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Plan Verification

_ Q¢ —initial task

refinement 4

init goal

O(n) for totally ordered classical plans

VAL provides for plan verification in classical domains

NIP-complete for HTN (Hierarchical Task Network) planning
[Behnke et al. 2015]

So far, no HTN plan verifier exists
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Why plan verification?

Plan Verification can be used for
e validating HTN planners
e HTN planning competitions (. .. future work)
o post-optimisation of solutions
e plan repair

What have we done?

@ Provided a translation of Plan Verification problem into SAT
© Provided succinct decomposition depth bounds for plans
© Showed that verifying plans using SAT is empirically feasible



This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

P =
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P a set of primitive tasks

C a set of compound tasks
¢/ € C the initial task

M C C x 2™ the methods
L a set of variables

s; C L the initial state

A solution tn € Sol('P) must

be a refinement of the initial task
only contain primitive tasks

have a linearisation,
executable from the initial state
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o Let’s have a look at a
Decomposition Tree
leading to a solution

e We can arrange its
vertices (i.e. primitive and
abstract tasks) in layers

e ... and assign each vertex
a row.

e QOur SAT formula models
this assignment process

Gregor Behnke et al., UIm University
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Translation into SAT

Clauses describe local restrictions at position

¢ Node Constraints
e at most one task

e Parent Constraints

e only one parent in previous layer

e no task if no parent
e Children Constraints for every method
if abstract, exactly one method
selected method must have subtasks
subtasks must occur in the next layer
subtasks are children of parent
subtasks must respect the method’s
order
e subtasks must respect parent’s order

Gregor Behnke et al., UIm University
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Bounding Decomposition Height

The translation assumes a height parameter K

To be correct, we need to determine K, s.t. every plan of length nhas a
decomposition of height < K or none at all

l.e. we need to compute the maximum depth of a decomposition that can
lead to a plan of length n

We have developed four methods to compute an upper bound for K
The first three are described in the paper, the fourth is new.
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o If every decomposition method would produce > 2 tasks, then each

decomposition increases the size of the plan

* Methods where the task network contains only a single task are
called unit methods

¢ Unit methods can be removed via expansion in the model
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o To ascertain the performance of our SAT-translation, we have conducted
an empirical study on five common HTN benchmarking domains

domain #instances - IL] - el a Al - M|

min max min max min max min max
UMTranslog ® 21 19 88 4 16 7 22 4 17
Satellite ® 22 8 70 1 17 7 78 11 541
SmartPhone ® 3 44 47 5 8 16 18 14 99
Woodworking ® 5 32 59 1 4 6 24 4 76
Monroe ® 50 1220 3152 32 265 436 6017 408 5476
domain __Kineo _Kunit _Krsta _Kop

min max min max mi max mi max

UMTranslog ® 70 1258 5 37 3 6 3 6
Satellite ® 20 510 5 17 1 4 1 4
SmartPhone ® 132 324 11 15 3 e} 2 5
Woodworking ® 12 48 2 4 1 2 1 2
Monroe ® 198 11032 o0 [es) 4 8 4 8

o For 88 of 101 instances the computed height bound was exact.
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Conclusion

We provided the first working plan verifier for HTN planning

... and showed that plan verification possible in practice

We showed that concise height bounds can be derived automatically from
the domain

Promising directions of future research
¢ Reducing the size of the encoding (still O(n*))
e Creating a specialised formula for totally-ordered problems
e Using the encoding as a SAT-based HTN planner



