
An Admissible HTN Planning Heuristic
Pascal Bercher, Gregor Behnke, Daniel Höller, Susanne Biundo

Institute of Artificial Intelligence, Ulm University, Germany
firstName.lastName@uni-ulm.de

Our formalization bases upon hybrid planning, a hierarchical plan-
ning formalism that fuses hierarchical task network (HTN) planning
with partial order causal link (POCL) planning.

Our main contributions are:

• Exploitation of the Task-Decomposition Graph (TDG) for pruning
and heuristics. We introduce:

I A cost-aware admissible heuristic
I A modification-aware heuristic (which is admissible in the num-

ber of required modifications)

• TDG recomputation:

I So far, all previous TDG-based techniques and heuristics were
preprocessing heuristics.

I We show that rebuilding the TDG can improve heuristic esti-
mates and very often prunes the search space.

Main Contributions

A plan P = (PS,≺,CL,VC) is a partially ordered sequence of tasks:

• PS is a finite and possibly empty set of plan steps. Each plan step
l : t is a task t with a unique label l.

• ≺ ⊆ PS×PS is a strict partial order on PS.

•CL ⊆ PS×V ×PS, where V indicates the set of all positive and
negative state variables, is a set of causal links between the plan
steps. A causal link l : t→ϕ l′ : t ′ denotes that the precondition ϕ of
the plan step l′ : t ′ is supported by the plan step l : t.

• The set VC is a set of variable constraints.

Definition (Plan)

A planning domain is a tuple D = (Ta,Tp,M), where:

• Ta, Tp are finite sets of abstract and primitive tasks, respectively.
Each (primitive or abstract) task is a triple (t(τ̄),pre(τ̄),eff (τ̄)) con-
sisting of a parametrized name, and the task’s preconditions and
effects.

•M is a finite set of (decomposition) methods. A method m =
(t(τ̄),P) maps an abstract task t(τ̄) ∈ Ta to a plan P.

A planning problem is a tuple P = (D ,si,Pi,g), where:

• D is the planning domain.

• si and g are the initial state and the goal description, respectively.

• Pi is the initial plan. As usual in POCL planning, it contains two
special actions that encode si and g, respectively.

Definition (Planning Domain and Problem)

A plan P is a solution if and only if:

• P is a refinement Pi, i.e., P can be obtained from Pi via

I Decomposition:
given a plan P′ = (PS,≺,CL,VC), use method (t(τ̄),P′′) ∈ M to
replace l : t(τ̄ ′) ∈ PS by P′′. Causal links and orderings are in-
herited.

I Insertion of ordering constraints.
I Insertion of causal links. Task insertion is prohibited.

• P is a solution in the standard POCL sense, i.e.,

I it is primitive and ground,
I there are no open preconditions, and
I there are no causal threats

Definition (Solution Plan)

Hybrid problems are a generalization of HTN problems. That is, ev-
ery HTN planning problem is also a hybrid problem:

• In HTN planning, plans are referred to as task networks. Task
networks do not contain causal links. Note that this has an ef-
fect of the problem description, since plans are part of the model’s
decomposition methods.

• In HTN planning, abstract tasks are referred to as compound
tasks. They do not have preconditions or effects.

• In HTN planning, solution task networks only need to possess an
executable linearization. In hybrid planning, all linearizations need
to be executable.

Our cost-aware heuristic is applicable to:

• HTN problems and hybrid problems, and

• for all search-based planners, both state-based progression plan-
ners and and decomposition-based planners.

Our modification-aware heuristic is applicable to:

• HTN problems and hybrid problems, and

• for hybrid (i.e., decomposition- and POCL-based) planners such
as PANDA.

on the Difference on Hybrid and HTN planning

F←{Pi}
while F 6= /0 do

P← planSel (F)
if Flaws(P) = /0 then return P
f ← flawSel (Flaws(P))
F← (F ∪ { modify(m,P) | m ∈ Mods(f ,P) })\{P}

return fail

Search Algorithm PANDA

Both proposed heuristics exploit the AND/OR structure of a TDG:

• The refinement effort of an abstract task can be estimated relying
on its cheapest decomposition method.

• The refinement effort of a decomposition method can be esti-
mated relying on the refinement efforts for all its tasks.

What is the refinement effort of a task? What do we want to esti-
mate?

• The number of missing tasks or their costs (to estimate the size or
cost of a solution plan)→ cost-aware TDG heuristic

• The number or required plan modifications (to estimate the
required search effort a planner still needs to perform)
→ modification-aware TDG heuristic

TDG-based heuristics

Prior to planning, we once pre-calculate a ground TDG and cost es-
timates for each of its nodes. Let 〈VT ,VM,ET→M,EM→T〉 be a ground
TDG. Then,

hT(vt) :=

cost(vt) if vt is primitive
min

(vt ,vm)∈ET→M
hM(vm) else

For a method vertex vm = 〈PS,≺,CL,VC〉, we set:

hM(vm) := ∑
(vm,vt)∈EM→T

hT(vt)

During planning, let P = 〈PS,≺,CL,VC〉 be a plan. Then,

hTDGc(P) := ∑
l:t(τ̄)∈PS

t(τ̄) abstract

(
min

vt∈comp(t(τ̄))
hT(vt)

)

Here, comp(t(τ̄)) is the set of all compatible groundings of the lifted
abstract task t(τ̄) that are contained in the TDG.

Cost-aware TDG heuristic

Again, we pre-calculate a ground TDG 〈VT ,VM,ET→M,EM→T〉 and
modification estimates for its nodes.

hT(vt) :=

|pre(vt)| if vt is primitive
1+ min

(vt ,vm)∈ET→M
hM(vm) else

For a method vertex vm = 〈PS,≺,CL,VC〉, we set:

hM(vm) := ∑
(vm,vt)∈EM→T

hT(vt)−|CL|

Let P = 〈PS,≺,CL,VC〉 be a plan. Then,

hTDGm(P) := ∑
l:t(τ̄)∈PS

(
min

vt∈comp(t(τ̄))
hT(vt)

)
−|CL|

comp(t(τ̄)) is defined as above, and pre(t(τ̄)) is the precondition of
the task t(τ̄).

Modification-aware TDG heuristic

So far, the TDG is computed only once – prior to planning. This
makes the above heuristics pure preprocessing heuristics (i.e., fast,
but less informed).

However, planning decisions (most importantly: chosen decomposi-
tion methods) can have a tremendous influence on the TDG: certain
sub trees might not become applicable and hence its cost and modi-
fication estimates can change significantly.
Consider the following example (depicted below).

Let cost(p3) = i and hM(Pm4) = hT(p4)+hT(a3) = j > i.
Then, we get hT(a2) = i. Let us now consider the heuristic values for
P1 and P2 resulting from decomposing a1 using m1 or m2, respectively.

Without recomputation, we get h(P1) = h(P2) = i. With recomputation,
we get h(P1) = j and h(P2) = i, so we get improved heuristic accuracy
due to updated reachability information in the TDG.

Recomputation

a1 a2

Pi

p1

m1

p2

m2

p3

m3

p4 a3

m4
Pm4

enables

a1 a2

Pi

p1 a2

P1

p2 a2

P2

use m1

use m2

Let P be a plan and mod a modification, and P′ the plan resulting
from applying mod to P. In the case mod is a decomposition
m = (t,Pm) and there are also further methods for t, then we re-
compute the TDG. Otherwise, we perform an incremental heuristic
calculation.

Cost-aware TDG heuristic:

1. mod is not a decomposition (i.e., an insertion of a causal link, an
ordering, or a variable constraint). Then, we get:
hT DGc(P) = hT DGc(P

′)

2. mod is a method m = (t,Pm) (without alternatives). We can set:
hT DGc(P

′) = hT DGc(P)−∑l:t′∈PSm,t′primitive cost(t ′)

Modification-aware TDG heuristic:

1. mod is an ordering or variable insertion. Then, we get:
hT DGm(P) = hT DGm(P

′)

2. mod is a causal link insertion or a decomposition (without alterna-
tives). Then, we get:
hT DGm(P) = hT DGm(P

′)−1

Recomputation and Incremental Heuristic Computation

Table 1: Per domain and strategy, we present the number of solved
problem instances (#s), the number of optimally solved instances
(#o), and the maximal plan cost over all solved problem instances
relative to the optimal solution (cost).

Strategy
UM-Tr. SmartPh. Satellite Woodw. Summary

(21 inst.) (5 inst.) (22 inst.) (11 inst.) (59 inst.)
#s #o cost #s #o cost #s #o cost #s #o cost #s #o cost

bl
in

d Uniform 21 21 1.00 4 4 1.00 17 17 1.00 8 8 1.00 50 50 1.00
BF 21 21 1.00 4 4 1.00 15 15 1.00 7 7 1.00 47 47 1.00
DF 21 21 1.00 5 1 1.60 19 7 2.09 8 4 1.44 53 33 2.09

sy
st

em
s

UMCPBF 21 21 1.00 4 4 1.00 15 15 1.00 7 7 1.00 47 47 1.00
UMCPDF 21 21 1.00 4 1 1.60 17 6 2.09 6 4 1.29 48 32 2.09
UMCPh 21 21 1.00 5 4 1.40 19 11 1.50 7 7 1.00 52 43 1.50
Compile 18 18 1.00 5 5 1.00 21 18 1.10 5 5 1.00 49 46 1.10
Compileopt 16 16 1.00 5 5 1.00 9 9 1.00 5 5 1.00 35 35 1.00

A
∗

ADD 21 21 1.00 4 1 1.20 21 21 1.00 10 9 1.17 56 52 1.20
ADD-r 21 21 1.00 5 5 1.00 19 18 1.08 9 4 1.25 54 48 1.25
Relax 21 21 1.00 5 5 1.00 18 18 1.00 10 8 1.17 54 52 1.17
OC 21 21 1.00 4 4 1.00 21 21 1.00 10 7 1.17 56 53 1.17
TDGm/-rec 21 21 1.00 5 5 1.00 22 21 1.31 9 9 1.00 57 56 1.31
TDGc/-rec 21 21 1.00 5 5 1.00 18 18 1.00 8 8 1.00 52 52 1.00

A
∗ 2

ADD 21 21 1.00 4 0 1.20 21 20 1.09 10 9 1.17 56 50 1.20
ADD-r 21 21 1.00 5 5 1.00 20 17 1.10 10 4 1.25 56 47 1.25
Relax 21 21 1.00 5 5 1.00 18 15 1.10 10 4 1.25 54 45 1.25
OC 21 21 1.00 4 4 1.00 22 21 1.09 10 7 1.22 57 53 1.22
TDGm/-rec 21 21 1.00 5 5 1.00 22 17 1.31 9 8 1.08 57 51 1.31
TDGc 21 21 1.00 5 5 1.00 20 20 1.00 10 10 1.00 56 56 1.00
TDGc-rec 21 21 1.00 5 5 1.00 20 20 1.00 11 11 1.00 57 57 1.00

Results (Coverage)

Table 2: Per domain, we present the number of recomputations di-
vided by number of decompositions (rec/dec) and the number of
improved heuristic estimates divided by number of recomputations
(h-im/rec). For each of these values we report the minimum (min),
maximum (max), and mean of means (µ).

Strategy
rec/dec h-im/rec rec/dec h-im/rec

min max µ min max µ min max µ min max µ

UM-Translog SmartPhone

A
∗ TDGm .027 .188 .086 .000 .333 .032 .300 .691 .476 .000 .117 .023

TDGc .027 .188 .086 .000 .333 .032 .300 .647 .473 .000 .041 .008

A
∗ 2 TDGm .027 .188 .086 .000 .333 .032 .300 .713 .484 .000 .121 .024

TDGc .027 .188 .086 .000 .333 .032 .300 .647 .471 .000 .041 .008

Satellite Woodworking

A
∗ TDGm .857 1.00 .956 .110 .608 .248 .294 .932 .581 .000 .548 .246

TDGc .750 1.00 .913 .087 .592 .264 .294 .943 .600 .000 .592 .330

A
∗ 2 TDGm .857 1.00 .953 .110 .617 .268 .294 .961 .611 .000 .721 .306

TDGc .814 1.00 .934 .049 .609 .256 .294 .943 .615 .000 .587 .333

Table 3: For each domain, we summarize in how many problem in-
stances the search space or time was deduced (<), unchanged (=),
or increased (>), due to TDG recomputation.

Strategy
space time space time space time space time

< = > < = > < = > < = > < = > < = > < = > < = >

UM-Translog SmartPhone Satellite Woodworking

A
∗ TDGm 2 19 0 1 15 5 1 4 0 1 4 0 22 0 0 0 17 5 7 2 0 1 6 2

TDGc 2 19 0 0 13 8 1 4 0 0 4 1 18 0 0 0 10 8 6 2 0 4 3 1

A
∗ 2 TDGm 2 19 0 3 16 2 1 4 0 0 4 1 22 0 0 0 13 9 4 5 0 1 6 2

TDGc 2 19 0 4 11 6 1 4 0 1 4 0 20 0 0 0 11 9 5 5 0 4 3 3

Results (Recomputation)

• To the best of our knowledge, TDGc is the first domain-
independent heuristic for standard HTN planning.

• TDGc is admissible and thereby guarantees finding optimal solu-
tions in combination with A∗ (cf. evaluation).

• Both heuristics perform well in terms of plan quality and search
guidance.

• Rebuilding the TDG often reduces the search space (see Tab. 3),
sometimes significantly. However, many recomputations do not
improve heuristic accuracy (see Tab. 2). So, in future work, we
want to identify more unnecessary recomputations.

• Due to the partial order of plans (in search nodes and in the TDG),
it is non-trivial to generate a relaxed plan. Instead, our heuristics
calculate the cheapest set of actions that can be reached from a
given search node while ruling out unreachable actions. Comput-
ing relaxed plans remains future work.

Conclusion and Future Work

