
On Guiding Search in HTN Planning with Classical Planning Heuristics∗
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Abstract
Planning is the task of finding a sequence of actions
that achieves the goal(s) of an agent. It is solved
based on a model describing the environment and
how to change it. There are several approaches
to solve planning tasks, two of the most popular
are classical planning and hierarchical planning.
Solvers are often based on heuristic search, but es-
pecially regarding domain-independent heuristics,
techniques in classical planning are more sophis-
ticated. However, due to the different problem
classes, it is difficult to use them in hierarchical
planning. In this paper we describe how to use ar-
bitrary classical heuristics in hierarchical planning
and show that the resulting system outperforms the
state of the art in hierarchical planning.

1 Introduction
Planning is the task of finding a course of action that achieves
the goal(s) of an agent when it is executed. In its simplest
form, the model underlying the task contains a description of
the relevant parts of the environment the agent is planning for
and a set of actions that describe how he/she can change it.
The environment is usually described by using a (finite) set
of propositional variables; the definition of an action contains
a description of preconditions that need to be fulfilled to be
able to apply it and a set of effects (changes to the system it
causes). The objective is to find a sequence of actions trans-
forming the system into a state where certain state features
hold. This is often done using heuristic search.

Two of the most popular approaches to planning are clas-
sical planning (that is equal to the abstract description given
above) and hierarchical planning [Bercher et al., 2019]. In
Hierarchical Task Network (HTN) planning, the most com-
mon hierarchical formalism, the model as given above is
complemented by a hierarchy on the things to do, the tasks.
The planning process is started with one or more so-called ab-
stract tasks. Abstract tasks can not be executed directly (like
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actions), but need to be decomposed into other tasks until all
remaining tasks are actions. Inserting actions apart from this
decomposition hierarchy is (usually) not allowed. Interest-
ingly, the objective in HTN planning is not to reach a state
with certain properties, but to find a decomposition that can
be executed. The process is very similar to the derivation of
a word from a formal grammar, but with two differences: the
symbols may be partially ordered, and the terminal symbols
are actions with preconditions and effects. It has been shown
that HTN planning models can describe much more complex
behavior than possible in classical planning [Erol et al., 1996;
Höller et al., 2014; Höller et al., 2016].

When a domain is modeled, the designer may introduce
knowledge about the domain itself as well as advice for the
planner on how to find a plan. Having less advice decreases
the modeling effort and allows a simple adaptation of plan-
ning systems to new domains, but planners need to rely (even
more) on their search techniques to find a plan. Systems
that are designed to find plans without any advice are called
to be domain-independent. In HTN planning, such systems
have been developed based on heuristic search (e.g. our sys-
tem or Bercher et al.’s [2017]), or on translation techniques,
e.g. to propositional logic [Behnke et al., 2019b]. How-
ever, compared to classical planning, the solving techniques
in HTN planning are less sophisticated, especially domain-
independent heuristics to guide search. Therefore hierarchi-
cal systems often rely on advice encoded in the problem.

Using the more sophisticated techniques from classical
planning in HTN planning seems appealing, but it is not
straightforward due to several reasons:
• The hierarchy determines which actions are reachable,

i.e. which actions may be in a plan.
• All tasks need to be decomposed and the resulting ac-

tions need to be integrated into the plan, i.e. the hierar-
chy also determines which actions have to be in a plan.
• The goal in classical planning is defined by a set of

state features that shall be achieved. Therefore classical
heuristics are designed to estimate the distance from a
given state to a goal state. In HTN planning the “goal” is
an abstract task to perform; no state-based goal is given.

In this paper we describe a generic way to use heuristics
from classical planning to guide the search in HTN planning
that overcomes the challenges given above.



2 Formal Framework
A classical planning problem is a tuple P = (L,A, s0, g, δ),
where L is a set of propositional environment variables. A
state s of the system is defined by the subset of state variables
that is fulfilled in this state, i.e. s ⊆ L. s0 is the initial state
that holds in the beginning of the planning process; g ⊆ L
is the goal definition that specifies which state features shall
be fulfilled in a goal state. A is a set of action names; δ is a
triple (prec, add , del) of functions that define the precondi-
tions and effects of the actions, each mapping actions to a set
of state variables f : A→ 2L. An action a is applicable when
its preconditions are contained in the current state s, i.e. when
prec(a) ⊆ s. When it is applicable, the state resulting from
the application is defined by the function γ : A × 2L → 2L

with γ(a, s) = (s \ del(a)) ∪ add(a). The objective in clas-
sical planning is to find a sequence that transforms the initial
state into one that includes the goal conditions g; more for-
mally, a sequence 〈a0a1 . . . al〉 of actions where ai is appli-
cable in si and si is defined as γ(ai−1, si−1) for i > 0.

An HTN planning problem is defined as a tuple P =
(L,C,A,M, s0, tnI , δ). L, A, s0, and δ are defined as be-
fore. C is a set of abstract (also called compound) task
names. During the planning process, the tasks to accomplish
are maintained in so-called task networks. A task network
combines a (multi-)set of task names with the definition of
ordering relations between these tasks. Formally, it is defined
as a triple (T ,≺, α), where T is a set of (unique) identifiers,
α : T → A ∪ C is a function that maps these ids to task
names, and ≺ ⊆ T × T is a strict partial order on the ids.

As given in the introduction, abstract tasks are decom-
posed until only primitive tasks are left. The rules on how
to decompose these tasks are given by the set of decomposi-
tion methods M . Each method m ∈ M is defined as a pair
(c, tn) of a task name c ∈ C that may be decomposed by the
method and a task network tn that specifies how the task is
decomposed. When a task is decomposed, it is removed from
the task network, the tasks in the method’s task network are
added and inherit the ordering relations from the decomposed
task. Formally, a method (c, tn) decomposes a task network
tn1 = (T1,≺1, α1) into a task network tn2 = (T2,≺2, α2)
if there is a task t ∈ T1 with α1(t) = c and a task network
tn ′ = (T ′,≺′, α′) that is equal to tn but using ids not con-
tained in the decomposed network (i.e. T1 ∩ T ′ = ∅). The
task network tn2 is defined as follows:

tn2 = ((T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, (α1 \ {t 7→ c}) ∪ α′)
≺D = {(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪

{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 6= t ∧ t2 6= t}

The planning process starts with the initial task network
tnI and the objective is to find a task network tn such that
the following conditions hold.
• tn can be reached by decomposing the initial task net-

work tnI .
• All task names in tn are primitive.
• There is a sequence of the tasks in tn that is in line with

its ordering relations and applicable in s0.
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Figure 1: Schema of our overall approach.

3 Using Classical Heuristics in HTN Planning
As given in the introduction, a common way to solve planning
problems is heuristic search. In HTN planning, there are two
common search algorithms: plan space search and progres-
sion search. The former maintains a partial ordering between
the tasks and selects the next modification to do based on the
so-called flaw selector, a kind of heuristic. The latter searches
in a forward manner, processing the tasks next that have no
predecessors in the ordering. It commits to a total order of
the tasks in the prefix of the generated plan. This makes the
representation less compact (because there may be many to-
tally ordered linearizations of a single partial ordering), but
the system can apply the state transition during search and is
thus informed about the current state. This may be beneficial
to calculate heuristics that depend on the state.

We introduced an improved progression algorithm [Höller
et al., 2018] not given here due to the limited space. Instead,
we want to focus on our method to guide the search with clas-
sical heuristics. In progression search, the distance to the next
goal node is equal to the sum of decompositions and action
applications necessary to transform a search node into a solu-
tion. To guide the search we need to estimate this number.

We want to do this using arbitrary and unchanged heuris-
tics from classical planning. Our overall approach is illus-
trated in Figure 1. Before search, the HTN model is relaxed
to a classical model. A relaxation is necessary because it has
been shown that such a transformation is (in general) impos-
sible [Erol et al., 1996; Geier and Bercher, 2011]. During
search, the HTN planning system updates the initial state and
the goal definition of the classical model. Based on the up-
dated model, a classical heuristic is calculated and the result-
ing heuristic value is used to guide the search.

The transformation needs to overcome the challenges dis-
cussed in the introduction: 1. the reachability is restricted
by the hierarchy, 2. the hierarchy enforces actions to be in-
tegrated into the plan, and 3. there is no state-based goal def-
inition that can be used to calculate the heuristic.

From a top-down view the hierarchy represents a tree with
AND nodes and OR nodes: for each task, a single method
needs to be selected (an OR node). A method introduces new
tasks that all need to be decomposed/executed (an AND node)
and thus imply new OR nodes. This is illustrated in a simple
transport domain in Figure 2. First consider its right side:
The root of the tree is a single deliver task: a package p shall
be delivered to position d (this is an OR node). There are
several methods to decompose it (AND nodes) using different
vehicles vi, the planner has to select one. In the figure, the
method using vehicle v2 is selected. It leads to several new
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Figure 2: Correspondence of actions in our RC model to nodes in the
AND/OR tree defined by the HTN. Task names start with t, methods
with m, actions are boxed. The actions in the RC plan belonging to
the tree nodes mn, mo, ap, and aq are omitted due to readability.
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Figure 3: Example method. The abstract task at the top is decom-
posed into four subtasks. Primitive tasks are boxed.

task nodes (denoted t1 to tm). These form new OR nodes.
The leaves of the tree are actions (indicated by the boxes) that
form the solution. The planner has to select methods that lead
to an executable sequence of actions (in line with the ordering
definitions induced by the HTN model).

We want a classical planner to do this selection, or, more
precisely, a classical heuristic to estimate the minimum num-
ber of methods and actions necessary to build the tree. There-
fore we encode the problem in a bottom-up approach into a
classical planning problem: we start with the state and ac-
tion definition of the HTN problem. For every (abstract and
primitive) task n in the problem we add a new state feature
un indicating whether it is part of the tree. Each action a
gets a new add effect ua that achieves the corresponding state
feature. For each method m = (c, tn) of the HTN model a
new action am is introduced. It has as many preconditions
as the method has subtasks: for every subtask n, the newly
introduced state feature un is part of the precondition set. As
single effect, am adds the fact uc (the fact corresponding to
the decomposed task). The goal of the transformed problem
is to achieve the state features corresponding to the task(s) in
the current task network, i.e., the tree is built in a bottom-up
manner. Since it thus somehow applies the decomposition
methods in a backward manner, composing the tasks, we call
our heuristics Relaxed Composition (RC) heuristics.

Consider the method m-del(?p, ?l1, ?l2, ?v) given in Fig-
ure 3 that decomposes the abstract task t-deliver(?p, ?l2) that
defines how to deliver a package ?p to a location ?l2. To
do so, a vehicle ?v needs to get to the current location of
the package, pick it up, get to its final location, and drop it.

The method is translated into an action am-del(?p,?l1,?l2,?v)

with the precondition set containing the four state features
{ut-get-to(?v,?l1), upickup(?v,?l1,?p), ut-get-to(?v,?l2), udrop(?v,?l2,?p)}
and a single add effect ut-deliver(?p,?l2).

A classical planner applied to that domain builds a plan
representing the tree discussed above. Such a plan is shown
on the left side of Figure 2. It starts at the bottom of the figure
with the initial state s0. The actions in the model correspond
to 1. actions or 2. methods of the HTN problem. The former
are those that also appear in solutions of the HTN problem.
The classical system needs to select an executable sequence.
The latter represent the decisions at the OR nodes. When
we apply a classical heuristic (instead of a planner), we can
estimate the size of the tree.

This solves challenges 2 and 3: we have a meaningful state-
based goal; to reach it, the classical system needs to integrate
the actions enforced by the hierarchy into the plan. However,
there are several relaxations made:
• The ordering relations given in the HTN are ignored.
• Every task needs to be done only once (regardless how

often it is enforced by the HTN).
• To make enforced actions applicable, other actions may

be inserted.
The third point is harmful to challenge 1: we should re-

strict the actions in a plan to those reachable via the hierarchy.
Though we need to relax the problem to make it tractable, we
can fix this issue to a certain extent. When there are two meth-
ods for a certain task, one decomposing it into the action a,
the other one into b, a solution can only contain one action
out of a and b. We can not encode this easily into the prob-
lem. However, we can encode which actions are reachable
from the current task network at all and exclude these that are
not. The heuristic may, however, still insert actions that can
not appear together due to the hierarchy, e.g. because they are
part of different methods for the same task (as given above).
The set of reachable tasks can be preprocessed before search.

To restrict the set of all actions in the RC model to reach-
able actions, we could adapt the heuristic function(s) so check
it. However, instead we added an additional precondition to
every action that encodes whether it is reachable. Reacha-
bility is then set in the initial state and excludes those actions
from a solution that can not be reached via the hierarchy. That
way we can use unchanged heuristics.

Formally, our transformation is defined as follows:
Definition 1 (Relaxed Composition Model). Given an HTN
planning problem P = (L, C, A, M, s0, tnI , (prec, add ,
del)) with tnI = (TI ,≺I , αI), we define our RC model as
the following classical planning problem P ′:

P ′ =
(
L′, A′, s′0, g

′, (prec′, add ′, del ′)
)

L′ = L ∪ Lu ∪ Ld

Lu = {un | n ∈ A ∪ C}, L ∩ Lu = ∅
Ld = {dn | n ∈ A}, (L ∪ Lu) ∩ Ld = ∅

A′ = A ∪AM , AM = {am | m ∈M}, A ∩AM = ∅
s′0 = s0 ∪ {dn | ∃tn ′ : tnI →∗ tn ′

with tn ′ = (T ′,≺′, α′), t ∈ T ′, α′(t) = n}



g′ = {un | t ∈ TI , αI(t) = n}

The functions prec′, add ′, and del ′ are defined as follows:
For actions a ∈ A:

prec′(a) = prec(a) ∪ {da}
add ′(a) = add(a) ∪ {ua}
del ′(a) = del(a)

For actions am ∈ AM with m = (c, (T ,≺, α)):

prec′(am) = {un | t ∈ T , α(t) = n}
add ′(am) = {uc}
del ′(am) = ∅

An interesting theoretical property of our encoding is that
for each HTN solution, there is a classical plan in the transfor-
mation that has costs equal to the number of nodes in the de-
composition tree of the HTN solution. This especially holds
for the optimal plan. This makes it possible to create safe,
goal-aware, and admissible HTN heuristics, i.e. those that
never return a heuristic value of∞ if there still is a solution
reachable (enabling pruning without becoming incomplete),
that return 0 for goal nodes, and that never overestimate goal
distance, respectively. The later can be used to find cost-
optimal plans (for details see Behnke et al. [2019c], Sec. 4).

During search, 1. the current state, 2. the set of reachable
tasks, and 3. the tasks in the current search node change.
These HTN elements are represented in the initial state and
the goal definition of the encoding. This enables an efficient
update of the model without a full recreation.

In principle our encoding can be combined with any heuris-
tic from classical planning. However, the used heuristic
should allow for a “cheap” change of the goal definition (not
all do). We tested our approach with the Add [Bonet and
Geffner, 2001], FF [Hoffmann and Nebel, 2001], and LM-
Cut [Helmert and Domshlak, 2009] heuristic.

4 Discussion
We first want to discuss related work. Alford et al. [2009;
2016] introduced an approach to translate HTN planning
problems into classical planning problems to solve them with
classical planners. To make this possible, they use a bound to
restrict the size of task networks in the translated problem. To
solve arbitrary HTN planning problems, this bound must be
increased while no solution is found (and in general there is
no technique to determine when this can be stopped without
potentially getting an incomplete search). In principle, their
translation could also be integrated as heuristic model into the
overall process depicted in Figure 1. However, when increas-
ing the bound, the model grows very fast (while ours is linear
in the size of the input model), and when the bound is chosen
too low, the search may become incomplete because it marks
search nodes as dead ends that are none.

FAPE [Bit-Monnot et al., 2016] uses blind search and a
computation-intensive pruning technique. For pruning, it
transforms the hierarchical model – which is essentially an
acyclic HTN – into a temporal planning problem. Abstract
tasks are represented using temporal actions, following an
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Figure 4: Coverage results for search-based HTN planning systems.

idea similar to our encoding: preconditions enforcing sub-
tasks, which are temporally arranged according to their or-
dering relation, and an effect marking the abstract task as ful-
filled at the end. Using a temporal reachability analysis, it
determines whether a delete-relaxed plan exists, while still
incorporating some of the problem’s ordering information.

The maybe most closely related heuristics from the litera-
ture are those by Bercher et al. [2017] (that are also included
in the evaluation). They are based on the so-called Task De-
composition Graph (TDG), a finite graph representing the
task hierarchy. Heuristic calculation is started by assigning
each action its costs as heuristic value. The heuristic value of
each method is then set to the sum of the costs of its subtasks,
and the costs of abstract tasks are set to the minimum of all
applicable methods. The costs of abstract tasks and methods
need to be updated until they converged (however, this can
be done efficiently as described in the paper). The value has
been further improved by including a state-based reachabil-
ity analysis. The resulting heuristic includes the minimum
effort induced by the hierarchy to reach a plan executable us-
ing task insertion. There are two main differences between
the two approaches: First, our encoding as classical planning
problem enables the combination with any classical heuristic
(defining a family of heuristics instead of a single one). Sec-
ond, our approach includes the costs of added actions into the
heuristic value (what is not done by the TDG heuristics).

Figure 4 shows coverage results of several search-based
HTN planning systems. We included our system using the
Add, FF, and LM-Cut heuristic; plan space search with two
TDG-based heuristics [Bercher et al., 2017]; and the transla-
tion approach as described by Alford et al. [2016] in combi-
nation with the classical planner JASPER [Xie et al., 2014].
For our system and the one of Bercher et al. the results are
those for Greedy A∗ search with a weight of 2 (that has the
highest coverage). The DFS data compares the uninformed
Depth First Search of the original progression algorithm and
our improved version (both implemented in our system). The
JSHOP2 [Nau et al., 2003] planning system also relies on
DFS. The data given here is its combination with our ground-
ing and preprocessing [Behnke et al., 2019a] that increases
its performance. Our system has the highest coverage. Our
novel progression algorithm (not described in this paper) in-
creases the coverage by 1 instance in DFS.



5 Conclusion
Domain-independent planning systems do not depend on ad-
vice modeled into a planning model. This makes models
more compact and decreases the effort to create them. How-
ever, due to the lack of advice, such systems must rely on
their solving techniques to find a solution. Though there has
been progress in that direction in hierarchical planning, the
used solving techniques – especially search heuristics – are
less evolved than in classical planning. Due to the different
problem classes, the adaptation of classical techniques to the
setting of HTN planning is not straightforward. In this paper,
we introduced an approach to use arbitrary classical heuris-
tics to guide search in HTN planning. We have shown that
it can be used to create HTN heuristics with interesting the-
oretical properties and that – when combined with our new
progression search algorithm – it outperforms the state of the
art in search-based HTN planning.
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[Höller et al., 2018] Daniel Höller, Pascal Bercher, Gregor
Behnke, and Susanne Biundo. A generic method to guide
HTN progression search with classical heuristics. In Proc.
of the 28th Int. Conf. on Automated Planning and Schedul-
ing (ICAPS), pages 114–122. AAAI Press, 2018.

[Nau et al., 2003] Dana S. Nau, Tsz-Chiu Au, Okhtay Il-
ghami, Ugur Kuter, J. William Murdock, Dan Wu, and
Fusun Yaman. SHOP2: An HTN planning system. Jour-
nal of Artificial Intelligence Research, 20:379–404, 2003.

[Xie et al., 2014] Fan Xie, Martin Müller, and Robert Holte.
Jasper: The art of exploration in greedy best first search. In
Proc. of the 8th Int. Planning Competition, pages 39–42,
2014.


	Introduction
	Formal Framework
	Using Classical Heuristics in HTN Planning
	Discussion
	Conclusion

