
This is a solution! (... but is it though?)
Verifying solutions of hierarchical planning problems

Gregor Behnke, Daniel Höller, Susanne Biundo

Ulm University, Institute of Artificial Intelligence

June 21, 2016

ICAPS 2017 – Pittsburgh

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

init goal

• O(n) for totally ordered classical plans

• VAL provides for plan verification in classical domains

• NP-complete for HTN (Hierarchical Task Network) planning
[Behnke et al. 2015]

• So far, no HTN plan verifier exists

2

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

init goal

• O(n) for totally ordered classical plans

• VAL provides for plan verification in classical domains

• NP-complete for HTN (Hierarchical Task Network) planning
[Behnke et al. 2015]

• So far, no HTN plan verifier exists

2

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

init goal

• O(n) for totally ordered classical plans

• VAL provides for plan verification in classical domains

• NP-complete for HTN (Hierarchical Task Network) planning
[Behnke et al. 2015]

• So far, no HTN plan verifier exists

2

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

cI – initial task

init goal

refinement

• O(n) for totally ordered classical plans

• VAL provides for plan verification in classical domains

• NP-complete for HTN (Hierarchical Task Network) planning
[Behnke et al. 2015]

• So far, no HTN plan verifier exists

2

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

cI – initial task

init goal

refinement

• O(n) for totally ordered classical plans

• VAL provides for plan verification in classical domains

• NP-complete for HTN (Hierarchical Task Network) planning
[Behnke et al. 2015]

• So far, no HTN plan verifier exists

2

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification can be used for

• validating HTN planners

• HTN planning competitions (. . . future work)

• post-optimisation of solutions

• plan repair

What have we done?

1 Provided a translation of Plan Verification problem into SAT
2 Provided succinct decomposition depth bounds for plans
3 Showed that verifying plans using SAT is empirically feasible

3

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification can be used for

• validating HTN planners

• HTN planning competitions (. . . future work)

• post-optimisation of solutions

• plan repair

What have we done?

1 Provided a translation of Plan Verification problem into SAT
2 Provided succinct decomposition depth bounds for plans
3 Showed that verifying plans using SAT is empirically feasible

3

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification can be used for

• validating HTN planners

• HTN planning competitions (. . . future work)

• post-optimisation of solutions

• plan repair

What have we done?

1 Provided a translation of Plan Verification problem into SAT
2 Provided succinct decomposition depth bounds for plans
3 Showed that verifying plans using SAT is empirically feasible

3

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification can be used for

• validating HTN planners

• HTN planning competitions (. . . future work)

• post-optimisation of solutions

• plan repair

What have we done?

1 Provided a translation of Plan Verification problem into SAT
2 Provided succinct decomposition depth bounds for plans
3 Showed that verifying plans using SAT is empirically feasible

3

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification can be used for

• validating HTN planners

• HTN planning competitions (. . . future work)

• post-optimisation of solutions

• plan repair

What have we done?

1 Provided a translation of Plan Verification problem into SAT
2 Provided succinct decomposition depth bounds for plans
3 Showed that verifying plans using SAT is empirically feasible

3

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification can be used for

• validating HTN planners

• HTN planning competitions (. . . future work)

• post-optimisation of solutions

• plan repair

What have we done?

1 Provided a translation of Plan Verification problem into SAT
2 Provided succinct decomposition depth bounds for plans
3 Showed that verifying plans using SAT is empirically feasible

3

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification can be used for

• validating HTN planners

• HTN planning competitions (. . . future work)

• post-optimisation of solutions

• plan repair

What have we done?

1 Provided a translation of Plan Verification problem into SAT

2 Provided succinct decomposition depth bounds for plans
3 Showed that verifying plans using SAT is empirically feasible

3

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification can be used for

• validating HTN planners

• HTN planning competitions (. . . future work)

• post-optimisation of solutions

• plan repair

What have we done?

1 Provided a translation of Plan Verification problem into SAT
2 Provided succinct decomposition depth bounds for plans

3 Showed that verifying plans using SAT is empirically feasible

3

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification can be used for

• validating HTN planners

• HTN planning competitions (. . . future work)

• post-optimisation of solutions

• plan repair

What have we done?

1 Provided a translation of Plan Verification problem into SAT
2 Provided succinct decomposition depth bounds for plans
3 Showed that verifying plans using SAT is empirically feasible

3

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of variables

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearisation,
executable from the initial state

4

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

primitive compound

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of variables

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearisation,
executable from the initial state

4

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

cI

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of variables

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearisation,
executable from the initial state

4

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

cI

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of variables

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearisation,
executable from the initial state

4

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

cI

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of variables

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearisation,
executable from the initial state

4

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

cI

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of variables

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearisation,
executable from the initial state

4

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

cI

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of variables

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearisation,
executable from the initial state

4

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

cI

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of variables

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearisation,
executable from the initial state

4

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

cI

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of variables

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearisation,
executable from the initial state

4

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

cI

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of variables

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearisation,
executable from the initial state

4

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

cI

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of variables

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearisation,
executable from the initial state

4

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

cI

sI

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of variables

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearisation,
executable from the initial state

4

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

Definition (VERIFYTN)
Let P be a planning problem and tn be a task network.
Decide whether tn ∈ Sol(P).

What do we have to check?

• refinement

• primitive

• executability

cI

5

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

Definition (VERIFYTN)
Let P be a planning problem and tn be a task network.
Decide whether tn ∈ Sol(P).

What do we have to check?

• refinement

• primitive

• executability

cI

5

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

Definition (VERIFYTN)
Let P be a planning problem and tn be a task network.
Decide whether tn ∈ Sol(P).

What do we have to check?

• refinement

• primitive

• executability

cI

5

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

Definition (VERIFYTN)
Let P be a planning problem and tn be a task network.
Decide whether tn ∈ Sol(P).

What do we have to check?

• refinement

• primitive

• executability

cI

5

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

Definition (VERIFYTN)
Let P be a planning problem and tn be a task network.
Decide whether tn ∈ Sol(P).

What do we have to check?

• refinement

• primitive

• executability

cI

5

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

Definition (VERIFYTN)
Let P be a planning problem and tn be a task network.
Decide whether tn ∈ Sol(P).

What do we have to check?

• refinement

• primitive

• executability

cI

5

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

Definition (VERIFYTN)
Let P be a planning problem and tn be a task network.
Decide whether tn ∈ Sol(P).

What do we have to check?

• refinement

• primitive

• executability

cI

5

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

• Let’s have a look at a
Decomposition Tree
leading to a solution

• We can arrange its
vertices (i.e. primitive and
abstract tasks) in layers

• ... and assign each vertex
a row.

• Our SAT formula models
this assignment process

6

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

• Let’s have a look at a
Decomposition Tree
leading to a solution

• We can arrange its
vertices (i.e. primitive and
abstract tasks) in layers

• ... and assign each vertex
a row.

• Our SAT formula models
this assignment process

l0

l1

l2

l3

6

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

• Let’s have a look at a
Decomposition Tree
leading to a solution

• We can arrange its
vertices (i.e. primitive and
abstract tasks) in layers

• ... and assign each vertex
a row.

• Our SAT formula models
this assignment process

l0

l1

l2

l3

p1 p2 p3 p4 p5

6

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

• Let’s have a look at a
Decomposition Tree
leading to a solution

• We can arrange its
vertices (i.e. primitive and
abstract tasks) in layers

• ... and assign each vertex
a row.

• Our SAT formula models
this assignment process

l0

l1

l2

l3

p1 p2 p3 p4 p5

solution

6

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

• Let’s have a look at a
Decomposition Tree
leading to a solution

• We can arrange its
vertices (i.e. primitive and
abstract tasks) in layers

• ... and assign each vertex
a row.

• Our SAT formula models
this assignment process

l0

l1

l2

l3

p1 p2 p3 p4 p5

solution

6

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position

• Node Constraints

• at most one task

• Parent Constraints

• only one parent in previous layer
• no task if no parent

• Children Constraints for every method

• if abstract, exactly one method
• selected method must have subtasks
• subtasks must occur in the next layer
• subtasks are children of parent
• subtasks must respect the method’s

order
• subtasks must respect parent’s order

ln

7

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
• Node Constraints

• at most one task

• Parent Constraints

• only one parent in previous layer
• no task if no parent

• Children Constraints for every method

• if abstract, exactly one method
• selected method must have subtasks
• subtasks must occur in the next layer
• subtasks are children of parent
• subtasks must respect the method’s

order
• subtasks must respect parent’s order

ln

7

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
• Node Constraints

• at most one task

• Parent Constraints
• only one parent in previous layer

• no task if no parent

• Children Constraints for every method

• if abstract, exactly one method
• selected method must have subtasks
• subtasks must occur in the next layer
• subtasks are children of parent
• subtasks must respect the method’s

order
• subtasks must respect parent’s order

ln

ln−1

7

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
• Node Constraints

• at most one task

• Parent Constraints
• only one parent in previous layer
• no task if no parent

• Children Constraints for every method

• if abstract, exactly one method
• selected method must have subtasks
• subtasks must occur in the next layer
• subtasks are children of parent
• subtasks must respect the method’s

order
• subtasks must respect parent’s order

ln

ln−1

7

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
• Node Constraints

• at most one task

• Parent Constraints
• only one parent in previous layer
• no task if no parent

• Children Constraints for every method
• if abstract, exactly one method

• selected method must have subtasks
• subtasks must occur in the next layer
• subtasks are children of parent
• subtasks must respect the method’s

order
• subtasks must respect parent’s order

ln

ln−1

7

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
• Node Constraints

• at most one task

• Parent Constraints
• only one parent in previous layer
• no task if no parent

• Children Constraints for every method
• if abstract, exactly one method

• selected method must have subtasks
• subtasks must occur in the next layer
• subtasks are children of parent
• subtasks must respect the method’s

order
• subtasks must respect parent’s order

ln

ln−1

7

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
• Node Constraints

• at most one task

• Parent Constraints
• only one parent in previous layer
• no task if no parent

• Children Constraints for every method
• if abstract, exactly one method
• selected method must have subtasks

• subtasks must occur in the next layer
• subtasks are children of parent
• subtasks must respect the method’s

order
• subtasks must respect parent’s order

ln

ln−1

7

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
• Node Constraints

• at most one task

• Parent Constraints
• only one parent in previous layer
• no task if no parent

• Children Constraints for every method
• if abstract, exactly one method
• selected method must have subtasks

• subtasks must occur in the next layer
• subtasks are children of parent
• subtasks must respect the method’s

order
• subtasks must respect parent’s order

ln

ln−1

7

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
• Node Constraints

• at most one task

• Parent Constraints
• only one parent in previous layer
• no task if no parent

• Children Constraints for every method
• if abstract, exactly one method
• selected method must have subtasks
• subtasks must occur in the next layer

• subtasks are children of parent
• subtasks must respect the method’s

order
• subtasks must respect parent’s order

ln

ln−1

ln+1

7

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
• Node Constraints

• at most one task

• Parent Constraints
• only one parent in previous layer
• no task if no parent

• Children Constraints for every method
• if abstract, exactly one method
• selected method must have subtasks
• subtasks must occur in the next layer

• subtasks are children of parent
• subtasks must respect the method’s

order
• subtasks must respect parent’s order

ln

ln−1

ln+1

7

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
• Node Constraints

• at most one task

• Parent Constraints
• only one parent in previous layer
• no task if no parent

• Children Constraints for every method
• if abstract, exactly one method
• selected method must have subtasks
• subtasks must occur in the next layer

• subtasks are children of parent
• subtasks must respect the method’s

order
• subtasks must respect parent’s order

ln

ln−1

ln+1

7

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
• Node Constraints

• at most one task

• Parent Constraints
• only one parent in previous layer
• no task if no parent

• Children Constraints for every method
• if abstract, exactly one method
• selected method must have subtasks
• subtasks must occur in the next layer
• subtasks are children of parent

• subtasks must respect the method’s
order

• subtasks must respect parent’s order

ln

ln−1

ln+1

7

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
• Node Constraints

• at most one task

• Parent Constraints
• only one parent in previous layer
• no task if no parent

• Children Constraints for every method
• if abstract, exactly one method
• selected method must have subtasks
• subtasks must occur in the next layer
• subtasks are children of parent
• subtasks must respect the method’s

order

• subtasks must respect parent’s order

ln

ln−1

ln+1

7

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
• Node Constraints

• at most one task

• Parent Constraints
• only one parent in previous layer
• no task if no parent

• Children Constraints for every method
• if abstract, exactly one method
• selected method must have subtasks
• subtasks must occur in the next layer
• subtasks are children of parent
• subtasks must respect the method’s

order
• subtasks must respect parent’s order

ln

ln−1

ln+1

7

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

• The translation assumes a height parameter K

• To be correct, we need to determine K , s.t. every plan of length n has a
decomposition of height ≤ K or none at all

• I.e. we need to compute the maximum depth of a decomposition that can
lead to a plan of length n

• We have developed four methods to compute an upper bound for K

The first three are described in the paper, the fourth is new.

8

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

• The translation assumes a height parameter K

• To be correct, we need to determine K , s.t. every plan of length n has a
decomposition of height ≤ K or none at all

• I.e. we need to compute the maximum depth of a decomposition that can
lead to a plan of length n

• We have developed four methods to compute an upper bound for K

The first three are described in the paper, the fourth is new.

8

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

• The translation assumes a height parameter K

• To be correct, we need to determine K , s.t. every plan of length n has a
decomposition of height ≤ K or none at all

• I.e. we need to compute the maximum depth of a decomposition that can
lead to a plan of length n

• We have developed four methods to compute an upper bound for K

The first three are described in the paper, the fourth is new.

8

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

• The translation assumes a height parameter K

• To be correct, we need to determine K , s.t. every plan of length n has a
decomposition of height ≤ K or none at all

• I.e. we need to compute the maximum depth of a decomposition that can
lead to a plan of length n

• We have developed four methods to compute an upper bound for K

The first three are described in the paper, the fourth is new.

8

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

• The translation assumes a height parameter K

• To be correct, we need to determine K , s.t. every plan of length n has a
decomposition of height ≤ K or none at all

• I.e. we need to compute the maximum depth of a decomposition that can
lead to a plan of length n

• We have developed four methods to compute an upper bound for K
The first three are described in the paper, the fourth is new.

8

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 1:

• In Behnke et al. (ICAPS 2015) we showed that plan verification is NP
complete

• The proof provides a theoretical upper bound
Ktheo = 2|plan|(|C|+ 1)

domain
Ktheo

min max
UMTranslog 70 1258
Satellite 20 510
SmartPhone 132 324
Woodworking 12 48
Monroe 198 11032

⇐ take the minimum

9

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 1:

• In Behnke et al. (ICAPS 2015) we showed that plan verification is NP
complete

• The proof provides a theoretical upper bound
Ktheo = 2|plan|(|C|+ 1)

domain
Ktheo

min max
UMTranslog 70 1258
Satellite 20 510
SmartPhone 132 324
Woodworking 12 48
Monroe 198 11032

⇐ take the minimum

9

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 2:

• If every decomposition method would produce ≥ 2 tasks, then each
decomposition increases the size of the plan

• Methods where the task network contains only a single task are
called unit methods

• Unit methods can be removed via expansion in the model

• Thus Kunit =
|plan|−1
δ−1

domain
Ktheo

min max
UMTranslog 70 1258
Satellite 20 510
SmartPhone 132 324
Woodworking 12 48
Monroe 198 11032

⇐ take the minimum

9

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 2:

• If every decomposition method would produce ≥ 2 tasks, then each
decomposition increases the size of the plan

• Methods where the task network contains only a single task are
called unit methods

• Unit methods can be removed via expansion in the model

• Thus Kunit =
|plan|−1
δ−1

domain
Ktheo

min max
UMTranslog 70 1258
Satellite 20 510
SmartPhone 132 324
Woodworking 12 48
Monroe 198 11032

⇐ take the minimum

9

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 2:

• If every decomposition method would produce ≥ 2 tasks, then each
decomposition increases the size of the plan

• Methods where the task network contains only a single task are
called unit methods

• Unit methods can be removed via expansion in the model

• Thus Kunit =
|plan|−1
δ−1

domain
Ktheo

min max
UMTranslog 70 1258
Satellite 20 510
SmartPhone 132 324
Woodworking 12 48
Monroe 198 11032

⇐ take the minimum

9

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 2:

• If every decomposition method would produce ≥ 2 tasks, then each
decomposition increases the size of the plan

• Methods where the task network contains only a single task are
called unit methods

• Unit methods can be removed via expansion in the model

• Thus Kunit =
|plan|−1
δ−1

domain
Ktheo

min max
UMTranslog 70 1258
Satellite 20 510
SmartPhone 132 324
Woodworking 12 48
Monroe 198 11032

⇐ take the minimum

9

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 2:

• If every decomposition method would produce ≥ 2 tasks, then each
decomposition increases the size of the plan

• Methods where the task network contains only a single task are
called unit methods

• Unit methods can be removed via expansion in the model

• Thus Kunit =
|plan|−1
δ−1

domain
Ktheo Kunit

min max min max
UMTranslog 70 1258 5 37
Satellite 20 510 5 17
SmartPhone 132 324 11 15
Woodworking 12 48 2 4
Monroe 198 11032 ∞ ∞

⇐ take the minimum

9

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 3:

• The TSTG describes how tasks
can be decomposed into each
other

• If acyclic, the longest path in the
TSTG is an upper bound KTSTG

domain
Ktheo Kunit

min max min max
UMTranslog 70 1258 5 37
Satellite 20 510 5 17
SmartPhone 132 324 11 15
Woodworking 12 48 2 4
Monroe 198 11032 ∞ ∞

⇐ take the minimum

9

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 3:

• The TSTG describes how tasks
can be decomposed into each
other

• If acyclic, the longest path in the
TSTG is an upper bound KTSTG

domain
Ktheo Kunit

min max min max
UMTranslog 70 1258 5 37
Satellite 20 510 5 17
SmartPhone 132 324 11 15
Woodworking 12 48 2 4
Monroe 198 11032 ∞ ∞

⇐ take the minimum

9

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 3:

• The TSTG describes how tasks
can be decomposed into each
other

• If acyclic, the longest path in the
TSTG is an upper bound KTSTG

domain
Ktheo Kunit KTSTG

min max min max min max
UMTranslog 70 1258 5 37 3 6
Satellite 20 510 5 17 1 4
SmartPhone 132 324 11 15 3 ∞
Woodworking 12 48 2 4 1 2
Monroe 198 11032 ∞ ∞ 4 8

⇐ take the minimum

9

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 4:

• Not all unit methods are problematic

,
but only cycles of unit methods

• We can break these cycles by replacing them
with a new abstract task

• Use a dynamic programming scheme to
compute the Kt,n necessary to capture all
decompositions of a task t into n actions.

• KDP = KcI ,|plan|

domain
Ktheo Kunit KTSTG

min max min max min max
UMTranslog 70 1258 5 37 3 6
Satellite 20 510 5 17 1 4
SmartPhone 132 324 11 15 3 ∞
Woodworking 12 48 2 4 1 2
Monroe 198 11032 ∞ ∞ 4 8

⇐ take the minimum

9

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 4:

• Not all unit methods are problematic,
but only cycles of unit methods

• We can break these cycles by replacing them
with a new abstract task

• Use a dynamic programming scheme to
compute the Kt,n necessary to capture all
decompositions of a task t into n actions.

• KDP = KcI ,|plan|

domain
Ktheo Kunit KTSTG

min max min max min max
UMTranslog 70 1258 5 37 3 6
Satellite 20 510 5 17 1 4
SmartPhone 132 324 11 15 3 ∞
Woodworking 12 48 2 4 1 2
Monroe 198 11032 ∞ ∞ 4 8

⇐ take the minimum

9

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 4:

• Not all unit methods are problematic,
but only cycles of unit methods

• We can break these cycles by replacing them
with a new abstract task

• Use a dynamic programming scheme to
compute the Kt,n necessary to capture all
decompositions of a task t into n actions.

• KDP = KcI ,|plan|

domain
Ktheo Kunit KTSTG

min max min max min max
UMTranslog 70 1258 5 37 3 6
Satellite 20 510 5 17 1 4
SmartPhone 132 324 11 15 3 ∞
Woodworking 12 48 2 4 1 2
Monroe 198 11032 ∞ ∞ 4 8

⇐ take the minimum

9

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 4:

• Not all unit methods are problematic,
but only cycles of unit methods

• We can break these cycles by replacing them
with a new abstract task

• Use a dynamic programming scheme to
compute the Kt,n necessary to capture all
decompositions of a task t into n actions.

• KDP = KcI ,|plan|

domain
Ktheo Kunit KTSTG

min max min max min max
UMTranslog 70 1258 5 37 3 6
Satellite 20 510 5 17 1 4
SmartPhone 132 324 11 15 3 ∞
Woodworking 12 48 2 4 1 2
Monroe 198 11032 ∞ ∞ 4 8

⇐ take the minimum

9

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 4:

• Not all unit methods are problematic,
but only cycles of unit methods

• We can break these cycles by replacing them
with a new abstract task

• Use a dynamic programming scheme to
compute the Kt,n necessary to capture all
decompositions of a task t into n actions.

• KDP = KcI ,|plan|

domain
Ktheo Kunit KTSTG

min max min max min max
UMTranslog 70 1258 5 37 3 6
Satellite 20 510 5 17 1 4
SmartPhone 132 324 11 15 3 ∞
Woodworking 12 48 2 4 1 2
Monroe 198 11032 ∞ ∞ 4 8

⇐ take the minimum

9

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 4:

• Not all unit methods are problematic,
but only cycles of unit methods

• We can break these cycles by replacing them
with a new abstract task

• Use a dynamic programming scheme to
compute the Kt,n necessary to capture all
decompositions of a task t into n actions.

• KDP = KcI ,|plan|

domain
Ktheo Kunit KTSTG KDP

min max min max min max min max
UMTranslog 70 1258 5 37 3 6 3 6
Satellite 20 510 5 17 1 4 1 4
SmartPhone 132 324 11 15 3 ∞ 2 5
Woodworking 12 48 2 4 1 2 1 2
Monroe 198 11032 ∞ ∞ 4 8 4 8

⇐ take the minimum

9

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 4:

• Not all unit methods are problematic,
but only cycles of unit methods

• We can break these cycles by replacing them
with a new abstract task

• Use a dynamic programming scheme to
compute the Kt,n necessary to capture all
decompositions of a task t into n actions.

• KDP = KcI ,|plan|

domain
Ktheo Kunit KTSTG KDP

min max min max min max min max
UMTranslog 70 1258 5 37 3 6 3 6
Satellite 20 510 5 17 1 4 1 4
SmartPhone 132 324 11 15 3 ∞ 2 5
Woodworking 12 48 2 4 1 2 1 2
Monroe 198 11032 ∞ ∞ 4 8 4 8

⇐ take the minimum

9

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Evaluation

• To ascertain the performance of our SAT-translation, we have conducted
an empirical study on five common HTN benchmarking domains

domain #instances
|L| |C| |A| |M|

min max min max min max min max
UMTranslog 21 19 88 4 16 7 22 4 17
Satellite 22 8 70 1 17 7 78 11 541
SmartPhone 3 44 47 5 8 16 18 14 99
Woodworking 5 32 59 1 4 6 24 4 76
Monroe 50 1220 3152 32 265 436 6017 408 5476

domain
Ktheo Kunit KTSTG KDP

min max min max min max min max
UMTranslog 70 1258 5 37 3 6 3 6
Satellite 20 510 5 17 1 4 1 4
SmartPhone 132 324 11 15 3 ∞ 2 5
Woodworking 12 48 2 4 1 2 1 2
Monroe 198 11032 ∞ ∞ 4 8 4 8

• For 88 of 101 instances the computed height bound was exact.

10

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Evaluation

• To ascertain the performance of our SAT-translation, we have conducted
an empirical study on five common HTN benchmarking domains

domain #instances
|L| |C| |A| |M|

min max min max min max min max
UMTranslog 21 19 88 4 16 7 22 4 17
Satellite 22 8 70 1 17 7 78 11 541
SmartPhone 3 44 47 5 8 16 18 14 99
Woodworking 5 32 59 1 4 6 24 4 76
Monroe 50 1220 3152 32 265 436 6017 408 5476

domain
Ktheo Kunit KTSTG KDP

min max min max min max min max
UMTranslog 70 1258 5 37 3 6 3 6
Satellite 20 510 5 17 1 4 1 4
SmartPhone 132 324 11 15 3 ∞ 2 5
Woodworking 12 48 2 4 1 2 1 2
Monroe 198 11032 ∞ ∞ 4 8 4 8

• For 88 of 101 instances the computed height bound was exact.

10

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Evaluation

5 10 15 20 25 30 35

0
20

0
40

0
60

0
80

0
10

00
12

00

plan length

S
AT

 s
ol

vi
ng

 ti
m

e
in

 s
ec

●● ●● ●●● ● ●●
●

● ●● ●●● ●● ●●● ●●●● ●●● ● ●● ●● ● ●● ● ●● ● ●● ● ●● ●● ●●
● ●

●
●●

●

●● ●●
●

●

●

●● ●

●

●
●

●●
●

● ●
●● ●

● ●●●
●

●●

●

●●
●●

●
●

●

● ●

●

●●

●

Figure: Runtime on actual
solutions.

5 10 15 20 25 30 35

0
20

0
40

0
60

0
80

0
10

00
12

00

plan length

S
AT

 s
ol

vi
ng

 ti
m

e
in

 s
ec

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●

●●●●● ●●●●●
●●●●●

●●●●●●●●●●
●●●●●

●●●●●●●●●● ●●●●●●●●●●
●●
●
●●

●●●●●

●●●●●

●●●●●●●●●● ●●●●●

●●●●●

●●●●●
●●●●●

●●●●●●●●●●

●
●●
●
●●●●●● ●●●●●

●●●●●●●●●● ●●●●●
●●●●● ●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●

●

●●●●●

●●●●●
●●●●● ●●●

●●●●
●●●●
●●●●

●●●●●

●●●●●

●●●●● ●●●●●

●●●●●●

●●●●●●●●●●

●
●
●

●
●

Figure: Runtime on
non-solutions, generated
by random-walking.

5 10 15 20 25 30 35

0
20

0
40

0
60

0
80

0
10

00
12

00

plan length

S
AT

 s
ol

vi
ng

 ti
m

e
in

 s
ec

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●

●
●
●
●●

●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●● ●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●●●●● ●●●●●

●
●●●●

●●●●●
●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●●

●●
●●●

●●●●●

●●
●●●

●●●●●●●●●●
●●●●●

●

●
●
●

●

●●●●●
●●●●●

●●●●●●●●●●
●●●●
●

●●●●●

●
●●

●

●

●●●●●
●●●●●●●●●● ●●●●●

●●●●● ●●●
●●●●●●●●●●●●

●●●●●
●●●●●●●●●●

●●●●●

●●●●●●●●●● ●●●●●●●●●●

●
●●●

●

●●●●●

●

●
●
●

●

●
●
●

●

●

●●●●● ●●●●●

●

●
●●

●

●●●●●●●●●●

●

●

●

●

●

Figure: Runtime on
non-solutions, generated
by replacing a single action
in a solution.

11

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Conclusion

• We provided the first working plan verifier for HTN planning

• ... and showed that plan verification possible in practice

• We showed that concise height bounds can be derived automatically from
the domain

• Promising directions of future research

• Reducing the size of the encoding (still O(n4))
• Creating a specialised formula for totally-ordered problems
• Using the encoding as a SAT-based HTN planner

12

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Conclusion

• We provided the first working plan verifier for HTN planning

• ... and showed that plan verification possible in practice

• We showed that concise height bounds can be derived automatically from
the domain

• Promising directions of future research

• Reducing the size of the encoding (still O(n4))
• Creating a specialised formula for totally-ordered problems
• Using the encoding as a SAT-based HTN planner

12

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Conclusion

• We provided the first working plan verifier for HTN planning

• ... and showed that plan verification possible in practice

• We showed that concise height bounds can be derived automatically from
the domain

• Promising directions of future research

• Reducing the size of the encoding (still O(n4))
• Creating a specialised formula for totally-ordered problems
• Using the encoding as a SAT-based HTN planner

12

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Conclusion

• We provided the first working plan verifier for HTN planning

• ... and showed that plan verification possible in practice

• We showed that concise height bounds can be derived automatically from
the domain

• Promising directions of future research
• Reducing the size of the encoding (still O(n4))

• Creating a specialised formula for totally-ordered problems
• Using the encoding as a SAT-based HTN planner

12

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Conclusion

• We provided the first working plan verifier for HTN planning

• ... and showed that plan verification possible in practice

• We showed that concise height bounds can be derived automatically from
the domain

• Promising directions of future research
• Reducing the size of the encoding (still O(n4))
• Creating a specialised formula for totally-ordered problems

• Using the encoding as a SAT-based HTN planner

12

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Conclusion

• We provided the first working plan verifier for HTN planning

• ... and showed that plan verification possible in practice

• We showed that concise height bounds can be derived automatically from
the domain

• Promising directions of future research
• Reducing the size of the encoding (still O(n4))
• Creating a specialised formula for totally-ordered problems
• Using the encoding as a SAT-based HTN planner

12

