for Cognitive
Technical Systems” funded by the German Research Foun-
dation (DFG).

References
Ai-Chang, M.; Bresina, J.; Charest, L.; Chase, A.; Hsu, J.;
Jonsson, A.; Kanefsky, B.; Morris, P.; Rajan, K.; Yglesias,
J.; Chafin, B.; Dias, W.; and Maldague, P. 2004. MAPGEN:
mixed-initiative planning and scheduling for the mars explo-
ration rover mission. Intelligent Systems, IEEE 19(1):8–12.
Alford, R.; Behnke, G.; Höller, D.; Bercher, P.; Biundo, S.;
and Aha, D. W. 2016a. Bound to plan: Exploiting classical
heuristics via automatic translations of tail-recursive HTN
problems. In Proc. of ICAPS.
Alford, R.; Shivashankar, V.; Roberts, M.; Frank, J.; and
Aha, D. W. 2016b. Hierarchical planning: relating task and
goal decomposition with task sharing. In Proc. of IJCAI.
Behnke, G.; Höller, D.; Bercher, P.; and Biundo, S. 2016.
Change the plan - how hard can that be? In Proc. of ICAPS.
Behnke, G.; Höller, D.; and Biundo, S. 2015. On the com-
plexity of HTN plan verification and its implications for plan
recognition. In Proc. of ICAPS.
Bercher, P.; Biundo, S.; Geier, T.; Hörnle, T.; Nothdurft, F.;
Richter, F.; and Schattenberg, B. 2014. Plan, repair, execute,
explain - how planning helps to assemble your home theater.
In Proc. of ICAPS.
Bercher, P.; Richter, F.; Hörnle, T.; Geier, T.; Höller, D.;
Behnke, G.; Nothdurft, F.; Honold, F.; Minker, W.; Weber,
M.; and Biundo, S. 2015. A planning-based assistance sys-
tem for setting up a home theater. In Proc. of AAAI.
Bercher, P.; Höller, D.; Behnke, G.; and Biundo, S. 2016.
More than a name? On implications of preconditions and
effects of compound HTN planning tasks. In Proc. of ECAI.
Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid planning
heuristics based on task decomposition graphs. In Proc. of
SoCS.
Biundo, S., and Schattenberg, B. 2001. From abstract crisis
to concrete relief – a preliminary report on combining state
abstraction and HTN planning. In Proc. of ECP.
Blaylock, N., and Allen, J. 2005. Generating artificial cor-
pora for plan recognition. In Proc. of UM.
Dix, J.; Kuter, U.; and Nau, D. 2003. Planning in answer set
programming using ordered task decomposition. In Proc. of
KI.
Erol, K.; Hendler, J.; and Nau, D. 1994. UMCP: A sound
and complete procedure for hierarchical task-network plan-
ning. In Proc. of AIPS.
Erol, K.; Hendler, J.; and Nau, D. 1996. Complexity results
for HTN planning. Annals of Mathematics and AI 18(1):69–
93.

Ferguson, G.; Allen, J.; and Miller, B. 1996. TRAINS-95:
towards a mixed-initiative planning assistant. In Proc. of
AIPS.
Fernández-Olivares, J.; Castillo, L.; Garcı́a-Pérez, Ó.; and
Palao, F. 2006. Bringing users and planning technology
together. Experiences in SIADEX. In Proc. of ICAPS.
Frisch, A.; Peugniez, T.; Doggett, A.; and Nightingale, P.
2005. Solving non-boolean satisfiability problems with
stochastic local search: A comparison of encodings. Jour-
nal of Automated Reasoning (JAR) 35(1-3):143–179.
Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In Proc. IJCAI.
Gerevini, A., and Serina, I. 2002. LPG: A planner based on
local search for planning graphs with action costs. In Proc.
of AIPS.
Goldman, R. 2009. A semantics for HTN methods. In Proc.
of ICAPS.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language classification of hierarchical planning problems.
In Proc. of ECAI.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2016.
Assessing the expressivity of planning formalisms through
the comparison to formal languages. In Proc. of ICAPS.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: automatic
plan validation, continuous effects and mixed initiative plan-
ning using PDDL. In Proc. of ICTAI.
Kautz, H. A.; Selman, B.; and Jiang, Y. 1997. A general
stochastic approach to solving problems with hard and soft
constraints. Satisfiability Problem: Theory and Applications
35:573–586.
Mali, A., and Kambhampati, S. 1998. Encoding HTN plan-
ning in propositional logic. In Proc. of AIPS.
Marthi, B.; Russell, S.; and Wolfe, J. 2007. Angelic seman-
tics for high-level actions. In Proc. of ICAPS.
McAllester, D., and Rosenblitt, D. 1991. Systematic non-
linear planning. In Proc. of AAAI.
McCluskey, T.; Liu, D.; and Simpson, R. 2003. GIPO II:
HTN planning in a tool-supported knowledge engineering
environment. In Proc. of ICAPS.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J.; Wu,
D.; and Yaman, F. 2003. SHOP2: an HTN planning system.
Journal of AI Research (JAIR) 20:379–404.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Wu, D.; Yaman,
F.; Muñoz-Avila, H.; and Murdock, J. 2005. Applications of
SHOP and SHOP2. Intelligent Systems, IEEE 20:34–41.
Shapiro, S.; Lespérance, Y.; and Levesque, H. 2002. The
cognitive agents specification language and verification en-
vironment for multiagent systems. In Proc. of AAMAS.
Shivashankar, V.; Alford, R.; Kuter, U.; and Nau, D. S. 2013.
Hierarchical goal networks and goal-driven autonomy: Go-
ing where AI planning meets goal reasoning. In ACS Work-
shop.
Soos, M. 2016. The CryptoMiniSat 5 set of solvers at SAT
Competition 2016. In Proc. of SAT Competition 2016.

