
This is a solution! (... but is it though?)
Verifying solutions of hierarchical planning problems

Gregor Behnke, Daniel Höller, Susanne Biundo
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Plan Verification

init goal

• O(n) for totally ordered classical plans

• VAL provides for plan verification in classical domains

• NP-complete for HTN (Hierarchical Task Network) planning
[Behnke et al. 2015]

• So far, no HTN plan verifier exists
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Why plan verification?

Plan Verification can be used for

• validating HTN planners

• HTN planning competitions (. . . future work)

• post-optimisation of solutions

• plan repair

What have we done?

1 Provided a translation of Plan Verification problem into SAT
2 Provided succinct decomposition depth bounds for plans
3 Showed that verifying plans using SAT is empirically feasible
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Hierarchical Task Network (HTN) Planning

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of variables

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearisation,
executable from the initial state
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Plan Verification

Definition (VERIFYTN)
Let P be a planning problem and tn be a task network.
Decide whether tn ∈ Sol(P).

What do we have to check?

• refinement

• primitive

• executability

cI
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Translation into SAT

• Let’s have a look at a
Decomposition Tree
leading to a solution

• We can arrange its
vertices (i.e. primitive and
abstract tasks) in layers

• ... and assign each vertex
a row.

• Our SAT formula models
this assignment process
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Translation into SAT

Clauses describe local restrictions at position

• Node Constraints

• at most one task

• Parent Constraints

• only one parent in previous layer
• no task if no parent

• Children Constraints for every method

• if abstract, exactly one method
• selected method must have subtasks
• subtasks must occur in the next layer
• subtasks are children of parent
• subtasks must respect the method’s

order
• subtasks must respect parent’s order

ln

7
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Bounding Decomposition Height

• The translation assumes a height parameter K

• To be correct, we need to determine K , s.t. every plan of length n has a
decomposition of height ≤ K or none at all

• I.e. we need to compute the maximum depth of a decomposition that can
lead to a plan of length n

• We have developed four methods to compute an upper bound for K

The first three are described in the paper, the fourth is new.
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The first three are described in the paper, the fourth is new.
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Bounding Decomposition Height

Method 1:

• In Behnke et al. (ICAPS 2015) we showed that plan verification is NP
complete

• The proof provides a theoretical upper bound
Ktheo = 2|plan|(|C|+ 1)

domain
Ktheo

min max
UMTranslog 70 1258
Satellite 20 510
SmartPhone 132 324
Woodworking 12 48
Monroe 198 11032

⇐ take the minimum
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Evaluation

• To ascertain the performance of our SAT-translation, we have conducted
an empirical study on five common HTN benchmarking domains

domain #instances
|L| |C| |A| |M|

min max min max min max min max
UMTranslog 21 19 88 4 16 7 22 4 17
Satellite 22 8 70 1 17 7 78 11 541
SmartPhone 3 44 47 5 8 16 18 14 99
Woodworking 5 32 59 1 4 6 24 4 76
Monroe 50 1220 3152 32 265 436 6017 408 5476

domain
Ktheo Kunit KTSTG KDP

min max min max min max min max
UMTranslog 70 1258 5 37 3 6 3 6
Satellite 20 510 5 17 1 4 1 4
SmartPhone 132 324 11 15 3 ∞ 2 5
Woodworking 12 48 2 4 1 2 1 2
Monroe 198 11032 ∞ ∞ 4 8 4 8

• For 88 of 101 instances the computed height bound was exact.
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Figure: Runtime on actual
solutions.
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Figure: Runtime on
non-solutions, generated
by random-walking.
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Figure: Runtime on
non-solutions, generated
by replacing a single action
in a solution.
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This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Conclusion

• We provided the first working plan verifier for HTN planning

• ... and showed that plan verification possible in practice

• We showed that concise height bounds can be derived automatically from
the domain

• Promising directions of future research

• Reducing the size of the encoding (still O(n4))
• Creating a specialised formula for totally-ordered problems
• Using the encoding as a SAT-based HTN planner
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