
A Knowledge Architecture Layer for Map Data in Autonomous Vehicles

Haonan Qiu∗†, Adel Ayara∗, Birte Glimm†
∗BMW Car IT GmbH, Ulm, Germany, Email: firstname.lastname@bmw.de

†Institute of Artificial Intelligence, University of Ulm, Germany, Email: firstname.lastname@uni-ulm.dm

Abstract— Autonomous Driving (AD) systems use digital
maps as a virtual sensor to perceive the environment around
the car. As the field of digital maps continues to evolve, existing
solutions face new challenges such as integration ability for new
map formats (e.g., High Definition maps), supporting onboard
and offboard deployment and providing a generic interface to
access the road environmental knowledge. In this paper, we pro-
pose a knowledge architecture layer for environmental modeling
and distinguish between low-level ontologies based on various
map data formats and a high-level ontology for representing
a generic road environment. The adequacy of the modeling
is validated over two use cases: lane change notification and
logical inconsistency detection. The performance is measured
using real map data and it shows encouraging results for future
development within onboard and offboard systems.

I. INTRODUCTION

Autonomous Driving (AD) systems use digital maps as a
virtual sensor to anticipate the road ahead, understand and
navigate the vehicles’ environment and make decisions [1].
Current implementations of map data processing are tightly
coupled to the underlying raw data formats, which results in
poor extensibility. Applications and protocols using standard
definition (SD) maps such as the Advanced Driver Assistance
System Interface Specification (ADASIS) v2 cannot easily be
extended to handle High Definition (HD) maps [2]. Besides
the different requirements for HD and SD maps, it is also not
clear how to implement a solution in an interoperable way
using data from different map providers, e.g., TOMTOM,
HERE, or Google. Moreover, HD maps have to be deployed
not only onboard but also on the backend to ensure contin-
uously updated map data. These requirements are the new
challenges for map data and related applications and call for
a solution that provides i) a semantic representation of map
data to break the dependency of raw data; ii) a solution that
can be deployed onboard and offboard; iii) a generic interface
to access the road environmental knowledge.

To address these challenges, we propose an ontology-
based approach with rules to empower, in particular, au-
tonomous vehicles with environmental cognition using map
data. Guarino et al. [3] provide a summarized definition of
ontologies as a formal, explicit specification of a shared
conceptualization. The use of ontologies to describe se-
mantic, temporal, and spatial aspects of the environment
for robotics is well studied [4]. Ontologies structure the
robotic environment knowledge by describing the individual
elements and relationships in the domain using unary and
binary predicates. An ontology constructed from different
levels of abstraction is able to integrate different ontological

approaches in a unified system, and it is commonly practised
in Medical and Biomedical domains [5] and Context-Aware
Systems[6], [7]. Inspired by multi-levels of ontological ab-
straction, we describe our approach for processing map data
in autonomous vehicles. The contributions of this paper can
be summarized as follows:

– We propose a knowledge architecture with two levels of
abstraction to solve the map data integration problem.

– We provide a generic high-level ontology to represent
road environmental knowledge.

– We show the usage of datalog rules for knowledge
transfer and maneuver decision making.

Our prototype called SmartMapApp uses the developed
OWL 2 RL [8] ontologies and datalog rules [9]. The
evaluation employs two use cases in a highway scenario:
lane change notification and inconsistency detection and we
further present performance results for three reasoning tasks.

The remainder of this paper is organized as follows: Sec-
tion II presents related works. In Section III, we discuss the
ontology-based SmartMapApp prototype, which is evaluated
in Section IV. Section V concludes the paper.

II. RELATED WORK

An environmental model is needed for AD systems to
be aware of the situation around a vehicle. Ontology-based
road environment modeling has gained growing interest
in the Intelligent Transportation Systems community [10].
The developed road models provide different features with
respect to specific application requirements.

Hummel et al. developed an ontology for road and in-
tersection understanding [11], which provides background
knowledge for vision sensors and digital maps. Ontologies
have further been used for representing road intersections for
autonomous vehicles [12]–[14]. An ontology-based driving
decision making system was built within safety Advanced
Driver Assistance Systems (ADAS) on uncontrolled inter-
sections. The constructed ontologies contain three main
ontologies: the map, the control, and the core ontology [15].
These approaches allowed for modeling the road environ-
ment as well as reasoning over road situations. Armand et
al. [16] proposed a framework for ontology-based situation
understanding, where digital maps are used to provide prior
knowledge about the environment. Combined with the appli-
cation of ontologies, the system can provide meaning to the
relationship between sensor perceived road objects.

The mentioned approaches represent the road environment
using ontologies to provide both an explicit and an implicit



Fig. 1. System architecture with two levels of ontologies

specification of context information for vehicles. However,
their main limitation is the inability to take the integration
of different map data formats into account, as well as the
dynamic aspect of map data (e.g. car positions). Suryawanshi
et al. [17] also proposed a separation of the underlying data
structures and the represented knowledge in their work for
representing SD map data in vehicles, but their work is
neither generalized to different map formats nor is the spatial
topology of lanes considered.

III. ONTOLOGY-BASED SMARTMAP

Figure 1 shows the proposed knowledge architecture. We
next discuss the introduced components and then describe of
the designed two-level ontologies and rules in more detail.

A. Architecture

The map data layer comprises the external SD and HD
map data sources and populates the low-level ontologies that
represent the different map data formats.

The knowledge layer consists of two levels of ontologies.
Each ontology contains its own schema, facts, and rules.
This makes the architecture flexible with respect to the
addition of diverse types of map data formats. The low-
level ontologies represent the raw map data. Each ontology
in this level describes a specific map data format and related
knowledge extraction tasks. A single high-level ontology is
used to represent the generic concepts and relations of maps.
This ontology is used at the reasoning level for answering
diverse queries for ADAS functions. Entities in the high-level
ontology are produced by rules using facts in a low-level
ontology. A SPARQL query interface provides a generic and
unified access interface to retrieve knowledge and the queries
can either be predefined or composed on-the-fly.

The reasoning engine takes the schema and rules as input
and deals with three types of tasks: i) processing the low-
level ontologies, ii) populating the high-level ontology and
iii) generating dynamic vehicle related knowledge. Rules

Fig. 2. Overview of the high-level ontology, where hasNBLane abbreviates
hasNeighboringLane and hasLeftLM abbreviates hasLeftLaneMarking

also deal with task i) and ii) and are defined in each low-
level ontology using concepts and relationships related to the
corresponding map formats. Rules for task iii) are defined
based on concepts and relationships representing the road
environment on a high level.

The function layer consists of various ADAS functions
such as lane change assistance and turning assistant, which
can easily be build on top of the knowledge layer through
the SPARQL query interface.

B. High-Level Ontology

Figure 2 gives an overview of the high-level map ontology.
Lane is the main concept as it provides the basic building
block for describing the road environment. Each Lane is
characterized by a set of Points with coordinates (x, y) in the
World Geodetic System (WGS) 84 format. Each Lane has a
left LaneMarking and a right LaneMarking. The important
attributes of LaneMarking are openToLeft and openToRight,
which are used to infer whether the vehicle is allowed to
change Lane(s). RoadPart(s) are used to describe the topol-
ogy of roads, and each RoadPart has its own Lane(s). Cur-
rentLocation is described by CurrentPosition. CurrentPosition
and CurrentLane are dynamic concepts related to periodically
updated vehicle positions. A Route can be constituted of
Lane(s), RoadPart(s) or both.

Since vehicles travel longitudinally in a single lane and
move laterally when changing lanes, we classify the lane
relations into two categories, namely lateral relations and
longitudinal relations. With these two types of relations,
we can represent a graph-based environmental model using
lanes. The lateral relations of lanes describe the possible ma-
neuvers between lanes in lateral (left/right) direction. These
relations are further generalized as a “neighboring” relation.
We model hasLeftLane and hasRightLane as sub-properties
of hasNeighboringLane. Furthermore, it is not only necessary
to know about the existence of neighboring lanes, but also
whether crossing to them is allowed. This information is
usually encoded in lane markings. The longitudinal relations
of lanes describe the reachability of lanes in longitudinal



Fig. 3. Aggregation of low level lanes into high-level lanes

direction within continuous lanes. We further divide this
type of relation into successor and predecessor relations. As
for the lateral relations, we model hasPredecessorLane and
hasSuccessorLane as sub-properties of hasNextLane.

C. Low-Level Ontologies

The low-level ontologies represent different map data
formats. For example, HD map data in the NDS format is
organized into building blocks and the relations between the
concepts LaneGroup, Lane, and LaneBoundary represent the
lane-level topology. The concept Feature and the relations of
its entities represents the road-level topology. The SD map
data based on the ADASIS v2 protocol, on the other hand,
represents roads as collections of nodes (road segments).

Even though the low-level ontologies do not necessarily
share common concepts, the entities of the ontologies can
be transferred to the common high-level ontology resulting
in a unified knowledge base. For example, the entities of
the concept Feature from the ontology based on NDS data
and the entities of the concept Node in ontology based on
the ADASIS V2 protocol are represented by entities of the
concept RoadPart in the high-level ontology.

D. Reasoning

Reasoning plays a central role in our architecture and
is used to transfer entities from low-level to high-level,
thereby aggregating lanes and lane markings, and to provide
the needed knowledge for the customer functions to take
decisions, e.g., when to notify the driver to change lanes in
order to exit a highway.

IV. EVALUATION

In this section, we analyse the effects of the above
mentioned lanes and lane markings aggregating and then we
evaluate the adequacy of the ontologies for the use cases
of lane change notifications and inconsistency detection.
Finally, we present the experimental results for the tasks of
map initialization and current lane identification.

A. Lane and Lane Marking Aggregation

Figure 3 shows an example of lane aggregation based
on the NDS specification. LaneGroup1 and LaneGroup2
both contain two lanes and the same side of lanes in each
lane group is contiguous and longitudinally connected. For
instance, Lane22 is the contiguous successor lane of Lane12
and they are longitudinally connected. The difference of
LaneGroup1 and LaneGroup2 is that Lane12 has a guardrail
as lane boundary, while Lane22 does not. In this case, human
beings perceive Lane12 and Lane22 as one lane regardless
of the presence of guardrails. We followed the human per-
ception for our modeling by applying the aggregation rules,
which also reduces the amount of data. We overall use three
aggregation rules and Listing 1 shows the rule (in Datalog
syntax [18]), which aggregates the low-level entities Lane12
and Lane22 into the high-level entity Lane2 and Lane11 and
Lane21 into Lane2.

Figure 4 shows the result of the aggregation rules over
map data covering 63.75 km2, considering motorway and
urban scenarios. The number of high-level Lane entities
decreases after the aggregation process in both scenarios. For
motorways, the reduction rate of the Lane and LaneBoundary
entities can reach 50% which helps to decrease the amount
of stored data, and increases processing efficiency. In the
urban scenario, the ratio is less visible due to the nature of
topology and geometry of the roads inside the city.

B. Use Case: Lane Change Notification

A lane change is defined as a driving maneuver that shifts
a vehicle from one lane to another where both lanes have
the same travel direction. Consider the following scenario in
which a vehicle is driving on a highway. The AD system
realizes that the vehicle will need to exit the highway in 3
km (foresight parameter) based on the route. However, the
exit lane is not longitudinally reachable by the lane which the
vehicle is on. Then, the AD system generates a lane change
notification in order to prepare the driver to exit the highway.

Figure 5 illustrates a simple example of the above de-
scribed scenario: Lane1–Lane5 are high-level Lane entities.
The vehicle is driving in Lane2. As Lane4 is the successor
lane of Lane2, they are in the hasNextLane relationship.
Lane1 has two successor lanes: Lane4 and Lane3, hence,
Lane1 is in hasNextLane relation with Lane4 and Lane3.

According to the given route, the vehicle has to reach
Lane3 from Lane2. The distance from the current position
of the vehicle to the starting point of Lane5, which is the
neighbouring lane of Lane3, is 3 km (foresight parameter).
The lane marking between Lane2 and Lane1 is a dashed line,
interpreted as being crossable. This indicates that the vehicle
is allowed to perform a lane change and the AD system sends
a lane change notification: move one lane to the right.

The key ontology components for aggregation are: has-
NeighbouringLane, hasNextLane, and the combination of
both. The aggregation uses thirteen rules and a SPARQL
query (see Listing 2), which checks if a lane change is
possible and needed: i) The current lane cannot reach a
part of the route via the hasNextLane relation, we call that



Lane[?highLane]:-
LaneGroup[?lg1], direction[?lg1, ?dir], numLane[?lg1, ?numLane], hasLane[?lg1, ?lowlane1],
hasLaneConnElemType[?lowlane1, ?laneType], index[?lowlane1, ?index], hasLaneBoundary[?lowlane1, ?lb1],
numParallelElem[?lb1, ?numPara], contains[?lb1, ?paraElem1], numSequentialElem[?paraElem1, ?numSeq],
consistsOf[?paraElem1, ?seqElem1], openToCurbSide[?seqElem1, ?openToCurbSide],
openToMiddleSide[?seqElem1, ?openToMiddleSide],

LaneGroup[?lg2], direction[?lg2, ?dir], numLane[?lg2, ?numLane], hasLane[?lg2, ?lowlane2],
hasLaneConnElemType[?lowlane2, ?laneType], index[?lowlane2, ?index], hasLaneBoundary[?lowlane2, ?lb2],
numParallelElem[?lb2, ?numPara], contains[?lb2, ?paraElem2], numSequentialElem[?paraElem2, ?numSeq],
consistsOf[?paraElem2, ?seqElem2], openToCurbSide[?seqElem2, ?openToCurbSide],
openToMiddleSide[?seqElem2, ?openToMiddleSide],

BIND(SKOLEM("highLane", ?dir, ?numLane, ?laneType, ?index) AS ?z),
BIND(IRI(CONCAT("http://www.bmw-carit.de/SmartMapApp/High#", str(?z))) AS ?highLane).

Listing 1. The rule used to aggregate the low-level lanes into high-level lanes

427

604

1053

1890

896

1235
1329

2201

0

500

1000

1500

2000

2500

mortorway lane motorway lane

boundary

urban lane urban lanboudary

Aggregation of Lane and Lane Boundary

high level low level

Fig. 4. Aggregation over lanes and lane boundaries in motorway and urban
scenarios

Fig. 5. A simple example of lane change scenario with the relations of
lanes, hasNextLane and hasNBlane (hasNeighbouringLane)

part of the route the target lane; ii) the current lane is in
hasNeighbouringLane relation with another lane, and it is
allowed to move to this lane; iii) the neighbouring lane of
the current lane is in a hasNextLane relation with the target
lane; iv) the distance from the current position of the vehicle
to the starting point of the neighbouring lane of the target
lane is smaller than or equal to the foresight parameter.

One of the advantages of using rules is the ability to
provide explanations. The generated explanation for the
given example is: i) Lane3 is part of the route, but it is

SELECT ?rd ?inbtwl1 ?ibLength ?nnbl1
?targetLane ?ibtwtl ?d

WHERE {
?cl :remainingDistance ?rd.
?currlane :hasNotReachableRS ?targetLane ;

:hasNBLane ?nnbl1 .
?nnbl1 :hasNextLane ?targetLane, ?inbtwl1 .
?inbtwl1 :hasNextLane ?targetLane ;

:length ?ibLength .
:foresightLaneChangeDis :hasValue ?value
{ SELECT ?currlane (SUM(?length) AS ?ibtwtl)

WHERE {
?currlane :hasNotReachableRS ?highLane ;

:hasNBLane ?nextNBLane .
?nextNBLane :hasNextLane ?highLane ,

?inbetweenLane .
?inbetweenLane :hasNextLane ?highLane ;

:length ?length .
} GROUP BY ?currlane

} BIND((?rd +?ibtwtl) AS ?d)
FILTER(?d <= ?value)

}

Listing 2. SPARQL query to check if a lane change is possible and needed;
hasNBLane stands for hasNeighbouringLane and hasNotReachableRS stands
for hasNotReachableRouteSegment. Prefixes are omitted.

not reachable from Lane2 via the hasNextLane relation; ii)
Lane2 and Lane1 are in hasNeighbouringLane relation and
it is allowed to cross from Lane2 to Lane1; iii) the distance
from the current position to the lane change point is 3 km,
which is equal to the foresight parameter.

C. Use Case: Logical Inconsistency Detection

Fusing the data from vehicle sensors and the map can help
to form a consistent environmental view of the surroundings
of the vehicle. The AD system reasons on the generated
environmental model to decide which actions are appropriate
for specific driving situations. This use case shows that the
proposed high-level ontology enables us to detect logical
inconsistencies by reasoning on the environmental model
based on the vehicle sensor data and the map. We illustrate
this by a false emergency break scenario (see Fig. 6), which
might result from mislocalization of the car’s position due
to, for example, noisy or non-available sensor data.

As shown in Fig. 6, the vehicle E is driving in Lane2
following vehicle C2, and vehicle C1 is driving in Lane1.
Due to the non-availability of some sensor data, E (in grey) is
mislocalized in Lane1 instead of Lane2. The object tracking



system (OTS) of E provides a list of positions of tracked
objects (C1 and C2) around E. The provided positions are
relative to the position of E as E is the origin of the vehicle
coordinate system. Because E is mislocalized in Lane1 and
the calculated distance of E to C1 is less than the distance
threshold of the autonomous emergency braking system (e.g.,
80 m), the braking system of E would stop the vehicle
immediately to avoid a collision with C1 “in front”, although,
in reality, E is driving in Lane2 with a safe distance to C2.

Fig. 6. Illustration of the environmental model of the ego vehicle based
on the raw data provided by the Object Tracking System (OTS). The main
relations of this model are isInFOf (isInFrontOf), isInRFOf (isInRightFrontOf),
isIn, hasDRLane (hasDirectRightLane) and isA

This false emergency break could be avoided by creating
an ontology for sensor data fused with the map data as shown
in Fig. 6. The isInRightFrontOf, isInFrontOf and isIn relations
are derived from sensor data and represent, respectively, that:
i) C1 is in the right front lane of E; ii) C2 is in front of E
on the same lane; iii) E is localized in Lane1. According
to the map, the lane (Lane1) where E is localized is the
rightmost lane. This contradicts the derived knowledge of
isInRightFrontOf, which means that a car is in the right front
lane of E, because it is impossible to have a lane at the
right-hand side of the rightmost lane. Listing 3 shows the
rule classifying this inconsistent knowledge as a fault.

D. Performance

For evaluating the performance of the proposed frame-
work, we implemented SmartMapApp. The prototype cur-

Fault[?fault] :-
Car[?car1], isIn[?lane], RightMostLane[?lane],
Car[?car2], isInRightFrontOf[?car2, ?car1],
BIND(SKOLEM("fault", ?car1, ?car2, ?lane) AS ?z),
BIND(IRI(CONCAT("http://www.bmw-carit.de/

SmartMapApp/High#", str(?z))) AS ?fault).

Listing 3. The rule for fault detection

TABLE I
NUMBER OF TRIPLES (#TRIPLES), LOW-LEVEL LANES (#LANES), AND

LANE BOUNDARIES (#LB) IN THE DATA SET AND THE COMPUTATION

TIMES IN MS FOR MAP INITIALIZATION (INIT), FIRST CURRENT LANE

(FIRSTPOS), AND OTHER CURRENT LANE (OTHERPOS) COMPUTATION

Data set #Triple #Lanes #LB init FirstPos OtherPos

1 23,647 187 374 1,558 78 19
8 104,708 897 1,794 5,356 158 35

16 429,702 3,156 6,312 49,000 4,811 59

0 0.5 1 1.5 2 2.5 3 3.5 4 5

·105

0

0.5

1

1.5

2

2.5

3

2.5

4

4.5

5
·104

No. Of Triples

Ti
m

e
(m

s)

Performance Test

Init
FirstPosCurrLane
OtherPosCurrLane

Fig. 7. Computation time for map initialization, current lane identification
for the first position and the remaining positions in a trace

rently uses two types of low-level map ontologies: i) HD
map data based on the NDS standard; ii) SD map data
based on the ADASIS protocol [17]. We use 14 rules
for processing the low-level ontologies and 27 rules for
computing inferences over the high-level ontology.

The used map data covers 63.75 km2 and is split into 16
data sets for testing. Table I shows statistics of the smallest
(#1), the medium (#8) and the largest (#16) data set. The
set of positions we used for simulation are represented by
WGS84 coordinates stored in JSON files. For each data set,
we used a trace of 10 positions to evaluate the application.
SmartMapApp uses RDFox 1.6.0 [18] with the provided
Java APIs. The index strategy of the datastore is set to
”par-complex-nn”. Six threads are allocated for importing
the data and reasoning. The evaluation was performed on
a 64-bit Ubuntu virtual machine with 4 Intel(R) Core(TM)
i7-6820HQ CPUs @ 2.70GHz running at 33MHz with 15
GB memory. We record the computation time after doing a
warm-up run by executing the tasks 3 times sequentially.

Figure 7 shows the computation time required for per-
forming the reasoning tasks outlined in Algorithm 1. On the
x-axis, we report the number of triples for the 16 data sets.
On the y-axis, we report the time for completing certain
steps of Algorithm 1: (i) map initialization (Line 1), which



Algorithm 1: Current lane identification
input : Pl: a set of points in lanes,

cp1 . . . cpn: a sequence of car positions, n > 0
output: l1 . . . ln: the lanes for the given car positions

1 INITIALIZE()
2 pmin = FINDCLOSESTPOINT(Pl, cp1)
3 l1 = FINDRELATEDLANE(pmin)
4 for i = 2 . . . n do
5 nbLanes = FINDNBLANE(li−1)
6 PnbL = COLLECTPOINTS(nbLanes)
7 pmin = FINDCLOSESTPOINT(PnbL, cpi)
8 li = FINDRELATEDLANE(pmin)

includes data import, aggregation and transfer to the high-
level ontology; (ii) identification of the lane for the first
received position (Lines 2 and 3), and (iii) identification of
the lanes for the remaining positions in the trace (Lines 5–8).
As an optimization, the search scope is first limited to the
points of the neighboring lanes of the previously identified
lane (Lines 5 and 6) and then the lane for the closest point to
the car position is identified (Lines 7 and 8). Table I provides
the detailed results. We group the related actions (importing
data and rules) into one transaction for each task, and the
computation time is measured for each transaction.

When the size of the data set increases from 23,647 (#1)
to 429,702 (#16), the required time for the current lane
identification for the first position increases dramatically
from 78 ms to 4,811 ms. This is due the fact that the number
of points involved in this calculation increases as the number
of points in the data set increases. However, the computation
time fluctuates slightly between 16 ms to 59 ms as shown
in the Fig. 7. This is due to the fact that the number of used
points in surrounding lanes of the previous identified current
lane remains almost the same, hence the computation time
varies by a small margin. The result shows, however, that
our approach can reach the required performance.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a knowledge architecture
for map data in autonomous vehicles using two levels of
ontology abstraction. The presented approach is able to
provide: i) a semantic representation of map data, which
breaks the dependency of raw data formats; ii) a solution
that can be deployed onboard and offboard; iii) a generic
interface to access the road environmental knowledge. Based
on developed ontologies, we implemented the SmartMapApp
prototype. The adequacy of the model is validated over two
use cases in a highway scenario: lane change notification
and logical inconsistency detection. The results show that the
knowledge of the road environment helps to form a consistent
environmental model, which facilitates autonomous vehicles
to make proper driving decisions.

The road environment modeling in this paper can further
be enhanced by integrating the concept of intersections. The
current approach can also not yet deal with errors in digital

maps, such as road attribute errors or geometric errors and a
transaction-based knowledge integrity mechanism still needs
to be integrated into the current architecture. We further plan
to extend the knowledge layer to cover further map data and
offboard map formats and to test the approach in ROS (Robot
Operating System) [19], we plan to re-implemented the Java
Application SmartMapApp in C++.

REFERENCES

[1] M. Maurer, J. C. Gerdes, B. Lenz, and H. Winner, Autonomous
Driving. Springer, 2016, vol. 10.

[2] L. Zheng, B. Li, H. Zhang, Y. Shan, and J. Zhou, “A high-definition
road-network model for self-driving vehicles,” ISPRS Int. J. of Geo-
Information, vol. 7, no. 11, p. 417, 2018.

[3] N. Guarino, D. Oberle, and S. Staab, “What is an ontology?” in
Handbook on ontologies. Springer, 2009, pp. 1–17.

[4] R. Gayathri and V. Uma, “Ontology based knowledge representation
technique, domain modeling languages and planners for robotic path
planning: A survey,” ICT Express, vol. 4, no. 2, pp. 69 – 74, 2018.

[5] C. Rosse and J. L. Mejino, “The foundational model of anatomy
ontology,” in Anatomy Ontologies for Bioinformatics. Springer, 2008,
pp. 59–117.

[6] P. Chahuara, F. Portet, and M. Vacher, “Context aware decision system
in a smart home: knowledge representation and decision making using
uncertain contextual information,” in 4th Int. Workshop on Acquisi-
tion, Representation and Reasoning with Contextualized Knowledge
(ARCOE-12), 2012, pp. 52–64.

[7] C. Villalonga, M. Razzaq, W. Khan, H. Pomares, I. Rojas, S. Lee, and
O. Banos, “Ontology-based high-level context inference for human
behavior identification,” Sensors, vol. 16, no. 10, p. 1617, 2016.

[8] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and
S. Rudolph, “OWL 2 Web Ontology Language: Primer (2nd Edition),”
http://www.w3.org/TR/owl2-primer/, 27 Oct 2009.

[9] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases.
Addison-Wesley, 1995.

[10] M. Katsumi and M. Fox, “Ontologies for transportation research:
A survey,” Transportation Research Part C: Emerging Technologies,
vol. 89, pp. 53 – 82, 2018.

[11] B. Hummel, W. Thiemann, and I. Lulcheva, “Scene understanding of
urban road intersections with description logic,” in Dagstuhl Seminar
Proc., 2008.

[12] R. Regele, “Using ontology-based traffic models for more efficient
decision making of autonomous vehicles,” in 4th Int. IEEE Conf. on
Autonomic and Autonomous Systems (ICAS’08), 2008, pp. 94–99.

[13] M. Hülsen, J. M. Zöllner, and C. Weiss, “Traffic intersection situation
description ontology for advanced driver assistance,” in IEEE Intelli-
gent Vehicles Symposium, 2011, pp. 993–999.

[14] M. Hülsen, J. M. Zöllner, N. Haeberlen, and C. Weiss, “Asynchronous
real-time framework for knowledge-based intersection assistance,”
in 14th Int. IEEE Conference on Intelligent Transportation Systems
(ITSC), 2011, pp. 1680–1685.

[15] L. Zhao, R. Ichise, Z. Liu, S. Mita, and Y. Sasaki, “Ontology-
based driving decision making: A feasibility study at uncontrolled
intersections,” IEICE Transactions on Information and Systems, vol.
E100.D, no. 7, pp. 1425–1439, 2017.

[16] A. Armand, J. Ibanez-Guzman, and C. Zinoune, Digital Maps for
Driving Assistance Systems and Autonomous Driving. Springer, 2017,
pp. 201–244.

[17] Y. Suryawanshi, H. Qiu, A. Ayara, and B. Glimm, “An ontological
model for map data in automotive systems,” in IEEE Int. Conf. on
Artificial Intelligence and Knowledge Engineering, 2019, pp. 140–147.

[18] Y. Nenov, R. Piro, B. Motik, I. Horrocks, Z. Wu, and J. Banerjee,
“RDFox: A highly-scalable RDF store,” in Int. Semantic Web Conf.
Springer, 2015, pp. 3–20.

[19] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.


