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Abstract

In this paper, we would like to present Grounded (Lifted) Lin-
earizer, a hierarchical task network (HTN) planning system
which won the Partial Order (PO) Agile and Satisficing tracks
of the International Planning Competition 2023 on Hierarchi-
cal Task Network (HTN) Planning. This system consists of
two parts. The first part is a preprocessor developed in house
which transforms a POHTN problem into a total order (TO)
one and which is the main contribution of this paper. The sec-
ond part is an existing HTN planner. The outstanding per-
formance of our assembled planning system thus serves as an
evidence for how our preprocessor can enhance the efficiency
of other existing planners.

Introduction

In this paper, we present Grounded and Lifted Linearizer, the
systems solving hierarchical task network (HTN) planning
problems (Bercher, Alford, and Holler 2019) which partici-
pated in the International Planning Competition (IPC) 2023
on HTN Planning and won the Partial Order (PO) Agile and
Satisficing tracks. Generally speaking, the systems work as
follows: they first transform an input POHTN planning prob-
lem into a fotal order (TO) one on the grounded (resp. lifted)
level while ensuring that a solution to the transformed prob-
lem is also a solution to the original one. After that, a third-
party HTN planner, which we call the inner planner, is in-
voked to solve the obtained TO problem. If this second step
fails, i.e., the inner planner reports that the TO problem is
unsolvable, a third-party HTN planner, called the outer plan-
ner, which might or might not be the same one used as the
inner planner, is called to solve the original PO problem.
Notably, the novelty of the systems is the linearization tech-
nique, and the actual process of solving an HTN problem is
still done by other existing HTN planners.

In the remaining section, we will give more details about
the process of linearizing and the configurations with respect
to the agile track and the satisficing track.

Linearizing PO Problems

There are two variants of our linearizing technique. The first
one linearizes grounded PO problems, and the other is tar-
geted at lifted problems. Both variants share the same idea.
That is, for each method (either grounded or lifted), we first
infer the precondition and effects of each compound task in

it, and then, the method is linearized according to those in-
ferred preconditions and effects.

Linearizing Grounded Problems

For the variant which linearizes grounded problems, we em-

ployed two approaches for inferring compound tasks’ pre-

conditions and effects. The first approach is easy-to-compute
but less informed while the other (Olz, Biundo, and Bercher

2021; Olz and Bercher 2022) has higher complexity but can

compute more precise preconditions and effects. For conve-

nience, we call the former one the simple inference approach
and the latter complex inference approach.

More specifically, for each compound task, the simple in-
ference approach regards the precondition and effects of ev-
ery action which can be obtained from its decompositions as
its own precondition and effects, i.e., it is a simple collection
of all actions that can be reached. For more details about this
simple inference approach, we refer to our previous work
(Wu et al. 2022). Contrastively, the complex inference ap-
proach is the one developed by Olz and Bercher (2022) for
PO problems which is based on the previous work by Olz,
Biundo, and Bercher (2021) for TO problems and which fur-
ther rule out some impossible propositions in a compound
task’s inferred precondition and effects, on top of those com-
puted by the simple inference approach.

Having obtained preconditions and effects of compound
tasks, we can linearize each method in a PO problem by ex-
ploiting them. Note that the linearizing approach only lever-
ages the inferred preconditions and effects and is indepen-
dent of how they are obtained (i.e., by the simple inference
approach or the complex one). Informally, the linearizing ap-
proach can be summarized by the following two rules:

1) For any two tasks ¢; and t5 where ¢ adds a proposition
that is required by 5, we want to place ¢; in front of ¢4
so that ¢5 will more likely be applicable.

2) Ift; deletes a proposition that is required by ¢5, we would
like to place to before ¢ so that £; will have less chance
to be unapplicable.

For detailed implementation of the approach, we again refer

to our previous work (Wu et al. 2022).

For every method in a PO problem, we only generate one
linearization. In other words, the number of methods in the
linearized problem is identical to that in the original PO
problem. Furthermore, a linearized problem is guaranteed to



preserve at least one solution if for any two tasks ¢; and to
in any method in the original PO problem, the order on these
two tasks induced by the above two rules is consistent, i.e.,
t1 will not be put both before and after ¢ (Wu et al. 2022,
Thm. 4).

Linearizing Lifted Problems

When linearizing lifted problems, for each lifted method, we
instantiate each variable with a hypothetical instance of the
appropriate type. For variables of the same type, all are as-
sumed to be different instances from every other. Note that
the variables we instantiate are the parameters of the respec-
tive method which, as we will show later on, will be inher-
ited by the subtasks of this method (because the parameters
of every subtask are also the parameters of the method). This
thus ensures that we can reason on the inferred preconditions
and effects of the subtasks when linearizing the method.

A method m, whose instantiated counterpart is referred
to as m, has some subtasks. For each (abstract or primi-
tive) subtask, we apply the appropriate instantiated variable
from those applied to their parent, to produce an instanti-
ated counterpart for each lifted subtask. If the child refers
to a variable the parent does not refer to, a unique hypothet-
ical instance is used as instantiation. We perform the fol-
lowing two operations depending on whether a subtask is
primitive or not: 1) If the subtask is primitive, we instantiate
its precondition and effects with the appropriate hypotheti-
cal instances. For variables that do not appear in the primi-
tive task, a unique hypothetical instance is used as instantia-
tion. 2) If the subtask is compound, then for each method m’
that could be applied to it, the method is also instantiated as
m’ with the appropriate hypothetical instances in accordance
with the instantiation of the task. We repeat this instantiation
for methods and compound tasks that the original method
could decompose into, until we obtain a collection of in-
stantiated actions that this instantiated method m could have
decomposed to.

For all instantiated actions an instantiated task could even-
tually decompose into, we consider all instantiated effects
and preconditions as the effects and preconditions of the
task. For each subtask, we regard instantiated preconditions
and effects of every instantiated action which can be ob-
tained from its decompositions as its own precondition and
effects (i.e. using the simple inference approach). Having
obtained inferred preconditions and effects, we again use
the two-step process for linearizing grounded problems. The
lifted subtasks are ordered as their instantiated counterparts
would be. Anything instantiated is now discarded.

Configurations

Based on the linearizing approaches described above, we
developed three planning systems to participate in the IPC
2023 on HTN Planning:

1) Grounded-Simple-Linearizer,

2) Grounded-Complex-Linearizer, and

3) Lifted-Linearizer.

More specifically, all these systems participated the PO agile
track and the PO satisficing track. We did not participate in

the optimal track because a linearized problem might not
preserve any optimal solution to the original problem.
All systems consist of the following three components:
1) alinearizer that linearizes a PO problem,
2) an inner planner that solves the linearized problem, and
3) an outer planner that solves original PO problems if the
linearized problem has no solutions.

Grounded-Simple-Linearizer

This system participated in the (partial order) agile and the
satisficing track. For each track, we had three configurations
(i.e., 6 configurations in total). All 6 configurations used the
same linearizer and the same configuration of the outer plan-
ner, that is, only the settings of the inner planner were differ-
ent. More concretely, the linearizer of this system used our
linearizing technique for grounded problems with the sim-
ple inference approach. Both the inner and outer planners
were PANDA ; with the progression-based solver. The outer
planner used the relaxed composition (RC) heuristic (Holler
et al. 2018, 2020) with Fast Forward (FF) (Hoffmann and
Nebel 2001) as the inner heuristic, written RC(FF), in con-
junction with a weighted A* (WA") search with the weight
being two. The heuristic estimated the number of actions and
methods needed to reach a solution (i.e., the distance). The
g-value for the search is the mixture of action costs and de-
composition costs. The different settings of the inner planner
for each configuration are as follows.

Agile track In the first configuration, we adapted the RC
heuristic with Add (Bonet and Geffner 2001) as the inner
classical heuristic, written RC(Add), together with a greedy
best first search (GBFS) where a search node with the best
heuristic value is expanded. In the second configuration, we
used the RC(FF) heuristic with a GBFS. For the last one, we
used the heuristic RC(Add) together with a WA™ search with
the weight being 2 where the g-value is again the mixture of
action costs and decomposition costs. The heuristics used in
all configurations estimated the distance to a solution.

Satisficing track The settings of the inner planner for the
satisficing track are more complicated because the goal of
this track is to find a solution whose length is as closed to
that of an optimal solution as possible. To this end, we de-
sign a three-round search where each round aims at finding
a better solution than the previous one. Notably, the g-value
used in the search in all configurations for the satisficing
track is action costs.

Concretely, in the first configuration, we design a three-
round search. In the first round, we use the RC(Add) heuris-
tic, estimating the distance to a solution, with a greedy best
first search. If a solution is found in the first round, then the
inner planner will start the second round of search where we
use the RC(FF) heuristic (which again estimated the distance
to a solution) in conjunction with a weighted A" search with
the weight being two. In particular, in the second round of
search, we eliminate search nodes whose f-value is greater
than the cost of the solution found in the first round. This
ensures that if a solution is found in the second round of
search, then its cost is guaranteed to be smaller than that of
the solution found in the first round. Similarly, in the third



round of search, we again use the RC(FF) heuristic with a
weighted A" search except that the weight is 1.5 this time.

For the second configuration, we used the RC(FF) heuris-
tic (estimating the distance) with a weighted A" search with
the weight being 2 in the first round of search. In the sec-
ond round, we adapted the same setting except for reducing
the weight to 1.5. Lastly, in the third round, we used the RC
heuristic with Landmark Cut (Helmert and Domshlak 2009)
as the inner heuristic, written RC(LMC), which now esti-
mated the cost of action required to reach a solution and is
an admissible heuristic, with an A" search.

In the last configuration, we only do a single-round search
where we use the RC(LMC) heuristic with an A" search.

Grounded-Complex-Linearizer

This system participated in the agile and satisficing tracks as
well. It again has three configurations per track. All of them
share the same linearizer, which uses the complex inference
approach for grounded problems. The settings of the outer
and inner planners for each configuration are identical to the
respective one for the agile track except that the inner plan-
ner used is PANDADEALER (Olz, Holler, and Bercher 2023),
an advanced version of PANDA ; equipped with the dead-end
look-ahead technique (Olz and Bercher 2023) and the land-
mark technique (Holler and Bercher 2021; Holler 2023a)
which won all three total order tracks of the IPC 2023. It
uses the same complex inference approach (which thus al-
lows us to reuse the inferred preconditions and effects) and
is customized to solve TO problems more efficiently.

Lifted-Linearizer

The last system only participated in the agile track. However,
we intended to submit it to both tracks, but we forgot to reg-
ister it for the satisficing track. This system had three con-
figurations. All of these three configurations use the same
linearizer that works on lifted problems and the same outer
planner that is identical to the previous two. The setting of
the inner planner per configuration is as follows. In the first
one, we use Lilotane (Schreiber 2021) with Glucose 4 as the
SAT solver. In the second configuration, PANDA . with the
SAT-based solver (Behnke, Holler, and Biundo 2018, 2019a)
is used. For the last one, we also use PANDA ; with the SAT-
based solver except that it is now configured for finding op-
timal solutions (Behnke, Holler, and Biundo 2019b). Note
that all inner planners are based on SAT, and Lilotane works
on lifted problems.

Summary
Lastly, we provide a brief summary for our systems.

Agile track
e Grounded-Simple-Linearizer

+ Outer planner: PANDA ;
* Heuristic: RC(FF) (estimation: distance)
* Search: WA™ (w = 2, g-value is the mixture of action
costs and decomposition costs)

+ Inner planner: PANDA ;
* Configuration 1

- Heuristic: RC(Add) (estimation: distance)
- Search: GBFS

* Configuration 2
- Heuristic: RC(FF) (estimation: distance)
- Search: GBFS

* Configuration 3
- Heuristic: RC(Add) (estimation: distance)
- Search: WA" (w = 2, g-value is the mixture of ac-

tion costs and decomposition costs)
e Grounded-Complex-Linearizer

+ Outer planner: same as the simple version
+ Inner planner: PANDADEALER (Olz, Holler, and
Bercher 2023)
* All configurations are identical to the simple version
e Lifted-Linearizer

+ Outer planner: same as above
+ Configuration 1
* Inner planner: Lilotane
+ Configuration 2
* Inner planner: PANDA with SAT
+ Configuration 3
* Inner planner: PANDA ; with SAT (optimal version)

Satisficing track
e Grounded-Simple-Linearizer

+ Outer planner: same as that for the agile track
+ Inner planner: PANDA
* Configuration 1
- Round 1
- Heuristic: RC(Add) (estimation: distance)
- Search: GBFS
- Round 2
- Heuristic: RC(FF) (estimation: distance)
- Search: WA" (w = 2, g-value is action costs)
- Round 3
- Heuristic: RC(FF) (estimation: distance)
- Search: WA™ (w = 1.5, g-value is action costs)
* Configuration 2
- Round 1
- Heuristic: RC(FF) (estimation: distance)
- Search: WA”™ (w = 2, g-value is action costs)
- Round 2
- Heuristic: RC(FF) (estimation: distance)
- Search: WA™ (w = 1.5, g-value is action costs)
- Round 3
- Heuristic: RC(LMC) (estimation: action costs)
- Search: A” (g-value is action costs)
* Configuration 3
- Heuristic: RC(LMC) (estimation: action costs)
- Search: A" (g-value is action costs)
¢ Grounded-Complex-Linearizer

+ Outer planner: identical to the simple version
+ Inner planner: PANDADEALER (Olz, Holler, and
Bercher 2023)
* All configurations are identical to the simple version



Domains

Planner Score Barman Monroe (FO) Monroe (PO) PCP Rover Satellite Transport Cockpit Woodworking Colouring
G Lé"?:;g;_l) 7.60238 (197)  0.66 (14)  0.94 (24) 070(18)  0.82(14) 0.86(19) 098(25) 026(12) 1.00(29)  0.70 (21) 0.69 (21)
Linearizer
(G, C, Config-2) 7.47407 (189) 0.73 (15) 0.94 (24) 0.64 (16) 0.82 (14) 0.85(18) 1.00 (25) 0.17 (8) 1.00 (29) 0.63 (19) 0.69 (21)
Linearizer 5 47753 (1o4) 060(13)  0.96 (24) 0.66(17)  0.82(14) 081(19) 1.00(25) 026(12) 1.00(29)  0.70 (21) 0.66 (20)
(G, S, Config-1)
Linearizer
(G, S, Config-2) 6.96385 (176)  0.54 (11) 0.84 (21) 0.56 (14) 0.82 (14) 0.83(18) 1.00 (25) 0.15(7) 1.00 (29) 0.57 (17) 0.66 (20)
Linearizer
(G.C. Config3) 0:92736(176) 050(10) 0,90 (23) 0.60(15)  0.82(14) 0.75(16) 1.00(25) 0.19(9)  1.00 (29) 0.50 (15) 0.66 (20)
Linearizer
G.5, Config.3) 676902(172) 050(10) 08421 052(13)  0.82(14) 0.73(16) 1.00(25) 0.20(9)  1.00 (29) 0.50 (15) 0.66 (20)
1(?;];?;’;3 6.46739 (171)  0.15(3)  0.91(23) 0.75(19)  0.82(14) 0.43(10) 099 (25) 033(15)  1.00 (29) 0.42 (13) 0.66 (20)
(E{;N;?P% 6.30870 (167) 0.19(4)  0.96 (24) 0.72(18)  0.82(14) 027(7) 09725 032(14) 1.00 (29) 0.39 (12) 0.66 (20)
(E‘;N;‘?Pi; ;\) 6.28603 (166)  0.15(3)  0.95(24) 0.66(17)  0.82(14) 037(9 09925 029(13)  1.00 (29) 0.39 (12) 0.66 (20)
‘(*:;f)s 473026 (118)  0.15(3) 044 (11) 0.52(13)  059(10) 0.79(16) 1.00 (25) 0.32(13)  0.66(19) 0.00 ( 0) 0.27 (8)
SIADEX 217641 (73) 0.62(20)  0.26(8) 0.04 (2) 0.00(0) 031(14) 08325 003(1) 0.00(0) 0.09 ( 3) 0.00 (0)
Total 10.0000 (261) 1.00 (20)  1.00 (25) 1.00(25)  1.00(17) 1.00(20) 1.00(25) 1.00(40)  1.00 (29) 1.00 (30) 1.00 (30)

Table 1: The performance scores of all participating planners in the satisficing track together with the number of problem
instances solved by them (written within the parentheses in each cell). The configurations of each planner are written within
the parentheses below the name of the respective planner. For our planner (Linearizer), the letter G refers to the version of
the linearization technique that works on grounded problems, and the letter S (C) refers to the simple (complex) approach for
inferring compound tasks’ preconditions and effects. For the PANDA family, “agl” and “sat” refer to the agile and the satisficing
track, respectively, “gas” means the greedy A" search algorithm. “ff”” and “lmc” are the heuristics RC(FF) and RC(LMC).

Domains
Planner Score Barman Monroe (FO) Monroe (PO) PCP Rover Satellite Transport Cockpit Woodworking Colouring
G Lsi“?;;zfz_z) 7.03533 218) 0.81(18) 057 (24) 04421)  0.82(14) 1.00(20) 1.00(25) 052(23) 093(29)  063(24) 030 (20)
Linearizer
GO Coniaay T01996222) 085(18) 050 24) 04321)  0.82(14) 1.00(20) 1.00(25) 054(24) 093(29)  064(26) 03121
Lincarizer ¢ 20761 217) 075(16)  0.49 (24) 034(18)  0.82(14) 1.00(20) 1.00(25) 063(27) 093(29)  062(23) 03121
(G, C, Config-1)
Linearizer
GO Coniay) 680485211 075(16) 049 24) 032(17)  0.82(14) 100(20) 1.00(25) 0.66(28) 093(29)  0.61(23) 0311
G Lsi“ec"glifggr_l) 6.81972(210) 0.70(16)  0.57 (24) 035(17)  0.82(14) 099(20) 1.00(25) 054(23) 093(29)  0.61(22)  0.30(20)
Linearizer = ¢ c4191 207y 051(12)  0.57 24) 033(17)  0.82(14) 100(20) 1.00(25) 057(24) 093(29)  0.60(22)  0.30 (20)
(G, S, Config-3)
(LL‘gf)fgzgerl) 6.44606 (193) 0.70(17)  0.51(18) 0.6021)  0.00(0) 097(20) 1.00(25) 078(34) 097(29)  0.91(29) 0.00 (0)
(LL‘nggzgerz) 6.24541 (196) 0.75(18)  0.43 (18) 048(21)  0.00(0) 099(20) 1.00(25) 0.88(39) 098(29)  0.74 (26) 0.00 (0)
(f‘gid:g;eg) 520113 (182) 0.74(18)  0.38(18) 040(21)  0.00(0) 058(19) 1.00(25) 0.64(31) 085(29)  0.60(21) 0.00(0)
f’ﬁ;gﬁmg 501524 (171)  0.08(3)  0.50 (23) 036(19)  0.82(14) 036(10) 09925 034(15) 092(29)  036(13) 029 (20)
(f: ‘;N;‘:P;;) 5.00565 (167)  0.10(4)  0.53 (24) 036(18)  0.82(14) 032(7) 10025 030(14) 091(29)  036(12) 030 (20)
(E‘;N;?P]'; 2) 495080 (166) 0.08(3) 050 (24) 034(17)  082(14) 038(9) 10025 026(13) 09029  039(12) 029 (20)
(?Slees) 322657 (119) 0.05(2) 021 (11) 026(13)  038(12) 044(15 10025 020(13) 0.58(19)  0.00(0) 0.12(9)
SIADEX 303256 (73) 0.92(20)  0.24(8) 005(2)  0.00(0) 070(14) 10025 003(1) 000(0)  0.10(3) 0.00 (0)
Total 10.0000 261) 1.00(20) 100 (25) 1.0025)  1.00(17) 1.00(20) 1.00(25) 1.00(0) 1.00(29) 1.0 (30) 1.00 (30)

Table 2: The performance scores of all participating planners in the agile track. For our planner (Linearizer), the letter “L”
within the parentheses refers to the lifted version.



Simple Inference Approach

Complex Inference Approach

Agile Satisficing Agile Satisficing
Total Config-1 Config-2 Config-3 Config-1 Config-2 Config-3 Config-1 Config-2 Config-3 Config-1 Config-2 Config-3
Barman 20 3 1 6 3 5 8 0 0 0 0 0 7
Monroe (FO) 25 8 8 8 8 8 9 6 6 6 6 6 6
Monroe (PO) 25 5 5 5 5 5 12 3 3 3 3 3 5
PCP 17 17 17 17 17 17 17 17 17 17 17 17 17
Rover 20 0 0 0 0 1 4 0 0 0 0 1 4
Transport 40 0 0 0 0 0 20 0 0 0 0 0 18
Cockpit 34 28 28 28 28 28 28 28 28 28 28 28 28
Woodworking 31 7 5 8 8 5 5 1 1 1 1 1 3
Colouring 30 30 30 30 30 30 30 30 30 30 30 30 30

Table 3: Number of linearized problems that are reported to be unsolvable by the inner planner for each configuration. The data
for the lifted system is not shown here because it is not recoverable.

IPC Results

Lastly, we present the performance scores of our planners
in the IPC together with that of all the remaining par-
ticipants, namely, PANDA,,, (Holler 2023b), PANDA,;,-
A (Holler 2023a), Aries (Bit-Monnot 2023), and SIADEX
by Expdsito, Soler-Padial, Ferndndez-Olivares, and Castillo
which is based on the previous work by Ferndndez-Olivares
et al. (2006). The results for the satisficing track are sum-
marized in Tab. 1, whereas Tab. 2 summarizes the results
for the agile track. A planner’s performance score for solv-
ing one single instance for the agile track is computed as
1 — (log T'/1og 1800) where T is the time needed by the
planner to solve the instance. The total score for a planner is
the sum of each score for solving each instance. For the sat-
isficing track, the score for solving one instance is computed
as C'/C* where C is the cost of the solution found, and C*
is the cost of an optimal solution. The total score is again the
sum of each score for solving each instance.

Furthermore, our linearization techniques cannot guaran-
tee that a linearized problem is solvable. Hence, for the pur-
pose of better characterizing the performance of those lin-
earization techniques, we also summarize in Tab. 3 the num-
ber of unsolvable linearized problems reported by the inner
planner for each configuration and domain. The columns
labelled with ‘simple’ and ‘complex’ indicate which in-
ference approach is used, and those labelled with ‘agile’
and ‘satisficing’ indicate the configurations for the respec-
tive track. We did not collect the number of unsolvable lin-
earized instances produced by the lifted linearizer because
we wrapped up all intermediate information output by that
system, which caused the result that the number on demand
was not recoverable.

Conclusion

In this paper, we presented our linearization techniques, two
for grounded problems and one for lifted ones, and three sys-
tems that incorporate our techniques into other existing plan-
ners. The systems won the PO agile and satisficing tracks of
the IPC 2023 on HTN Planning. We did not participate in
the optimal track because our linearization technique does
not guarantee to maintain optimal solutions. The results in-
dicate that although POHTN problems are in theory much
more expressive than TO ones in terms of complexity (Erol,
Hendler, and Nau 1996; Geier and Bercher 2011; Alford,

Bercher, and Aha 2015; Bercher, Lin, and Alford 2022) and
solution space (Holler et al. 2014, 2016), most PO problems
in practice do not require such additional expressive power
and can be solved more efficiently by eliminating partial or-
der and using specialized TOHTN planners.
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