This is a solution! (... but is it though?)

Verifying solutions of hierarchical planning problems

Gregor Behnke, Daniel Héller, Susanne Biundo

Ulm University, Institute of Artificial Intelligence

June 21, 2016

ICAPS 2017 — Pittsburgh

io Deutsche

@ U UUIM Companion oo s
ompanion Technology ot

This is a solution! (... but is it though?) Verifying solutions ierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

init goal

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

IR

init goal

* O(n) for totally ordered classical plans

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

IR

init goal

* O(n) for totally ordered classical plans
e VAL provides for plan verification in classical domains

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

_ Q¢ —initial task

refinement /

init goal

* O(n) for totally ordered classical plans
e VAL provides for plan verification in classical domains

o NP-complete for HTN (Hierarchical Task Network) planning
[Behnke et al. 2015]

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

_ Q¢ —initial task

refinement 4

init goal

O(n) for totally ordered classical plans

VAL provides for plan verification in classical domains

NIP-complete for HTN (Hierarchical Task Network) planning
[Behnke et al. 2015]

So far, no HTN plan verifier exists

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification can be used for

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification can be used for
¢ validating HTN planners

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification can be used for
¢ validating HTN planners
e HTN planning competitions (. .. future work)

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification can be used for
¢ validating HTN planners
e HTN planning competitions (. .. future work)
o post-optimisation of solutions

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification can be used for

validating HTN planners

HTN planning competitions (. .. future work)

post-optimisation of solutions

plan repair

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems

Why plan verification?

Plan Verification can be used for
¢ validating HTN planners
e HTN planning competitions (. .. future work)
o post-optimisation of solutions
e plan repair

What have we done?

Gregor Behnke et al., UIm University

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification can be used for

validating HTN planners

HTN planning competitions (. .. future work)

post-optimisation of solutions

plan repair
What have we done?

@ Provided a translation of Plan Verification problem into SAT

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification can be used for

validating HTN planners

HTN planning competitions (. .. future work)

post-optimisation of solutions

plan repair
What have we done?

@ Provided a translation of Plan Verification problem into SAT
@ Provided succinct decomposition depth bounds for plans

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Why plan verification?

Plan Verification can be used for
e validating HTN planners
e HTN planning competitions (. .. future work)
o post-optimisation of solutions
e plan repair

What have we done?

@ Provided a translation of Plan Verification problem into SAT
© Provided succinct decomposition depth bounds for plans
© Showed that verifying plans using SAT is empirically feasible

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

P =

(P,C,ci,M,L,s)

P a set of primitive tasks

C a set of compound tasks
¢/ € C the initial task

M C C x 2™ the methods
L a set of variables

s; C L the initial state

A solution tn € Sol('P) must

be a refinement of the initial task
only contain primitive tasks

have a linearisation,
executable from the initial state

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

P = (P’ Ca Cr, M7 La SI)
P a set of primitive tasks

primitive compound

o o C a set of compound tasks
. o0 ¢/ € C the initial task
M C C x 2™ the methods
L a set of variables

e s; C L the initial state

A solution tn € Sol('P) must
¢ be a refinement of the initial task
e only contain primitive tasks

¢ have a linearisation,
executable from the initial state

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

P = (P’ Ca Cr, M7 La SI)
P a set of primitive tasks

o
[]

C a set of compound tasks

¢ € C the initial task
M C C x 2™ the methods
L a set of variables

e s; C L the initial state

A solution tn € Sol('P) must
¢ be a refinement of the initial task
e only contain primitive tasks

¢ have a linearisation,
executable from the initial state

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems

Gregor Behnke et al., UIm University

Hierarchical Task Network (HTN) Planning

P = (P’ Ca Cr, M7 La SI)
P a set of primitive tasks

\

N N

B |
[)

C a set of compound tasks
¢/ € C the initial task

M C C x 2™ the methods
L a set of variables

R
[] [[]

e s; C L the initial state

A solution tn € Sol('P) must
¢ be a refinement of the initial task
e only contain primitive tasks

¢ have a linearisation,
executable from the initial state

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems

Gregor Behnke et al., UIm University

Hierarchical Task Network (HTN) Planning

P = (P’ Ca Cr, M7 La SI)
P a set of primitive tasks

N N

\ N

B |
[]

C a set of compound tasks
¢/ € C the initial task

M C C x 2™ the methods
L a set of variables

R/
[] [[]

e s; C L the initial state

A solution tn € Sol('P) must
¢ be a refinement of the initial task
e only contain primitive tasks

¢ have a linearisation,
executable from the initial state

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

P = (P’ Ca Cr, M7 La SI)
P a set of primitive tasks

o
[]

C a set of compound tasks

\
[

¢ € C the initial task
M C C x 2™ the methods
L a set of variables

e s; C L the initial state

A solution tn € Sol('P) must
¢ be a refinement of the initial task
e only contain primitive tasks

¢ have a linearisation,
executable from the initial state

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

P = (P’ Ca Cr, M7 La SI)
P a set of primitive tasks

o
[]

C a set of compound tasks

¢ € C the initial task
M C C x 2™ the methods
L a set of variables

e s; C L the initial state

A solution tn € Sol('P) must
¢ be a refinement of the initial task
e only contain primitive tasks

¢ have a linearisation,
executable from the initial state

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

P = (P’ Ca Cr, M7 La SI)
P a set of primitive tasks

o
[]

C a set of compound tasks

¢ € C the initial task
M C C x 2™ the methods
L a set of variables

e s; C L the initial state

A solution tn € Sol('P) must
¢ be a refinement of the initial task
e only contain primitive tasks

¢ have a linearisation,
executable from the initial state

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

P = (P’ Ca Cr, M7 La SI)
P a set of primitive tasks

o
[]

C a set of compound tasks

\
[

¢ € C the initial task
M C C x 2™ the methods
L a set of variables

e s; C L the initial state

A solution tn € Sol('P) must
¢ be a refinement of the initial task
e only contain primitive tasks

¢ have a linearisation,
executable from the initial state

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

P = (P’ Ca Cr, M7 La SI)
P a set of primitive tasks

o
[]

C a set of compound tasks

¢ € C the initial task
M C C x 2™ the methods
L a set of variables

‘_>‘<»;L_‘¢:>% ¢ s C L the initial state

A solution tn € Sol('P) must
e be a refinement of the initial task

Y
[]

e only contain primitive tasks

¢ have a linearisation,
executable from the initial state

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

P = (P’ Ca Cr, M7 La SI)
P a set of primitive tasks

o
[]

C a set of compound tasks

¢ € C the initial task
M C C x 2™ the methods
L a set of variables

‘_>‘<»;L_‘¢:>% ¢ s C L the initial state

A solution tn € Sol('P) must
e be a refinement of the initial task

Y
[]

e only contain primitive tasks

¢ have a linearisation,
executable from the initial state

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Hierarchical Task Network (HTN) Planning

P = (P’ Ca Cr, M7 La SI)
P a set of primitive tasks

L2}
[]

C a set of compound tasks

\
[

¢ € C the initial task
M C C x 2™ the methods
L a set of variables

w o s C Lthe initial state

A solution tn € Sol(P) must
e be a refinement of the initial task

-
°

e only contain primitive tasks

¢ have a linearisation,
executable from the initial state

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

Let P be a planning problem and tn be a task network.
Decide whether tn € Sol(P).

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

Let P be a planning problem and tn be a task network.
Decide whether tn € Sol(P).

What do we have to check?

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

Let P be a planning problem and tn be a task network.
Decide whether tn € Sol(P).

What do we have to check?

LR
e refinement & \
/// : \\\ - S~ \\\
;! AN \
A N N
// : \\ N \ \\
P ! AN

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

Let P be a planning problem and tn be a task network.
Decide whether tn € Sol(P).

What do we have to check?

LR
* refinement @
o primitive \\h .
/ ! \\ N

Gregor Behnke et al., UIm University

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems

Plan Verification

Definition (VERIFYTN)
Let P be a planning problem and tn be a task network.
Decide whether tn € Sol(P).

What do we have to check?

o refinement o
e primitive

* executability N
—

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Plan Verification

Let P be a planning problem and tn be a task network.
Decide whether tn € Sol(P).

What do we have to check?

_R@
o refinement e
e primitive S \\n)
o executability AN
/ }

Gregor Behnke et al., Ulm University

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems

Plan Verification

Let P be a planning problem and tn be a task network.

Decide whether tn € Sol(P).

What do we have to check?
* refinement w |

o primitive SN TN

" ST
&—»6—;‘—)&—;&—#.—%’ ; i *\‘

e executability

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

o Let's have a look at a
Decomposition Tree
leading to a solution

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

e Let's have alook at a
Decomposition Tree
leading to a solution

» We can arrange its

vertices (i.e. primitive and
abstract tasks) in layers

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

e Let's have alook at a
Decomposition Tree
leading to a solution

» We can arrange its
vertices (i.e. primitive and
abstract tasks) in layers

e ... and assign each vertex
a row.

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

e Let's have alook at a
Decomposition Tree
leading to a solution

e We can arrange its
vertices (i.e. primitive and
abstract tasks) in layers

e ... and assign each vertex
arow. e RS IR N U TN

solution

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems

Translation into SAT

o Let’s have a look at a
Decomposition Tree
leading to a solution

e We can arrange its
vertices (i.e. primitive and
abstract tasks) in layers

e ... and assign each vertex
a row.

e QOur SAT formula models
this assignment process

Gregor Behnke et al., UIm University

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
¢ Node Constraints
e at most one task

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems

Translation into SAT

Clauses describe local restrictions at position
¢ Node Constraints
e at most one task
o Parent Constraints
e only one parent in previous layer

Gregor Behnke et al., Ulm University

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
* Node Constraints
e at most one task
o Parent Constraints 1 I

e only one parent in previous layer h O o
e notaskifnoparent

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
¢ Node Constraints
e at most one task

o Parent Constraints 1
e only one parent in previous layer h o o 6 0 o o
e notaskif noparent e % »»»»»»»»»»»»»»»»»»»»»»»»

o Children Constraints for every method
o f abstract, exactly one method

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
¢ Node Constraints
e at most one task

o Parent Constraints 1
e only one parent in previous layer h o o 6 0 o o
e no task if no parent o ST N
B i m

o Children Constraints for every method
o f abstract, exactly one method

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
¢ Node Constraints
e at most one task

o Parent Constraints =1
e only one parent in previous layer h o o o o o o
e notaskifnoparent oo B A N
) ° = R m
o Children Constraints for every method 2
g &b

o f abstract, exactly one method
e selected method must have subtasks

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
¢ Node Constraints
e at most one task

o Parent Constraints h—1
e only one parent in previous layer n o o o o o o
e no task if no parent “;{;/’ """ P \\“l """""""
o Children Constraints for every method | A PN

o f abstract, exactly one method
e selected method must have subtasks

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
* Node Constraints
e at most one task

o Parent Constraints In—1
e only one parent in previous layer ,o oio “““ 5 ‘ '('3 """ o
e notaskifnoparent oo ST Y
. . B A R

o Children Constraints for every method | A
e if abstract, exactly one method 6/%\5%;2:? ;6 """"""
e selected method must have subtasks b F 5 B Mo TS0 T 0

e subtasks must occur in the next layer

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
* Node Constraints
e at most one task

e Parent Constraints Ih—1
e only one parent in previous layer n o o
e no task if no parent !k,/ ’i “““““““
o Children Constraints for every method | 4
. 5 AHLHI
o f abstract, exactly one method 7 L EAEEE s
o selected method must have subtasks i T X

e subtasks must occur in the next layer

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
* Node Constraints
e at most one task

e Parent Constraints In—1
e only one parent in previous layer ,o oio “““ 5 ‘ '('3 """ o
e notaskifnoparent oo ST Y
. . B A R

o Children Constraints for every method | A
e if abstract, exactly one method ?’j‘ j}%% % éﬁwl« """"
o selected method must have subtasks i1 067 TR TRESEESE S50

e subtasks must occur in the next layer

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Translation into SAT

Clauses describe local restrictions at position
* Node Constraints
e at most one task
e Parent Constraints
e only one parent in previous layer
e no task if no parent
o Children Constraints for every method

if abstract, exactly one method
selected method must have subtasks
subtasks must occur in the next layer
subtasks are children of parent

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems

Translation into SAT

Clauses describe local restrictions at position
¢ Node Constraints
e at most one task
e Parent Constraints
e only one parent in previous layer
e no task if no parent
e Children Constraints for every method

if abstract, exactly one method
selected method must have subtasks
subtasks must occur in the next layer
subtasks are children of parent
subtasks must respect the method’s
order

Gregor Behnke et al., UIm University

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems

Translation into SAT

Clauses describe local restrictions at position

¢ Node Constraints
e at most one task

e Parent Constraints

e only one parent in previous layer

e no task if no parent
e Children Constraints for every method
if abstract, exactly one method
selected method must have subtasks
subtasks must occur in the next layer
subtasks are children of parent
subtasks must respect the method’s
order
e subtasks must respect parent’s order

Gregor Behnke et al., UIm University

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

o The translation assumes a height parameter K

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

o The translation assumes a height parameter K

¢ To be correct, we need to determine K, s.t. every plan of length n has a
decomposition of height < K or none at all

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems

Gregor Behnke et al., UIm University

Bounding Decomposition Height

o The translation assumes a height parameter K

¢ To be correct, we need to determine K, s.t. every plan of length n has a
decomposition of height < K or none at all

¢ |.e. we need to compute the maximum depth of a decomposition that can
lead to a plan of length n

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

The translation assumes a height parameter K

To be correct, we need to determine K, s.t. every plan of length nhas a
decomposition of height < K or none at all

l.e. we need to compute the maximum depth of a decomposition that can
lead to a plan of length n

We have developed four methods to compute an upper bound for K

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

The translation assumes a height parameter K

To be correct, we need to determine K, s.t. every plan of length nhas a
decomposition of height < K or none at all

l.e. we need to compute the maximum depth of a decomposition that can
lead to a plan of length n

We have developed four methods to compute an upper bound for K
The first three are described in the paper, the fourth is new.

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 1:

¢ In Behnke et al. (ICAPS 2015) we showed that plan verification is NIP
complete

o The proof provides a theoretical upper bound
Kineo = 2|plan|(|C| + 1)

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 1:

¢ In Behnke et al. (ICAPS 2015) we showed that plan verification is NIP
complete

e The proof provides a theoretical upper bound
Kineo = 2|plan|(|C| + 1)

domain Kineo
min max

UMTranslog ® 70 1258

Satellite ® 20 510

SmartPhone ® 132 324
Woodworking ® 12 48
Monroe ® 198 11032

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 2:

o If every decomposition method would produce > 2 tasks, then each
decomposition increases the size of the plan

domain Kineo
min max

UMTranslog ® 70 1258

Satellite ® 20 510

SmartPhone ® 132 324
Woodworking ® 12 48
Monroe ® 198 11032

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 2:

o If every decomposition method would produce > 2 tasks, then each
decomposition increases the size of the plan

* Methods where the task network contains only a single task are
called unit methods

domain Kineo
min max

UMTranslog ® 70 1258

Satellite ® 20 510

SmartPhone ® 132 324
Woodworking ® 12 48
Monroe ® 198 11032

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 2:

o If every decomposition method would produce > 2 tasks, then each
decomposition increases the size of the plan

* Methods where the task network contains only a single task are
called unit methods

¢ Unit methods can be removed via expansion in the model

domain Kineo
min max

UMTranslog ® 70 1258

Satellite ® 20 510

SmartPhone ® 132 324
Woodworking ® 12 48
Monroe ® 198 11032

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 2:

o If every decomposition method would produce > 2 tasks, then each
decomposition increases the size of the plan

* Methods where the task network contains only a single task are
called unit methods

¢ Unit methods can be removed via expansion in the model

lan|—1
e Thus Kynit = %

domain Kineo
min max

UMTranslog ® 70 1258

Satellite ® 20 510

SmartPhone ® 132 324
Woodworking ® 12 48
Monroe ® 198 11032

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems

Bounding Decomposition Height

Method 2:

Gregor Behnke et al., UIm University

o If every decomposition method would produce > 2 tasks, then each

decomposition increases the size of the plan

* Methods where the task network contains only a single task are
called unit methods

¢ Unit methods can be removed via expansion in the model

e Thus Kynit = %
domain _ Kiheo i init
min max min max

UMTranslog ® 70 1258 5 37
Satellite ® 20 510 5 17
SmartPhone ® 132 324 11 15
Woodworking ® 12 48 2 4
Monroe ® 198 11032 e} 0

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 3:

e The TSTG describes how tasks
can be decomposed into each

other
domain _ Kiheo i Kunit
min max min max

UMTranslog ® 70 1258 5 37
Satellite ® 20 510 5 17
SmartPhone ® 132 324 11 15
Woodworking ® 12 48 2 4
Monroe ® 198 11032 e} 0

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 3:

e The TSTG describes how tasks
can be decomposed into each
other

o |f acyclic, the longest path in the
TSTG is an upper bound Krsrg

domain _ Kiheo i Kunit
min max min max
UMTranslog ® 70 1258 5 37
Satellite ® 20 510 5 17
SmartPhone ® 132 324 11 15
Woodworking ® 12 48 2 4
Monroe ® 198 11032 e} 0

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 3:

e The TSTG describes how tasks
can be decomposed into each
other

o |f acyclic, the longest path in the
TSTG is an upper bound Krsrg

domain __Kineo _ Kunit Krsta
min max min max min max
UMTranslog ® 70 1258 5 37 3 6
Satellite ® 20 510 5 17 1 4
SmartPhone ® 132 324 11 15 3 e}
Woodworking ® 12 48 2 4 1 2
Monroe ® 198 11032 e} 0 4 8

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 4:

¢ Not all unit methods are problematic

domain __Kineo _ Kunit _Krsta
min max min max min max
UMTranslog ® 70 1258 5 37 3 6
Satellite ® 20 510 5 17 1 4
SmartPhone ® 132 324 11 15 3 oo
Woodworking ® 12 48 2 4 1 2
Monroe ® 198 11032 e o] 4 8

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 4:

¢ Not all unit methods are problematic,
but only cycles of unit methods

domain __Kineo _ Kunit Krsta
min max min max min max
UMTranslog ® 70 1258 5 37 3 6
Satellite ® 20 510 5 17 1 4
SmartPhone ® 132 324 11 15 3 oo
Woodworking ® 12 48 2 4 1 2
Monroe ® 198 11032 e o] 4 8

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Bounding Decomposition Height

Method 4:

¢ Not all unit methods are problematic,
but only cycles of unit methods

e We can break these cycles by replacing them \ /

with a new abstract task
e}

domain __Kineo _ Kunit Krsta
min max min max min max
UMTranslog ® 70 1258 5 37 3 6
Satellite ® 20 510 5 17 1 4
SmartPhone ® 132 324 11 15 3 oo
Woodworking ® 12 48 2 4 1 2
Monroe ® 198 11032 e o] 4 8

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems

Bounding Decomposition Height

Method 4:

¢ Not all unit methods are problematic,

but only cycles of unit methods

e We can break these cycles by replacing them

with a new abstract task

e Use a dynamic programming scheme to
compute the K; , necessary to capture all
decompositions of a task t into n actions.

domain __Kineo _ Kunit _Krsta
min max min max min max
UMTranslog ® 70 1258 5 37 3 6
Satellite ® 20 510 5 17 1 4
SmartPhone ® 132 324 11 15 3 oo
Woodworking ® 12 48 2 4 1 2
Monroe ® 198 11032 e o] 4 8

Gregor Behnke et al., UIm University

N/
VAN

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems

Bounding Decomposition Height

Method 4:

¢ Not all unit methods are problematic,

but only cycles of unit methods

e We can break these cycles by replacing them

with a new abstract task

e Use a dynamic programming scheme to
compute the K; , necessary to capture all
decompositions of a task t into n actions.

° KDP = Kc,,\plan|

domain Kineo _ Kunit _Krsta
min max min max min max
UMTranslog ® 70 1258 5 37 3 6
Satellite ® 20 510 5 17 1 4
SmartPhone ® 132 324 11 15 3 oo
Woodworking ® 12 48 2 4 1 2
Monroe ® 198 11032 e o] 4 8

Gregor Behnke et al., UIm University

N/
VAN

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems

Bounding Decomposition Height

Method 4:

¢ Not all unit methods are problematic,

but only cycles of unit methods

e We can break these cycles by replacing them
with a new abstract task

e Use a dynamic programming scheme to

compute the K; , necessary to capture all

decompositions of a task t into n actions.

° KDP = Kc,,\plan|

domain Kineo _ Kunit _Krsta _Kop

min max min max min max min max
UMTranslog ® 70 1258 5 37 3 6 3 6
Satellite ® 20 510 5 17 1 4 1 4
SmartPhone ® 132 324 1 15 3 e} 2 5
Woodworking ® 12 48 2 4 1 2 1 2
Monroe ® 198 11032 00 o] 4 8 4 8

Gregor Behnke et al., UIm University

N/
VAN

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems

Bounding Decomposition Height

Method 4:

¢ Not all unit methods are problematic,

but only cycles of unit methods

e We can break these cycles by replacing them
with a new abstract task

e Use a dynamic programming scheme to

compute the K; , necessary to capture all

decompositions of a task t into n actions.

° KDP = Kc,,\plan|

domain Kineo _ Kunit _Krsta _Kop

min max min max min max min max
UMTranslog ® 70 1258 5 37 3 6 3 6
Satellite ® 20 510 5 17 1 4 1 4
SmartPhone ® 132 324 1 15 3 e} 2 5
Woodworking ® 12 48 2 4 1 2 1 2
Monroe ® 198 11032 00 o] 4 8 4 8

Gregor Behnke et al., UIm University

N/
VAN

< take the minimum

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems

Evaluation

Gregor Behnke et al., UIm University

o To ascertain the performance of our SAT-translation, we have conducted
an empirical study on five common HTN benchmarking domains

i ; L] 1Al [M|

domain #instances - - - -

min max min max min max min max
UMTranslog ® 21 19 88 4 16 7 22 4 17
Satellite ® 22 8 70 1 17 7 78 11 541
SmartPhone ® 3 44 47 5 8 16 18 14 99
Woodworking ® 5 32 59 1 4 6 24 4 76
Monroe ® 50 1220 3152 32 265 436 6017 408 5476

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems

Evaluation

Gregor Behnke et al.

Ulm University

o To ascertain the performance of our SAT-translation, we have conducted
an empirical study on five common HTN benchmarking domains

domain #instances - IL] - el a Al - M|

min max min max min max min max
UMTranslog ® 21 19 88 4 16 7 22 4 17
Satellite ® 22 8 70 1 17 7 78 11 541
SmartPhone ® 3 44 47 5 8 16 18 14 99
Woodworking ® 5 32 59 1 4 6 24 4 76
Monroe ® 50 1220 3152 32 265 436 6017 408 5476
domain __Kineo _Kunit _Krsta _Kop

min max min max mi max mi max

UMTranslog ® 70 1258 5 37 3 6 3 6
Satellite ® 20 510 5 17 1 4 1 4
SmartPhone ® 132 324 11 15 3 e} 2 5
Woodworking ® 12 48 2 4 1 2 1 2
Monroe ® 198 11032 o0 [es) 4 8 4 8

o For 88 of 101 instances the computed height bound was exact.

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Evaluation
s 84 f H
%’ 2
R
g g i
- YIS odviie cannandidy ! LR BRI it
Figure: Runtime on actual Figure: Runtime on Figure: Runtime on
solutions. non-solutions, generated nhon-solutions, generated
by random-walking. by replacing a single action

in a solution.

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Conclusion

e We provided the first working plan verifier for HTN planning

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Conclusion

e We provided the first working plan verifier for HTN planning
e ... and showed that plan verification possible in practice

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Conclusion

e We provided the first working plan verifier for HTN planning
e ... and showed that plan verification possible in practice

e We showed that concise height bounds can be derived automatically from
the domain

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Conclusion

We provided the first working plan verifier for HTN planning

... and showed that plan verification possible in practice

We showed that concise height bounds can be derived automatically from
the domain

Promising directions of future research
¢ Reducing the size of the encoding (still O(n*))

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Conclusion

We provided the first working plan verifier for HTN planning

... and showed that plan verification possible in practice

We showed that concise height bounds can be derived automatically from
the domain

Promising directions of future research

¢ Reducing the size of the encoding (still O(n*))
e Creating a specialised formula for totally-ordered problems

This is a solution! (... but is it though?) Verifying solutions of hierarchical planning problems Gregor Behnke et al., Ulm University

Conclusion

We provided the first working plan verifier for HTN planning

... and showed that plan verification possible in practice

We showed that concise height bounds can be derived automatically from
the domain

Promising directions of future research
¢ Reducing the size of the encoding (still O(n*))
e Creating a specialised formula for totally-ordered problems
e Using the encoding as a SAT-based HTN planner

