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Abstract—Digital map data is an important source of in-
formation for the perception of the environment around cars
for advanced driver assistance functions. These functions use
map data to acquire information about the road infrastructure
beyond the visual horizon of the driver. Embedded software
components in today’s cars typically use code-based processing of
the map data to offer this support to advanced driver assistance
functions, but the complexity of automotive systems continues
to grow towards the realization of autonomous driving. To
facilitate the representation and extraction of knowledge, we
explore the feasibility of using ontologies for modelling and
processing the map data in cars. We describe the challenges
of adequately modelling the knowledge and present a proof of
concept implementation that is used in a PC-based simulation to
evaluate the knowledge extraction capabilities of this approach
considering the requirements of representative advanced driver
assistance functions.

Index Terms—Semantic Web, Ontologies, Driver-assistance,
Knowledge Modeling

I. INTRODUCTION

Advanced driver assistance (ADAS) functions in today’s

cars need knowledge about the environment not only in the

vicinity of the car but also beyond the visual horizon of the

driver. Digital map data provided by the in-car navigation sys-

tem contains information about the roads ahead of the car. The

extracted view representing the streets that the car will most

likely drive through is called the electronic horizon. The map

data, which forms the electronic horizon, is communicated as

a stream of messages on the automotive bus to the software

components offering advanced driver assistance functions (e.g.

speed limit information). The communication is typically

based on some map data protocol like the Advanced Driver

Assistance System Interface Specification (ADASIS) [1]. The

messages sent by the navigation system are assembled by a

map data processing component, which constructs the elec-

tronic horizon and which provides an advanced perception

of the road ahead e.g. by computing the most probable

path that the car is likely taking (assuming no destination

is set in the navigation system). The map data processing

component provides a fixed API (set of functions) that the

ADAS functions use to provide their functionalities.

Ontologies and semantic technologies have been used suc-

cessfully for modelling knowledge in diverse domains [2]–

[4]. As the automotive industry heads towards the develop-

ment of fully autonomous vehicles, the complexity of the

environmental knowledge needed for suitably representing the

electronic horizon grows significantly. In light of this growing

complexity, we investigate the feasibility of using an onto-

logical approach for knowledge representation in automotive

systems in order to provide a more flexible and extendable

approach compared to the traditional procedural approach.

Using ontologies further allows for employing highly opti-

mised reasoners to derive implicit knowledge, which, in the

procedural approach, needs to be extracted by writing (often

complex) dedicated code. Flexibility is gained by replacing

the fixed API with a query interface, e.g. using SPARQL

queries. In this paper we highlight the challenges of modeling

the highly dynamic map data in such a way that the core

knowledge model is independent of changes with respect to

the underlying communication protocol.

Basing the system on semantic technologies has many

advantages: OWL ontologies provide a rich, flexible, and

fully declarative language for modelling map data and a car’s

environment; additionally, the Semantic Web Rule Language

(SWRL) provides an expressive rule language for describing

inferences for the data; infrastructures such as ontology editing

and reasoning tools are readily available and can be used to

support the ontology development; finally, the ADAS functions

can easily be adapted and extended without coding new API

functions.

In the rest of the paper we assume basic familiarity with

RDF, OWL, SWRL, and SPARQL; readers are referred to [5]–

[8] for suitable primers.

II. RELATED WORK

To the best of our knowledge, ontologies have not yet

directly been used for representing map data in cars. There

are, however, ontological approaches for modeling map data

and for using ontologies in automotive applications. The

OpenStreetMap (OSM) project provides map data in the form

of OSM files consisting of elements representing geographic

entities and tags representing the characteristics of the el-

ements. An ontology called OSMonto [9] is proposed to

model the hierarchy of OSM tags to enable the integration of

OpenStreetMap into the Semantic Web. As OSMonto does not

model OSM elements, it cannot be used for representing the

map data completely. Stadler et al. propose an ontology called

LinkedGeoData [10] to model both elements and tags in OSM

data. The LinkedGeoData ontology is heavy as it attempts to

model all geographic entities and amenities, including those

that do not affect driving, e.g. photocopy shops or park

benches. On the other hand, the ontology does not model the
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road elements and road structure in enough detail for ADAS

functions, e.g. different lanes of and lines on the roads are

not modeled. A small topological ontology is defined in the

GeoSPARQL standard [11] to represent geospatial data using

classes to model geometries of spatial objects. Queries related

to the geometries of spatial objects are supported using a geo-

graphic query language provided suitable GPS coordinate data

is available. Hülsen et al. propose an ontology which models

infrastructure elements such as roads, lanes, traffic lights etc.

for determining driving behavior in complex traffic situations

based on rules [12]. It is assumed that the position of other

vehicles is available, whereas this is typically not the case

for map data available through the in-car navigation system.

Fernandez et al. have proposed an ontology-based intelligent

transportation system to offer driver assistance in different

traffic situations [13], [14]. Ontologies in this system are used

to model road infrastructure elements, vehicle data, weather

conditions etc. and to decide the driving behavior of vehicles

in different traffic situations. It is assumed that vehicles can ex-

change information with other vehicles and with infrastructure

elements such as traffic signals, signs etc. Another ontology-

based approach identifies abnormal situations during driving,

where traffic rules can safely be relaxed [15]. Toulni et al.

propose an ontology-based approach to manage traffic in urban

areas with the help of a vehicular area network (VANET) data

transmission system [16] and an ontology-based partial model

of map data. Both aforementioned approaches do not model

road infrastructure elements like lanes, lines on the road, speed

limits, etc. Zhao et al. have proposed three ontologies: a map

ontology, a control ontology, and a car ontology to create a

knowledge base for determining the driving strategy for an

autonomous car [17]. The map ontology uses a static OSM

file as input and it does not model road characteristics, e.g.

road gradient or (conditional) speed limits.

None of the above approaches predict the path that the car

is likely to take in near future, which is an important source

of information for ADAS functions. In order to provide such

an electronic horizon, one needs to process dynamic message

streams about the environment of a car, whereas the above

described approaches are all based on static sources for map

data like OSM files.

III. A KNOWLEDGE LAYER FOR MAP DATA

As illustrated in Figure 1, we propose an ontology-based

knowledge layer between the ADAS functions and the map

data provider (in-car navigation system). Since map data

communication protocols are prone to changes, we propose

a further division into a protocol-dependent ontology and a

protocol-independent ontology that provides access to the map

data on a more abstract level. The protocol-dependent ontol-

ogy, also called the implementation ontology, models the data

based on the map data protocol and is continuously updated as

the car moves. The protocol-independent ontology, also called

the core ontology, is then populated by the implementation

ontology using rules. The generic and flexible query interface
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Fig. 1. Ontology-based system architecture

replaces the fixed API offered by the traditional code-based

implementation.

A. The Implementation Ontology

The implementation ontology models the map data as

communicated via messages by the map data provider and

is continuously updated by the map data receiver as messages

arrive. Here we assume that the ADASIS protocol represents

roads as collections of parts called road segments. The mes-

sages defined in the protocol fall into three categories:

1) Segment-info messages contain map data with information

about road segments, e.g., segment identifiers, gradients,

. . .

2) Vehicle-info messages contain information about the vehi-

cle, e.g., current location, current lane, . . .

3) Control messages for the protocol’s state machine logic.

Each message consists of a number of signals that represent

different attributes. A signal itself consists of bits. Four dif-

ferent segment-info messages together represent the different

characteristics of a road segment. These four message types

are represented by four classes in the ontology. Similar to

messages, the signals within a message fall into two categories:

1) Simple signals use all bits to represent one attribute of the

road segment (e.g. identifier or gradient). In the ontology,

the attribute is connected to the corresponding message

class using a data property.

2) Complex signals use either one bit or a set of bits to

represent different values for a characteristic, e.g., a signal

which indicates presence or absence of different types of

points of interest (POIs). Thus, a complex signal represents

a collection of simple signals/attributes and it is modeled
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using an auxiliary class with data properties for represent-

ing each attribute. The auxiliary class is associated with

the corresponding message class using an object property.

Raw signal values are used in the messages instead of the

real physical values to save bandwidth on the automotive

buses. The protocol defines conversion formulae to convert the

raw values to real physical values. To avoid the necessity of

repeated conversions during knowledge extraction, we assign

the real values of the signals to the corresponding data

properties. Some signal values are also mapped to readable

string descriptions. The protocol also defines special raw signal

values indicating invalid values and unavailable values. In such

cases the signal values are not modeled in the ontology as they

do not provide useful information.

Every time a segment-info message is received, the map

data receiver creates an instance of the corresponding message

class and associates it with the corresponding data properties.

Once all four segment-info messages are received, the corre-

sponding individuals are connected with object properties to

an instance of the class Node, which represents the overall

road segment. The data is then abstracted and transferred to

the core ontology using SWRL rules and deleted from the

implementation ontology to avoid data duplication. When a

vehicle-info message is received, a corresponding individual

is created in the implementation ontology and associated with

the data properties to the received attribute values and then

also transferred to the core ontology. Control messages, trigger

tasks such as deleting information about road parts that have

already been passed by the car.

The ADASIS protocol represents the tree-like road structure

using road segment IDs and parent segment IDs. A road

segment is represented by an instance of the class Node in the

implementation ontology and associated via data properties to

its ID and parent segment ID. SWRL rules then use the IDs

and parent IDs to connect road segments (i.e. instances of the

class node) to model the bare minimum partial road structure.

The core ontology then models the complete road structure in

a generic way based on this minimal road model.

B. The Core Ontology

Unlike the implementation ontology, which uses concepts

and relationships to represent messages and signals as used

in the map data communication protocol, the core ontology

represents real world entities such as road parts, lanes, traffic

signs etc. and their relationships in a generic way as illustrated

in Figure 2. The mapping from protocol-specific individuals

in the implementation ontology to the generic individuals in

the core ontology is implemented using SWRL rules. The in-

stances of the abstract class RoadPart correspond to instances

of the class Node in the implementation ontology, which

allows for constructing a complete road structure, including

directly and indirectly connected road segments, based on the

segment and parent segment IDs. A functional object property

is used to model the “immediate previous” relationship with

its inverse “immediate next”. These two object properties are

TrafficSign POI

Line RoadPart

Lane MPP CurrentLocation

hasNext
hasSibling

belongsTo

consistsOf isPart
OfMPP

hasMPP
RoadPart

hasLine

hasPOIhasTrafficSign

hasLane

isCurrentRoadPart

Fig. 2. Modeling of the map data in the core ontology

sub-properties of the two transitive properties hasNext and

hasPrevious.

Apart from the map data receiver, all parts of the knowl-

edge layer use purely declarative knowledge representation

techniques. While the map data receiver is still a procedural

component, it has a relatively simple structure, which is easy

to maintain.

IV. COMPLEX KNOWLEDGE EXTRACTION TASKS

SWRL rules are not only used for transferring data be-

tween the implementation and the core ontology. Due to their

expressivity, they are also used to infer sibling road parts

(i.e., different road parts that have the same parent road part),

neighboring lanes, and for checking whether the vehicle is

approaching or leaving a junction. The obtained ontological

knowledge of the core ontology is exposed to the advanced

driver assistance functions through a query interface. We

categorize the queries into the following three types:

1) Road-part specific queries: Given a road part identifier,

provide characteristics of the road part.

2) Look-ahead queries: These queries consider the road parts

ahead of the car and involve the identification of change

points of characteristics like slope or speed limit in the

look-ahead direction or along the most probable path the

car is likely taking. The calculation of the distance to a

specified POI is also an important query.

3) Look-back queries: These queries consider the road parts

already passed by the car. Examples include the calculation

of the distance from the last POI or last junction.

For road-part specific queries, not all characteristics are al-

ways available. This is handled using SPARQL’s OPTIONAL

keyword for extracting such property values. Some look-

ahead queries involve the computation of intermediate results.

For example, to identify the distance to characteristic change

points, one uses a nested sub-query to find the change points

and then computes the distances to these change points in

the outer query. The overall distance is the sum of three

distances: (i) the remaining distance to be travelled in the

current road part, (ii) the sum of the lengths of the road

parts between the current road part and the road part of
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interest, and (iii) the length of the road part of interest.

Analogously, distance calculations are also performed in the

look-back direction. These calculations are implemented using

SPARQL 1.1 features like the property path expression ’+’ (for

a variable-length path of length at least one) and aggregation

(for building the sum).

A. Extracting the Most Probable Path

Some advanced driver assistance functions require knowl-

edge about the most probable path (MPP) the car is taking

(assuming no destination is set in the in-car navigation sys-

tem). The parameters that determine the MPP are defined in

the protocol and may include factors such as whether a road

part has sibling roads or the curvature of sibling roads. We

explore the feasibility of modelling such computations in an

ontology-based system using three different approaches:

The query-based approach uses SPARQL queries for

computing the MPP. The query uses UNION blocks such that

it is guaranteed that only one of the blocks returns a result,

which is the next most probable road part for the currently

considered road part. Each UNION block matches a condition

as defined in the protocol for when a road part is part of

the MPP. For example, one UNION block checks whether the

current road part has only one succeeding road part. If this

is the case, the only succeeding road part is the next most

probable road part. Other UNION blocks handle cases where

the current road part has more than one succeeding road part

and consider, for example, road characteristics to determine

the next most probable road part. An iterative execution of

the query using procedural code is required to find all road

parts of the complete MPP.

The rule-based approach avoids the iterative query execu-

tion, which needs to be handled explicitly using code since rule

execution is handled implicitly by the reasoner. As described

above, the MPP computation involves finding road parts which

do not have any siblings. This requires the expression of

knowledge that is not available, i.e. it requires negation as
failure, which is not supported by SWRL rules. Hence, it is not

possible to directly identify individuals which “do not have a

property”. As a workaround, we use a temporary data property

that is explicitly added to the ontology (using external code)

to indicate road parts without siblings. Although SWRL offers

a number of built-ins for performing arithmetic operations, it

does not directly support the identification of maximum and

minimum values from a group of values. This is, however,

required for some cases in the decision of whether a road part

belongs to the MPP or not. To address this, we use a two-step

process with additional temporary data properties: for finding

the maximum, the first step identifies the road part which has

a property value greater than at least one of the siblings using

the swrlb:greaterThanOrEqual built-in. These road parts are

marked using the temporary data property and their property

values are again compared using the swrlb:lessThan built-in.

After this step, the road part with the maximum property

value has only one temporary data property. Other sibling

road parts have either two or no temporary data properties.

A similar process is used for identifying road parts with

minimum property values.

Once a road part satisfies the conditions for being part of the

MPP, no further conditions need to be tested. To support this

in the rule-based setting, we use a temporary data property to

indicate that a condition is not satisfied by any of the checked

road parts. This property is used in the antecedent of the rules

for the next condition that is to be checked.

The MPP is re-computed only when the current location of

the vehicle changes (triggered by the arrival of a corresponding

vehicle-info message). To avoid unnecessary rule applications,

we assign a temporary data property to all road part individuals

only when the current location message is received. This

property is used in the antecedent of all rules used to compute

the MPP and deleted once the MPP is determined.

The hybrid approach is based on a combination of SWRL

rules and a SPARQL query to compute the MPP. This approach

only checks whether newly added road parts extend or change

the MPP. Hence, less temporary data properties are required

as compared to the pure rule-based approach and the number

of comparisons required to compare sibling roads is reduced

because only the property values of a new road part are com-

pared to an existing most probable road part at the junction.

However, this approach needs a complete re-computation of

the MPP using the SPARQL query described in the query-

based approach when the car leaves the pre-computed MPP.

This is due to the fact that the SWRL rules used in this

approach cannot be used for MPP computation given a number

of existing MPP road parts.

V. SIMULATION AND EVALUATION

We developed a simulation to validate and demonstrate

the ontology-based map data processing system as shown

in Figure 3. An existing tool called “XML runner” is used

to generate the map data protocol messages for OSM test

maps. The output of this tool is a file containing a stream of

messages. This file is converted into a JSON file [18] using the

“json-simple” tool-kit1 to generate a JSON representation of

the message stream, which improves readability and facilitates

debugging. This JSON file is then used as the input for the

implementation ontology. New individuals are created and

initialized in the implementation ontology using Java code and

the OWL API [19] according to the messages in the input

stream. This also involves the conversion of raw signal values

to real physical values that are then assigned with the corre-

sponding data properties. Once all messages representing the

same road segment are received, the knowledge is transferred

to the core ontology using SWRL rules. After this transfer,

temporary individuals are deleted and only protocol specific

information (about the road parts) is preserved as described

earlier. When a new vehicle-info message is received, old

individuals used to represent a previous vehicle-info message

are deleted and a new individual is created using the OWL

API.

1https://cliftonlabs.github.io/json-simple/
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Fig. 3. Data flow in the simulation

If a new control message is received, the protocol state

machine control logic is executed using Java code according

to the command in the control message. For example, in

case of a kill-all command, all individuals in both ontologies

are deleted. Two individuals are used in the implementation

ontology to represent the current and the previous control

message in order to facilitate the state machine control which

involves comparing the message counters received in the

current and the previous control message.

The input JSON File is parsed message by message to the

end of the file. In this way, the map data protocol message

stream in the car is simulated and modeled using ontologies.

The described simulation is used to evaluate the proposed

system and representative queries from each category (road-

part specific, look-ahead, and look-back queries). The evalu-

ation was performed on a 64-bit Windows-7 laptop with an

i7-4910MQ CPU running at 2.9GHz with 16GB memory. The

OWL API v5.1.0 was used for interacting with the ontologies.

The Pellet reasoner [20] was used for reasoning and executing

SWRL rules. The SPARQL interface of the Pellet reasoner is

used to execute the SPARQL queries. The simulation code

is implemented in Java 8. A test map was generated using

the Java OpenStreetMap (JOSM) editor to provide the input

map data for the system evaluation. The map consists of 60

road segments with a most probable path composed of at most

20 road segments. Features like traffic lights, traffic signs etc.

were assigned to the road segments randomly. The system

evaluation uses several metrics as described next.

Result Validity: The results of the tested queries and the

MPP computation were compared manually with the expected

results and all comparison results were positive.

Query Response Time: The execution time for all the

SPARQL queries used for knowledge extraction was mea-

sured. Initially, all the queries were executed sequentially five

times for system warm-up. The query execution time was not

measured during the warm-up phase. The system warm-up

avoids skewed measurements due to overheads associated with

the Java Virtual Machine (JVM) initialization.

Table I shows the average response times for the road-part-

specific queries, the look-ahead and the look-back queries. For

the road-part-specific queries, we consider two scenarios (i)

TABLE I
AVERAGE QUERY RESPONSE TIME IN MS FOR ROAD-PART-SPECIFIC,

LOOK-AHEAD, AND LOOK-BACK QUERIES

road-part-specific road part is

queries present missing look-ahead queries

traffic signs 61.8 61.6 distance to POI 108.2

topology 62.0 59.8 foresight speed 62.2

speed limit 62.2 62.8 foresight slope 61.4

speed 60.4 60.8

branch probability 65.6 63.6 look-back queries

street type 62.4 61.0 distance to last POI 67.4

traffic light 60.6 61.2

average time 62.6 61.5

when the input road part is present and (ii) when the input

road part is not present. The query response time is calculated

as the average of ten response times for each query.

The results show that the average query response time is

62.6 milliseconds when the road part information is available

in the ontology. When the road part information is not pre-

sented, the average query response time is 61.5 milliseconds.

The first step in these queries is to find the road part matching

the input segment identifier. When the road part is not available

in the ontology, no further processing is required to extract the

values of the characteristics specified in the query like length,

speed limit, etc. Hence, the query response time is less in this

case as compared to the case when the road part information

is present in the ontology. This difference is, however, less

than 1%. This shows that a substantial amount of time is

required for the general query set-up and for identifying the

road part individual matching the segment identifier specified

in the query.

The right hand side of Table I shows the average time

required for the execution of the look-ahead and look-back

queries. The time required for the look-ahead query to deter-

mine the distance to a points of interest (POI) is considerably

larger than the time required for the corresponding look-back

query (distance to last POI). This is due to the fact that the

look-back query calculates the distance to only one point of

interest in the unique look-back direction. Hence, the query

has at most one answer. The distance to POI look-ahead

query, however, considers all points of interest in the look-

ahead direction. This query returns all road parts with the

specified point of interest (e.g. a petrol station) in the look-

ahead direction and their distances from the current road part.

Ontology Parameters: The first part of Table II shows the

number of data properties, object properties and axioms used

by the three MPP computation approaches. The rule-based

approach uses the most data properties due to used temporary

data properties for the MPP computation. This approach

also uses the maximum number of axioms. The query-based

approach requires the least number of data properties and

axioms, because it does not use any temporary data properties

and rules for the MPP computation.

System Complexity: The second part of Table II shows the
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TABLE II
(1) STATISTICS ABOUT THE ONTOLOGY, (2) THE NUMBER OF REQUIRED

RULES AND QUERIES FOR MPP COMPUTATION, (3) THE AVERAGE MPP
COMPUTATION TIME IN MS, AND (4) THE MAP LOADING TIME IN S

SPARQL SWRL Hybrid

(1)

data properties 155 165 158

object properties 34 34 34

axioms 859 879 873

(2)

MPP SPARQL queries 1 0 1

auxiliary SPARQL queries 1 5 5

SWRL rules 0 21 6

temporary properties 0 10 3

(3)
initialization (ms) 2,788.71 2,908.40 3,718.92

MPP computation (ms) 692.91 2,510.28 14.86

(4) map loading (s) 199 346 190

complexity of the three MPP computation approaches in terms

of the number of rules, queries and temporary data properties

used by these approaches. The SPARQL query-based approach

models the MPP with only one SPARQL query and requires

no rules and temporary data properties, but external code to

iteratively run the query until all road parts of the MPP are

found. The SWRL rule-based approach uses 21 SWRL rules

for modelling the MPP computation with 5 helper SPARQL

queries and 10 temporary data properties. The hybrid approach

uses 1 SPARQL query and 6 SWRL rules for modelling the

MPP computation with only 3 temporary properties and 5

helper SPARQL queries.

MPP Computation Time: As described in Section IV,

the MPP computation is split into different stages in all the

three approaches used for modeling the MPP computation.

In the query-based approach and the rule-based approach, all

the computations required by the MPP algorithm are executed

only after reception of the message containing the information

about the car’s current location. In the hybrid approach, the

major part of the MPP computation algorithm is executed

whenever new road parts are added to the ontology. After

receiving the information about the current location of the

car, only the remaining small part of the MPP computation

is executed, i.e. the approach performs an incremental MPP

maintenance. Hence, we measure the time required for adding

a new road part along with the time required to compute the

MPP after receiving the information about the car’s current

location. These timing measurements are taken during the

message streaming in the simulation system, when a new road

part is added to the ontology and when the current location

information is received.

Part (3) of Table II shows that the time required for

initializing a newly created instance of the class RoadPart
is different for the three MPP computation approaches. The

hybrid approach needs the maximal road part initialization

time. This is because an additional set of SWRL rules is exe-

cuted during the initialization of the newly created RoadPart
instance to check whether it belongs to the MPP as described

in Section IV.

This part also shows that the road part initialization time is

Fig. 4. MPP computation time for each approach

higher in the rule-based approach compared to the query-based

approach. As described in Section IV, the rule-based approach

and the query-based approach compute the MPP only when

the current location information is received. In the rule-based

approach, however, some SWRL rules are executed during

the initialization of a newly created RoadPart instance for

inferences, which are required later for the MPP computation

e.g. checking if the new RoadPart instance has siblings.

One can also observe that the average time required to

provide the MPP after the reception of the current location

message is lowest in the hybrid approach. This is due to

the fact that the MPP is already calculated in the hybrid

approach during the road part initialization. Hence, the MPP is

not re-computed after the reception of every current location

message in this approach unlike in the other two approaches.

As described in Section IV, unless the car leaves the calculated

MPP, the hybrid approach merely provides the pre-computed

MPP when the current location message is received.

The second row of part (3) of the table also illustrates that

the rule-based approach requires the highest average time for

providing the MPP after the reception of the current location

message. This is due to the fact that this approach uses some

intermediate OWL API-based operations for the deletion and

modification of some temporary data properties as described

in Section IV. Some SPARQL queries are also executed for

housekeeping in this approach. Due to these overheads, this

approach needs the highest time to provide the MPP. The

query-based approach does not need intermediate operations

for management of temporary data properties like the rule-

based approach. Hence, the query-based approach needs less

time than the rule-based approach to provide the MPP.

Figure 4 shows the variation of the time required to provide

the MPP during the reception of the protocol messages for the

test map. The time required to provide the MPP is recorded at

82 different points during the reception of the input message

stream. This means that the current location information was

received 82 times during the streaming and, hence, the MPP

was provided 82 times. Each point on the x-axis corresponds

to the reception of a current location message. The figure

shows that the MPP computation time increases as messages
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representing new road parts keep coming in until a certain

point, for both the rule-based and the query-based approaches.

This can be seen near point 26 on the x-axis in Figure 4. At

this point, the MPP length is at its maximum. After this point,

the time required to provide the MPP decreases gradually for

both the rule-based and the query-based approach as the car

moves ahead and further old road parts become irrelevant for

the MPP computation. There is a drastic decrease in the time

required to provide the MPP around point 53 on the x-axis

in Figure 4, because the car takes a diversion, which has few

road parts ahead in the test map. This is again followed by

a gradual decrease in the MPP computation time due to old

road parts in the diversion becoming irrelevant for the MPP

computation.

As shown in Figure 4, the time required to provide the MPP

stays fairly constant throughout the test map for the hybrid

approach. This is due to the fact that this approach uses a-

priori knowledge about the MPP as described in Section IV.

When the car moves away from the pre-computed MPP, the

MPP needs to be re-computed from scratch using a SPARQL

query in this approach. This leads to an increase in the time

to provide the MPP as shown by the spike around point 53 on

the x-axis in Figure 4. As the car continues to drive along the

new MPP, the time required to provide the MPP is reduced

again and stays fairly constant.

Note that when the car leaves the pre-computed MPP, the

hybrid approach uses the same SPARQL query used by the

query-based approach for MPP computation. However, the

MPP computation time in the hybrid approach is higher as

shown around point 53 on the x-axis. This is due to the fact

that the query-based approach computes the MPP immediately

after receiving the current location information. The hybrid

approach first needs to check if the car left the pre-computed

MPP before executing the query for the MPP computation,

which explains the higher time requirement.

Map Loading Time: The map loading time is the time

required for loading the test map completely in the ontology.

As shown in part (4) of Table II, the map loading time is

lowest for the hybrid approach and highest for the rule-based

approach. The SWRL rules used in these two approaches

increase the reasoning time. However, as described earlier, the

hybrid approach does not compute the MPP every time a mes-

sage containing the current location information is received.

Hence, the map loading time for the hybrid approach is not as

high as for the rule-based approach. Although the query-based

approach does not use SWRL rules for the MPP computation,

it computes the MPP using an iterative query execution every

time a message containing the current location information

is received. Hence, the map loading time of the query-based

approach is higher than for the hybrid approach.

Coding Complexity: More lines of Java code are required

for the query-based and hybrid approach as compared to the

rule-based MPP computation approach. This is due to the fact

that the rule-based approach models the majority of the MPP

computation logic in the ontology itself. Hence, it requires

only a small amount of external housekeeping code.

The evaluation results show that the hybrid approach offers

the best compromise among the evaluation parameters. It

offers the least MPP computation time and map loading time

with moderate system and coding complexity.

VI. CONCLUSIONS AND OUTLOOK

We have explored the possibility of using ontologies for

modeling map data and its processing for automotive sys-

tems using a case study of the protocol used to communi-

cate the map data at BMW. A proof-of-concept simulation

demonstrates the feasibility of this approach. The ability to

support the knowledge extraction requirements of representa-

tive advanced driver assistance functions is evaluated using

representative SPARQL queries over the map data in the

dynamically updated ontology. The challenge of computing

the most probable path for a car is solved and evaluated

with three different approaches (rule-based, query-based, and

hybrid). The proposed system is evaluated in terms of the

system complexity, result validity, query response time and

algorithm execution time.

Based on the evaluation results, we conclude that the map

data and its processing as used in cars can be modeled

successfully using ontologies and semantic web technologies

such as SPARQL queries and SWRL rules. However, some

improvements and extensions to the prototype proposed in this

paper are required, before it can be used in real world applica-

tions. The major hurdles in using ontology-based processing

in cars are the resource constraints on the electronic control

units such as lack of file systems. Furthermore, we have used

tools that are implemented in Java, whereas the software for

resource constrained embedded systems in cars is typically

developed using programming languages such as C or C++. A

possible extension of this work is to implement the presented

ontology-based map data processing system using a reasoner

such as RDFox [21], which is implemented in C++. This may

also improve the performance, which is an important factor

for automotive embedded system software.

In conclusion, by adding an additional knowledge layer to

the system, we can successfully decouple the low-level map

data processing functions and the high-level driver assistance

functions. The provided query interface replaces the fixed ap-

plication programming interface. This allows for easily adding

and changing driver assistance functions as these functions can

now flexibly request the required knowledge via queries over a

protocol-independent knowledge base. The split of a protocol-

dependent implementation and a protocol-independent core

ontology further allows for changing the underlying protocol

or adding support for other protocols without exposing this

to the driver assistance functions, as these function purely

query the generic knowledge in the core ontology. Hence,

the move towards a knowledge based system has significant

potential to improve the maintainability of the overall in-car

map processing system.
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