
To appear in an IEEE VGTC sponsored conference proceedings

The Edge Volume Heuristic -
Robust Triangle Subdivision for Improved BVH Performance

Holger Dammertz∗

Ulm University, Germany
Alexander Keller†

mental images GmbH, Germany

ABSTRACT

The use of axis-aligned bounding boxes is a basic technique to ac-
celerate geometric algorithms as for example ray tracing. It is a
known problem that efficiency suffers, if the axis-aligned bounding
volume contains major parts of empty space, which, in the case of
ray tracing, causes more ray-object-intersection tests than required.
The impact of this problem can be reduced by subdividing triangles
at the cost of a larger memory footprint. We present a subdivision
algorithm that is designed to generate only very few additional tri-
angle references. Compared to previous approaches the algorithm
is numerically robust, and simpler to implement and use. For for-
merly problematic scenes a speedup of up to a factor of 10 could
be achieved, while the number of triangle references increased only
by 16%.

Index Terms: I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types; I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism—
Raytracing

1 INTRODUCTION

Improving the performance of ray tracing through the use of dif-
ferent acceleration structures has been investigated in detail [6].
Among the most successful acceleration structures is the kd-tree [7,
12]. Recent research demonstrated that bounding volume hierar-
chies (BVH) based on axis-aligned bounding volumes are compet-
itive to or even outperform kd-trees [15, 4]. For both kinds of ac-
celeration data structures fast traversal algorithms have been devel-
oped [14, 11, 1, 10].

An advantage of a BVH is the small memory footprint compared
to a standard kd-tree, because each object is only referenced once.

Even though a BVH can be as fast as a kd-tree, there are scenes
where the resulting performance is far worse. This is a direct conse-
quence of the principle that every object should only be referenced
once: Bounding boxes that contain large amounts of empty space
increase the number of ray object intersections.

This problem becomes especially apparent for axis-aligned
boxes enclosing non-axis-aligned geometry as it results from e.g.
rotation: A triangle with a normal along one of the canonical axes
has a zero volume axis-aligned bounding box, while any other ori-
entation increases the volume and causes the triangle to be tested
against more rays although the probability of hitting the triangle
remains the same.

1.1 Previous Work

In the context of ray tracing with bounding volume hierarchies an
advanced solution to the above problem has been investigated in [3]
and was called early split clipping. The authors present a triangle

∗e-mail: holger.dammertz@uni-ulm.de
†e-mail: alex@mental.com

splitting method based on the surface area of the triangle bound-
ing volume and use an axis-aligned plane to split a triangle into
three triangles (resulting from one triangle and one quadrangle).
The approach of early split clipping reduces empty space contained
in bounding volumes, which in addition reduces overlap and thus
improves overall performance.

However, considering surface area also causes triangles to be
split that are already tightly packed in a bounding volume (e.g.
larger triangles with normals parallel to the canonical axes). In ad-
dition the splitting threshold is based on user experimentation per
scene and triangles are split even when no speedup can be achieved.

While one might argue that the same benefits can be obtained us-
ing a kd-tree [14], especially when bounding the memory of the kd-
tree construction [13], both approaches have to clip triangles against
planes, which is a numerically tricky and costly operation.

1.2 Contribution
In the following we address some of these disadvantages by in-
troducing a numerically robust triangle subdivision (in contrast to
splitting) algorithm that only subdivides triangles where required
thus keeping the biggest advantage of bounding volume hierarchies:
The small memory footprint. This heuristic is based on the observa-
tion that not all large triangles effect the performance of a SAH [5]
based BVH significantly but only the one that can’t fit tightly into a
bounding box. In addition we provide a simple heuristic to automat-
ically choose the level of subdivision. This is especially important
when animations are rendered and the scene configuration changes
over time.

2 SUBDIVISION ALGORITHM

In order to improve the performance of bounding volume hierar-
chies we follow the idea of subdividing geometry and propose the
economical edge volume heuristic that only moderately increases
the memory footprint.

This new heuristic (see Section 2.1) measures the tightness of
the bounding box of each triangle edge and subdivides the triangle
until a certain threshold εv (see Section 2.2) is met.

Figure 2: Recursive subdivision of a triangle along the longest edges.
Although only edges are considered unaware of topology, the tessel-
lation remains watertight if edge subdivision is symmetric.

2.1 Edge Volume Heuristic
For each edge of a triangle the subdivision algorithm determines
its axis-aligned bounding box. The volume of the largest of the
three boxes is compared to a volume threshold εv. If the volume
is larger than the threshold the triangle is subdivided in the middle
of this edge, which is easily implemented in a numerically robust

1



To appear in an IEEE VGTC sponsored conference proceedings

Dragon / Buddha / Bunny Space Ship Kitchen Sponza Atrium

Figure 1: Images of the test scenes used for inspecting the subdivision heuristic. The space ship consists of 1554416 triangles. The kitchen has
110561 triangles and the Sponza Atrium 66454.

manner. The procedure is repeated for the two new triangles until it
terminates (see the illustration in Figure 2).

The heuristic guarantees that without any knowledge of topol-
ogy, identical operations will be performed on shared edges. Conse-
quently the resulting bounding boxes fit without gaps, which over-
comes precision issues of clipping and watertight meshes will re-
main watertight after subdivision. This is true for any symmetric
subdivision of edges [9].

Note that using a heuristic not based on edges, like e.g. bounding
box surface area, cannot guarantee watertight subdivision: Cracks
can occur, because shared edges are not necessarily subdivided in
an identical way. In addition a surface area criterion would di-
vide large triangles regardless of the tightness of the bounding box,
which is not memory efficient. In fact the edge volume heuristic
is economical as it only subdivides triangles with very inefficient
bounding boxes.

2.2 Determining the Edge Volume Threshold εv

The threshold

εv(t) :=
V
2t

is determined as a fraction of the volume V of the scene bounding
box and thus controls the amount of triangles generated by subdivi-
sion.

Over a broad range of scenes it turned out that choosing the
threshold parameter t = 14 as a default value yields good results
with respect to increased triangle references and performance. With
this threshold value many scenes that already exhibit high ray trac-
ing performance are not subdivided at all or the increase of triangle
references is less than 1%. Thus it is safe to rely on a fixed param-
eter t. But as with any heuristic, specially constructed scenes may
break the assumption of course (for example a single thin diagonal
triangle). For this kind of scenes the user may have to choose the
parameter t by hand.

In Section 3 the impact of varying t is quantified for different
bounding volume hierarchy unfriendly scenes.

This simple threshold selection is of course not limited to the
edge volume heuristic but can be used (with a different scale) for
example for the early split clipping approach.

2.3 Implementation Details

The procedure can be applied either as a preprocess before ray trac-
ing or for on-demand subdivision at the beginning of the tree con-
struction. The first variant is especially useful as it can be used
to upgrade any existing ray tracing module without modifying the
internals. The second variant is transparent for the user and just
produces a different tree during construction.

For each triangle the algorithm performs the recursive subdivi-
sion procedure. As the bounding volume hierarchy construction
only uses the bounding boxes during construction, it is memory-
efficient to output the bounding boxes with the original triangle ref-
erence instead and in place of the subdivided triangles.

Usually a BVH contains more than one triangle per leaf. An
additional optimization during tree construction is to remove ref-
erences to the same triangle in each leaf. In our experiments this
resulted in a speedup of about 10%.

The scan over the triangles is so efficient, that it even pays off, to
have a pass that only counts the number of generated triangles, to
allocate memory accordingly, and to scan the data again to generate
the bounding boxes.

The remaining problematic cases are overlapping bounding
boxes that cannot be separated. This problem is ameliorated by the
fact that efficient bounding volume hierarchies usually reference
more than one triangle per leaf thus grouping some of the overlap-
ping geometry in one box, which reduces the overall overlap.

3 RESULTS

We apply the subdivision heuristic to a set of quite different scenes
in order to verify its versatility (see Figure 1). The benchmarks
were performed using an implementation of the QBVH [2] using
single thread primary rays on a Intel Core2 Duo 2.4GHz processor.

We first consider four static scenes:

1. The Dragon, Buddha and Bunny scenes are just included to
verify that for many small triangles of roughly the same size
the heuristic does not add any new triangles in the used pa-
rameter range. This kind of scenes do not benefit from subdi-
vision.

2. The space ship scene represents a kind of worst case scenario
for classic bounding volume hierarchies: It consists of long
thin triangles for the outer hull and many small triangles for
details. Additionally this object is rotated by 45 degrees in
space. The effect of different threshold parameters t is visual-
ized in Figure 3.

3. The kitchen scene is one frame from the BART animation
repository [8], where instead of moving the camera the tri-
angles are transformed.

4. The Sponza atrium scene is a typical architectural model,
where many triangles are parallel to the canonical planes.
While classic heuristics like the surface area heuristic can
build efficient bounding volume hierarchies for such scenes,
performance drops dramatically, if geometry is rotated and
bounding boxes increase in volume.

2



To appear in an IEEE VGTC sponsored conference proceedings

Threshold t = 12 Threshold t = 14 Threshold t = 16 Threshold t = 12 Threshold t = 14 Threshold t = 16

Figure 3: Visualization of the effect of different threshold parameters t, where the subdivided triangles are highlighted in red. Note how the
long thin triangles with huge axis-aligned bounding boxes become subdivided, while others that would not hurt bounding volume hierarchy
performance remain untouched (for the space ship this is observed best at the center of the images).

Scene best average worst
Space Ship 0.25 0.435 1.0
Kitchen 0.25 0.463 0.992
Sponza (Frame 16) 0.25 0.457 0.99

Table 1: Factors of best, average, and worst surface area reduction
resulting from applying the edge volume heuristic for triangle subdi-
vision. The theoretical maximum of 0.25 is achieved in some cases.

A higher threshold parameter t improves performance, but also in-
creases the memory footprint. Both numbers are related in Figure
4, where we show the relative increase in the number of triangles
and corresponding rendering time for a range of thresholds param-
eters t. A clearly consistent improvement over the test scenes can
be observed and it is especially interesting that major performance
improvements are obtained at already a moderate increase of the
number of triangles.

The second test consists of rotating the well known Sponza
atrium scene to illustrate the adaptivity of the edge volume heuris-
tic. The scene is first rotated by 90◦, 20◦, and 30◦ around the x-, y-,
and z-axis in 32 steps. Second it is rotated another 32 steps to it’s fi-
nal position −180◦, 0◦, and 90◦ where all large triangles are again
axis aligned. Figure 5 shows the performance figures and the num-
ber of generated triangle references over the animation for several
threshold parameters t. Again the heuristic proves to be reliable: In
simple cases no triangles are added. When bounding boxes become
inefficient a moderate increase in the number of triangle references
avoids the dramatic performance drop.

Subdividing an edge in the middle results in two new bounding
boxes that each have 1

8 of the original volume, because the split
edges remain diagonals of their bounding boxes. Since our tree
construction is based on the SAH it is interesting to look at the
reduction of the triangle’s bounding box surface area upon subdivi-
sion and corresponding statistics are collected in Table 1.

Even though the factor of the worst area reduction is quite large
the average area reduction shows the effectiveness of the heuristic.

4 CONCLUSION

We introduced an economical heuristic to subdivide triangles such
that the amount of empty space in bounding boxes is efficiently re-
duced. The algorithm is simple, numerically robust, and can be
used as a topology unaware preprocess to any renderer. Big perfor-
mance improvements already result from very moderate additional
memory requirements.

While the technique certainly has applications in collision detec-
tion and occlusion culling, too, there are two more points of future
interest: There are situations, where a global volume threshold εv
may be not sufficient and a local threshold may perform better. Fur-
thermore there are situations where neither our new heuristic nor

the surface area heuristic can reduce overlap. We would like to find
criteria to easily identify these situations.

ACKNOWLEDGEMENTS

The first author would like to thank mental images GmbH for sup-
port and funding of this research. The second author would like
to thank Henry Moreton for the comments on the symmetric sub-
division. We would also like to thank Ansel Hsiao for the space
ship model and the Stanford Scanning Repository for the Dragon
Buddha and Bunny model.

REFERENCES

[1] C. Benthin. Realtime Ray Tracing on Current CPU Architectures. PhD
thesis, Saarland University, 2004.

[2] H. Dammertz, J. Hanika, and A. Keller. Shallow bounding volume
hierarchies for fast SIMD ray tracing of incoherent rays. In Rendering
Techniques 2008 (Proc. 19th Eurographics Symposium on Rendering),
page to appear, 2008.

[3] M. Ernst and G. Greiner. Early split clipping for bounding volume
hierarchies. In Proc. 2007 IEEE/EG Symposium on Interactive Ray
Tracing, pages 73–78, 2007.

[4] M. Geimer. Interaktives Ray Tracing. PhD thesis, Koblenz-Landau
University, Germany, 2006.

[5] J. Goldsmith and J. Salmon. Automatic creation of object hierarchies
for ray tracing. IEEE Computer Graphics & Applications, 7(5):14–20,
1987.

[6] V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Czech
Technical University, 2001.

[7] V. Havran and J. Bittner. On improving kd-trees for ray shooting.
Journal of WSCG, 10(1):209–216, 2002.

[8] J. Lext, U. Assarsson, and T. Möller. BART: A benchmark for ani-
mated ray tracing. Technical report, Chalmers University of Technol-
ogy, 2000.

[9] H. Moreton. Watertight tessellation using forward differencing. In
HWWS ’01: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Workshop on Graphics Hardware, pages 25–32, 2001.

[10] A. Reshetov. Faster ray packets - triangle intersection through ver-
tex culling. In Proc. 2007 IEEE/EG Symposium on Interactive Ray
Tracing, pages 105–112, 2007.

[11] A. Reshetov, A. Soupikov, and J. Hurley. Multi-level ray tracing al-
gorithm. ACM Transactions on Graphics (Proc. SIGGRAPH 2005),
pages 1176–1185, 2005.

[12] M. Shevtsov, A. Soupikov, and A. Kapustin. Highly parallel fast kd-
tree construction for interactive ray tracing of dynamic scenes. In
Computer Graphics Forum (Proc. Eurographics 2007), pages 395–
404, 2007.

[13] C. Wächter and A. Keller. Terminating spatial partition hierarchies by
a priory bounding memory. In Proc. 2007 IEEE/EG Symposium on
Interactive Ray Tracing, pages 41–46, 2007.

[14] I. Wald. Realtime Ray Tracing and Interactive Global Illumination.
PhD thesis, Saarland University, 2004.

[15] I. Wald, S. Boulos, and P. Shirley. Ray tracing deformable scenes
using dynamic bounding volume hierarchies. ACM Transactions on
Graphics, 26(1), 2007.

3



To appear in an IEEE VGTC sponsored conference proceedings

 0

 20

 40

 60

 80

 100

 120

 140

 0  5  10  15  20

P
er

ce
nt

ag
e

Threshold

# Triangles %
Render Time %

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 0  5  10  15  20

P
er

ce
nt

ag
e

Threshold

# Triangles %
Render Time %

 0

 50

 100

 150

 200

 250

 300

 350

 0  5  10  15  20

P
er

ce
nt

ag
e

Threshold

# Triangles %
Render Time %

Space Ship Kitchen Sponza Atrium (Frame 16)

Figure 4: Relative performance for three example scenes. As expected render time improves until it asymptotically reaches saturation and the
number of triangles increases with an asymptotically exponential behavior. The consistent behavior over quite different scenes clearly shows
dramatic performance improvements at already very moderate increase in the number of triangles.

Frame 1 Frame 16 Frame 32

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  10  20  30  40  50  60  70

F
ra

m
e 

T
im

e 
(m

s)

Frame Nr.

Base
Threshold 12
Threshold 14
Threshold 16

 75000

 80000

 85000

 90000

 95000

 100000

 105000

 110000

 115000

 0  10  20  30  40  50  60  70

N
um

be
r 

of
 T

ria
ng

el
 R

ef
er

en
ce

s

Frame Nr.

Base
Threshold 12
Threshold 14
Threshold 16

Performance Triangle References

Figure 5: The Sponza atrium under rotation. The top row shows 3 example frames out of the total 64 frames, where subdivided triangles are
highlighted in red. The more the architectural model becomes rotated, the more bounding boxes of previously axis-aligned geometry become
inefficient, which is reliably avoided by the subdivision heuristic (threshold parameter t = 14). The graphs in the bottom row show how the frame
time is improved and how many triangles are added by the subdivision heuristic for the unsubdivided geometry (Base) and three subdivision
thresholds over the 64 frames of the animation.

4


