
Improving Ray Tracing Precision by Object Space Intersection Computation

H. Dammertz∗

Abt. Medieninformatik,
University of Ulm, 89069

Ulm, Germany

A. Keller†

Abt. Medieninformatik,
University of Ulm, 89069

Ulm, Germany

Figure 1: Common problems of ray tracing: On the left the problem of choosing a good epsilon environment in order to avoid self-intersections
is shown. A too small epsilon results in self-intersections of secondary rays, while a too large epsilon results in overlaps from the extended
geometry. On the right a light source close to a silhouette casts a long shadow. While the geometry approximation is not visible at the silhouette,
the approximation becomes unavoidably obvious in the projection, which is difficult to predict in the tessellation process.

ABSTRACT

Instead of computing intersections along a ray, an algorithm is pro-
posed that determines a point of intersection in object space. The
method is based on the classical refinement of a hierarchy of axis-
aligned bounding boxes that is computed on the fly. Typical render-
ing artifacts are avoided by taking into consideration the precision
of floating point arithmetic. In addition the method lends itself to
a simple solution of the self-intersection problem. Considering the
obtained precision the algorithm is efficient, simple to use, and to
implement.

1 INTRODUCTION

Finding the first intersection of a ray and a geometric surface prim-
itive is the core operation of any ray tracing system. Due to the
limitations of floating point arithmetic many of the commonly used
intersection algorithms have intrinsic numerical problems that can
result in visible artifacts [1, 28]. Especially for ray tracing free form
surfaces these problems lead to complex algorithms with many spe-
cial cases or the need for user defined parameters in order to adjust
quality. In the usual case of approximation the amount of tessella-
tion that is required for visually correct results is hard to determine
and heuristics easily can fail for e.g. shadows (see figure 1), trans-
parencies, or reflections (see figure 9). In addition already simple
triangle meshes can report false ray intersections along the triangle
boundaries (see figure 14). While it is infeasible to choose globally
valid parameters to avoid these problems, relying on anti-aliasing
to hide false intersections is not a desirable solution, either.

The general algorithm described in this paper avoids many of
these problems, is very simple, and can be used with many differ-
ent types of geometric surface primitives. It efficiently computes a

∗e-mail: holger.dammertz@uni-ulm.de
†e-mail: alexander.keller@uni-ulm.de

reliable point of intersection almost up to floating point precision
without the need of adjusting parameters. Especially when used
with free form surfaces it results in highly accurate images with
correct secondary effects even after multiple reflections or at ex-
treme close ups. The self-intersection problem can be avoided.

2 OBJECT SPACE INTERSECTION COMPUTATION

Usually a point of intersection is determined by computing a length
from the origin along the direction of the ray. Considering the na-
ture of floating point numbers [8], the resolution becomes coarser
with increasing distance from the ray origin. In addition computing
the point of intersection in object space forces the point to be quan-
tized to the representable values along the object space coordinate
axes.

Since these errors cannot be efficiently avoided in ray space, it
pays off to determine the intersection in object space, offering the
following two key advantages:

1. A higher numerical precision is obtained by avoiding some of
the quantizations, and

2. self-intersections of secondary rays can be avoided.

Instead of computing an intersection as a distance along the ray
and determining the point of intersection in object space from that
distance, we directly compute a 3-dimensional interval in object
space. This interval contains the true point of intersection and can
also be interpreted as an axis aligned bounding box. It is found by
hierarchical subdivision (see also figure 2).

The listed pseudo code describes the hierarchical traversal of
bounding volumes similar to previous work [10]. Querying the
nearest interval of intersection can be implemented in the report
function. Depending on the application other functions like e.g.
derivatives or parameterizations of the geometry can also be subdi-
vided along with the intersection computation to yield a bounding
interval.

I n t e r s e c t (Ray , O b j e c t)
{

bbox = a x i s a l i g n e d bounding box of O b j e c t
i f (Ray m i s s e s bbox)

re turn
e l s e i f (t e r m i n a t e)

r e p o r t (bbox as i n t e r s e c t i o n i n t e r v a l)
re turn

e l s e
{

sd = s u b d i v i d e O b j e c t
f o r (a l l o b j e c t s o i n sd)

I n t e r s e c t (Ray , o)
}

}

Listing 1: Bounding volume hierarchy traversal.

2.1 Numerically Robust Algorithm

Bounding intervals can be computed by interval or affine arithmetic
[10, 13, 4], which is the common means to address floating point
precision problems. However, each arithmetic operation then has
to be performed in interval or affine arithmetic resulting in a high
computational effort. Using the key observation that for two float-
ing point numbers a 6= b it can happen that (a+b)/2 = a, the over-
head of replacing arithmetic operations by operations on intervals
can be avoided: Intervals are subdivided until the subdivision no
longer changes in the floating point representation. For the ray in-
tersection with an object this involves:

Numerically robust subdivision: Cracks usually result from dif-
ferent levels of subdivision or numerical problems. If the
neighboring bounding boxes resulting from subdivision over-
lap or at least touch in floating point representation, no cracks,
even between different levels of subdivision, can occur. In the
applications section we show how to guarantee this.

Numerically robust termination: Subdivision is terminated if the
size of the resulting bounding boxes no longer is changing in
floating point arithmetic. The resulting bounding box then is
reported as intersection interval.
It is important to select a measure that is robust with respect to
the floating point arithmetic. Computing the Euclidian length
of the diagonal of a bounding box involves squares. As the
bounding boxes tend to become very small by subdivision,
cancelation errors [8] would cause too early termination. We
therefore use the L1-norm of the bounding box diagonal, i.e.
the sum of the absolute values. In contrast to the Euclidean
length it only requires subtractions and additions to compute
and thus remains more precise.

Fulfilling the above conditions in an implementation of the bound-
ing volume hierarchy traversal (see the pseudo code) results in
a crack and hole free intersection computation. The decision of
whether or not a bounding box is intersected by a ray is decided
using the algorithm of Williams et al. [27]. Seemingly contradic-
tory to our goal, although not used for the intersection interval, this
method uses distances along the ray. Note that we do not have any
other choice as long as the rays are given by origin and direction.
However, the computations remain consistent, because for floating
point arithmetic the above conditions assure that if a box is inter-
sected at a higher level of the hierarchy there exists at least one
of them, which is intersected in the lower levels. This includes the
situation where the floating point resolution along the ray is not suf-
ficient to precisely capture the intersection interval in object space.
Such a situation arises for a ray far from the origin targeting at an
object close to the origin.

2.2 Secondary Rays

Realistic image synthesis requires shooting secondary rays in or-
der to compute the illumination. The problem of self-intersections
becomes apparent (see figure 1), when shooting off rays from sur-
faces: Due to numerical inaccuracies the same surface may be hit
again, resulting in false points of intersection. A common solution
to this problem is adding a small distance along the ray or normal
direction. The choice of this epsilon is largely scene dependent and
often left to the user of the ray tracing system. Using object identi-
fications also does not help for non-planar or touching objects.

With the intersection interval computed by our algorithm we can
avoid the self-intersection problem. The starting point of the sec-
ondary ray is selected as the corner point of the intersection interval
farthest in the direction of the normal (see the illustration in 3). For
transparency rays we just use the normal with inverted signs. As a
valid ray interval excludes the origin of the ray, it is impossible to
hit the interval of origin again.

Figure 3: Avoiding the self-intersection problem by selecting the cor-
ner of the intersection interval that is farthest in the direction of the
surface normal.

This method works perfectly in convex geometries. Neverthe-
less, an epsilon environment is required, to avoid early intersec-
tions of close to tangential rays in concave geometry. But this can
be done globally without user interaction. The intersection interval
is enlarged by considering its binary representation of the floating
point number as integer [11]. In our implementation we subtract /
add the value of 7 (3 bits). This way the epsilon value is implicitly
adapting to the exponent of the floating point number. It has been
found by comparing single and double precisions computation.

3 APPLICATIONS

We demonstrate the general algorithm for three applications,
namely polynomial free form surfaces, trimming, and improved tri-
angle intersection testing. The speed of the algorithms is interac-
tive, however, as we focus on precision, might be inferior to more
approximative schemes.

3.1 Polynomial Free Form Surfaces

The approaches to ray tracing free form surfaces can be roughly
classified into three different strategies: First the surface can be ap-
proximated by simpler surfaces. Often planar polygons or bilinear
patches are used for the approximation. However, this eventually
results in the problems illustrated in figures 1, 9, and 14.

Secondly, there are subdivision based algorithms that use a sim-
ple prune and search method. Early methods are described by Whit-
ted [26] and Rubin [22]. Woodward [29] transforms the problem to
two dimensions. Nishita et al. [19] developed the well known tech-
nique of Bézier clipping, which has been improved in [3]. Another
subdivision based method called Chebyshev boxing is described in
[6]. Recent work on subdivision based methods can be found in
[18, 2].

Figure 2: Illustration of the hierarchical refinement of the bounding boxes as used in the algorithm. Instead of ray parameters bounding boxes
that contains the actual points of intersection are determined directly.

The third category comprises numerical solutions, where a form
of Newton iteration is used in most cases to find the point of inter-
section. All methods based on simple Newton iteration [7, 16] have
the problem of finding a good starting point and the user has to se-
lect parameters to obtain a correct image (see figure 4). Kajiya [14]
uses algebraic geometry to create a numerical procedure for find-
ing the intersection between a ray and a bivariate cubic parametric
patch. A more accurate approach is described by Toth [23] and im-
proved in [15]. It uses multivariate Newton iteration to solve the
convergence problem of Newton iteration but this method is rather
slow.

All the above methods suffer from disadvantages like coarse ap-
proximations, numerical problems, extensive computation, param-
eters that are difficult to determine for an overall scene, or restric-
tions on subdivision depth and surface degree.

Our method falls into the second category. We now specify the
algorithm from the previous section for polynomial free form sur-
faces of arbitrary degree.

Figure 4: False surface intersection reported by Newton iteration,
when the starting point is not sufficiently close to the fix point.

3.1.1 Polynomial Tensor Product Surfaces

Using the Bézier representation is one of the simplest ways to de-
scribe a polynomial surface. Even though it is not well suited for
modeling purposes any polynomial surface can be converted into
the Bézier basis (NUBS surfaces for example by knot insertion [20]
- it is not NURBS, since it is not rational). For the remainder of this
discussion we assume familiarity with Bézier surface patches [5].

A Bézier surface patch

p(u,v) :=
m

∑
i=0

n

∑
j=0

Bm
i (u)Bn

j(v)pi j u,v ∈ [0 . . .1]. (1)

is defined by a two dimensional grid of control points pi j and
the Bernstein basis functions Bk

i (t) of degree k. The axis aligned
bounding box of a Bézier patch is computed by taking the mini-
mum and maximum of all (n+1)(m+1) control points pi j in each
component.

The subdivision of a Bézier surface patch is done via the de
Casteljau algorithm using the recursion property of the Bernstein
basis. With respect to floating point computations the best parame-
ter value for subdivision is 0.5. This guarantees that the boundaries

of the intersection intervals always touch and no cracks can appear
as required in section 2.1. In addition the division by 2 is just a
decrement of the exponent and is always exact unless a floating
point underflow occurs [8].

The selection of the subdivision is guided by a simple heuristic.
It estimates the longest direction by computing the length of the
two vectors (pn,0 − p0,0) and (p0,m − p0,0) and subdivides along
the longer direction. The norm used to determine the length only
affects the efficiency of the scheme. Therefore, we use the max-
imum norm, which can be evaluated fastest. The heuristic works
even for very distorted self-intersecting patches of high degree as
shown in figure 6, because the resulting patches become very regu-
lar after only a few subdivisions.

3.1.2 Accuracy

To analyze the accuracy obtained by our subdivision algorithm, we
rounded the results of an implementation using double precision
arithmetic to the nearest single precision number. These were com-
pared to the actual single precision version and the results of a uni-
form triangulation of the patch. The triangle intersection algorithm
used is the one described in [17]. Its intersection point was com-
pared to the midpoint of the intersection interval of our method.
Figure 8 shows the two patches that were used. The results can
be found in tables 1 and 2. It becomes obvious that tessellation ap-
proaches like e.g. [2] result in larger approximation errors. Even for
high tessellations our subdivision intersection algorithm performs
better by two orders of magnitude.

The errors obtained by interpolating normals of triangle corners
and direct computation are very similar. This can be clearly seen in
the reflections in figure 9.

Figure 6: Two ray traced Bézier patches (left: degree 10 in u and
degree 7 in v direction, right: random control points and degree 42
in both u and v direction) demonstrating robustness of the algorithm
for high degrees. Finding stable starting points for Newton iteration
becomes almost impossible in this setting.

Figure 5: A NURBS scene converted into 261692 Bézier patches and ray traced with our algorithm.

3.1.3 Speed of Convergence

The subdivision of a Bézier patch can be implemented efficiently
using the vector instructions of modern computer architecture (see
[2] for example). A simple and straightforward implementation was
chosen for the analysis. The subdivision and bounding box compu-
tation was implemented using SSE instructions but only 3 of the 4
slots were used. The reason for the good performance of our algo-
rithm is that it completely runs in the level 1 cache of the processor.
As such it is compute-bound.

Figure 7: A Bézier patch with the color encoded number of subdivi-
sions needed to determine the intersection interval. Green is about
50 subdivisions, yellow up to 200 and red more than 200 subdivisions.

The first interesting thing about the algorithm is the number of
subdivisions needed until an intersection interval is found. As can
be seen in figure 7, the effort needed to determine the intersection
interval grows the more the ray direction tangential to the surface.
Note that the same effect would be observed for tessellations. The
reason for this is an increased number of bounding boxes that have
to be intersected when the ray passes almost parallel to the surface.
Furthermore the number of iterations needed to find an intersection
interval depends on the size of the patch and its position in 3d space.
Due floating point arithmetic larger patches and patches that are
close to the origin take longer to ray trace [8]. For the analysis
all patches were contained in [1,2]3. We provide this interval for
reference.

The control polygon of a Bézier surface converges quadratically
to the surface when the de Casteljau subdivision is used [21]. Con-

sequently we have the same rate of convergence for the bounding
box of the control polygon, too.

Figure 8: The two patches used for the accuracy analysis. The image
shows the difference between the patch tesselated to 512 triangles
and the single precision subdivision algorithm.

Tris Max. Error Min. Error Mean Error
512 3.0642e−1 4.4703e−8 4.9815e−3

4608 8.5224e−2 8.4750e−8 5.5706e−4
131072 2.7960e−3 0.0000e+0 1.9592e−5

our Alg. 8.5681e−5 0.0000e+0 2.3038e−7

Table 1: Point of intersection error for a simple patch (figure 8 on
the left) compared to the double precision results.

3.1.4 Performance

The algorithm for ray tracing Bézier patches was integrated into
a simple ray tracing system that also allows ray tracing of trian-
gle models and has support for hierarchical materials and different
light sources. The triangle ray tracer uses kD-trees for each object
as acceleration structure. A top level axis aligned bounding volume
hierarchy (BVH) is used to support instances and multiple objects.
The Bézier ray tracer uses the BVH for top level and for individ-
ual objects. The test scenes are completely composed of NURBS
patches and were ray traced at a resolution of 512x512 pixels with

Tris Max. Error Min. Error Mean Error
512 1.8080e+0 5.9604e−8 9.5757e−3

4608 4.0562e−1 0.0000e+0 1.1005e−3
131072 1.1100e−2 0.0000e+0 3.8533e−5

our Alg. 9.3240e−5 0.0000e+0 2.2959e−7

Table 2: Point of intersection error for a more distorted patch. The
patch can be seen in figure 8 on the right.

Figure 9: The scene on the left was triangulated into 10752 triangles.
The discontinuities of the first derivative are clearly visible in the
reflections of the bars. The image on the right was ray traced with
the subdivision algorithm. The resolution of both images is 512x512.

one primary ray per pixel. The ray tracing was done on a Pen-
tium 4 at 2.8 GHz with 2GB of RAM and the ray tracers used only
a single thread. The conversion of the NURBS patches into inte-
gral Bézier patches needed no approximation in this case because
of the modeling program Alias Maya 5.0, which generates rational
surfaces only in rare cases. The adaptive conversion algorithm inte-
grated into Alias Maya 5.0 was used to create the tessellation. Two
test scenes were used for comparison. The dog scene has a simple
Lambertian material and only primary rays were traced. The car
scene features highly reflective materials. The recursion depth was
set to 3 for reflections and 6 for refractions. The scene contains
29 different materials and 9 point light sources. The results are
shown in figure 10. The memory consumption is the scene geom-
etry plus the acceleration data structure size. The parse time is the
time for reading and interpreting the scene description supported by
our rendering system. The render time is the time for acceleration
data structure construction and ray tracing a single image. Given
the superior precision of our algorithm, it is very competitive.

3.1.5 Optimizations

There are various possibilities to increase the performance of the
basic algorithm. Since the intersection computation dominates the
rendering time, optimization of the intersection calculation is most
important. Obvious improvements are iterative implementation of
subdivision using a simple stack instead of a recursive implemen-
tation and organizing the data in processor friendly structures and
alignments. A huge improvement in subdivision performance can
be gained by subdividing the data of a patch in place, overwriting
the original patch on the stack. This reduces memory access and
allows for better register usage. Another improvement is travers-
ing the subdivided bounding box that is closer to the ray first. This
increases the likelihood of an early termination during the subdivi-
sion.

A common principle to accelerate the tracing of primary rays is
to use coherent packets of rays as described for example by Wald
in [25]. However, since bounding boxes are subdivided almost up
to the resolution of floating point number, ray coherency is lost and
bundle tracing as well as shaft culling [9] does not help much (see

table 3).
Using coherent rays for the higher levels of the hierarchy is help-

ful. This corresponds to truncating accuracy. Instead of using the
termination criterion as described in section 2.1, we allow early ter-
mination. For example the subdivision can be stopped when the
size of the bounding box projected to the screen is smaller than half
a pixel. When no secondary rays are traced the resulting images
are equivalent to the images computed with the floating point ter-
mination criterion. For secondary rays, ray differentials [12] could
be used, but this has not been examined yet. Table 3 shows some
performance data for a single patch.

#Rays in Bundle Float Acc. Early Term.
1x1 0.567 fps 1.266 fps
2x2 0.657 fps 1.996 fps
4x2 0.676 fps 2.236 fps
2x4 0.680 fps 2.280 fps
4x4 0.640 fps 2.395 fps
8x8 0.297 fps 0.530 fps

Table 3: Performance when using ray bundles of different size. The
performance data was collected at a resolution of 512x512 with the
patch shown in figure 7

3.2 Trimming Curves

Trimming can be used to overcome the topological restriction of
tensor product surfaces. For this, a hierarchy of polynomial curves
uniquely defines inside and outside points in the parameter domain
of the patch. These polynomial curves can be converted into Bézier
representation and inside and outside points can be identified by ray
tracing, using Jordan’s curve theorem . This is done by shooting a
ray into an arbitrary direction and counting all intersections with the
curves. Odd and even numbers of intersections distinguish inside
from outside.

Figure 11: The four different cases for a single curve segment that
can occur during the trimming test.

Since the test is arbitrary, we select the positive u-axis, which
simplifies the implementation. Besides the reduction of the previ-
ous techniques to two dimensions, we only want to know whether
the number of all intersections is even or odd. Transferring the
principles of the previous section allows for an efficient trimming
algorithm that achieves almost floating point precision.

We briefly sketch the algorithm that works for arbitrary degree
along the lines of [19]. Figure 11 shows the four different cases the
algorithm has to consider:

Cases 1 and 2: If all control points of the curve segment, i.e. the

Scene # of Primitives Parse Time Memory Render Time
Dog Triangles 422122 11.5 16.89MB 1.318s
Dog Bézier 24878 0.7s 6.47MB 3.283s
Car Triangles 1505118 252.4s 303MB 2573.4s
Car Bézier 261692 12.2s 29MB 812.6s

Figure 10: Performance of the Bézier subdivision algorithm compared to a triangle ray tracer. Given the superior precision of our algorithm, it
is very competitive.

bounding box, lie left of the v-axis or above/below the u-axis,
the ray does not intersect.

Case 3: The curve is on the right side of the v-axis but neither
above nor below the u-axis. If the two endpoints of the curve
are on the same side (above or below the u-axis), the ray in-
tersects the curve an even number of times. Otherwise the
number is odd. This is due to the continuity of polynomial
curves.

Case 4: Now we have to recursively subdivide using the L1 termi-
nation criterion. Upon termination we assume an intersection.

Figure 12: A trimmed Bézier patch. On the right the color encoded
effort for trimming is shown. On average trimming is about 50% of
the total intersection cost.

Figure 13: Quadrisection of a triangle using stable subdivision by
edge midpoints.

3.3 Triangles

The principles developed so far can be used to avoid self-
intersection problems (see section 2.2) and holes in triangular
scenes. It is important to note that changing to double precision
or different triangle tests does not avoid holes. Even the Plücker
test, which avoids holes along edges, can fail around the vertices of
the geometry.

Subdividing each triangle edge in the middle (see figure 13 and
[24]) already fulfills the numerical requirements of section 2.1. In
fact a triangle can be considered as a triangular planar Bézier patch
and thus the results of section 3.1 apply.

Figure 14 shows the happy Buddha mesh. The image was ray
traced at a resolution of 512x512 pixels using the triangle test of

Figure 14: The happy buddha mesh with 1087716 triangles. When
ray traced with standard triangle intersection algorithms false inter-
sections can be reported. This problem does not occur with our
subdivision algorithm.

Möller and Trumbore [17]. While 3.64 frames per second are ob-
tained, some false intersections are reported along triangle edges.
Using the stable algorithm avoids these errors and results in 0.73
frames per second.

If the intersection interval is not required to avoid self-
intersections and only a hole free rendering is desirable, we can
speed up computations by using our algorithm whenever a cheaper
triangle test ([17] in our case) reports no intersection. Then the per-
formance increases from 0.73 fps to 2.24 fps for the Buddha mesh.

4 CONCLUSION AND FUTURE WORK

We have presented an algorithm that generally increases the pre-
cision of ray tracing without ad-hoc parameter adjustments. The
results are especially interesting for precise simulation and produc-
tion rendering.

Future work comprises finding a similar stable termination cri-
terion that could be used for rational surfaces. First experiments
have shown that ignoring the last few bits of the L1-norm in the ter-
mination criterion produces good results. Until now there are only
empirical results for the number of bits to ignore and they vary de-
pending on the surface degree. Our algorithm can be used for many
different kinds of subdivision surfaces. First implementations with
Loop and Catmull-Clark surfaces have produced good results. Sim-
ilar to the problems of rational surfaces, we still explore problems

with the subdivision accuracy at irregular vertices. Another prob-
lem is the performance when subdividing subdivision surfaces on
the fly because of the many special cases that have to be considered
such as boundary and irregular vertices.

ACKNOWLEDGEMENTS

We would like to thank Ingo Wald for the fruitful scientific discus-
sion.

REFERENCES

[1] J. Amanatides and D. Mitchell. Some regularization problems in ray
tracing. In Proc. Graphics Interface ’90, pages 221–228, 1990.

[2] C. Benthin, I. Wald, and P. Slusallek. Interactive ray tracing of free-
form surfaces. In Proceedings of Afrigraph 2004, pages 99–106,
November 2004.

[3] S. Campagna and P. Slusallek. Improving Bézier Clipping and Cheby-
shev Boxing for Ray Tracing Parametric Surfaces, 1996.

[4] L. de Figueiredo and J. Stolfi. Affine arithmetic: Concepts and appli-
cations, Numerical Algorithms 37 1-4. 2003.

[5] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics:
Principles and Practice, 2nd ed. Addison Wesley, 1996.

[6] A. Fournier and J. Buchanan. Chebyshev polynomials for boxing and
intersections of parametric curves and surfaces. Computer Graphics
Forum, 13(3):127–142, 1994.

[7] M. Geimer and O. Abert. Interactive ray tracing of trimmed bicu-
bic Bézier surfaces without triangulation. In WSCG 2005 Conference
Proceedings, Plzen, Czech Republic, 2005.

[8] D. Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys, 23(1):5–48, 1991.

[9] V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Czech
Technical University, Praha, Czech Republic, April 2001.

[10] W. Heidrich and H. Seidel. Ray-tracing procedural displacement
shaders. In Graphics Interface, pages 8–16, 1998.

[11] M. Herf. Robust epsilons in floating point, http://www.stereopsis.com/
robusteps.html, 2000.

[12] H. Igehy. Tracing ray differentials. In Alyn Rockwood, editor, Sig-
graph 1999, Computer Graphics Proceedings, pages 179–186, 1999.

[13] A. Junior, L. de Figueiredo, and M. Gattas. Interval methods for
raycasting implicit surfaces with affine arithmetic, XII SIBGRAPHI,
pages 1-7. 1999.

[14] J. Kajiya. Ray tracing parametric patches. ACM SIGGRAPH Com-
puter Graphics, 16(3):245–254, July 1982.

[15] D. Lischinski and J. Gohczarowski. Improved techniques for ray trac-
ing parametric surfaces. The Visual Computer, 6(3):134–152, 1990.

[16] W. Martin, E. Cohen, R. Fish, and P. Shirley. Practical ray tracing
of trimmed NURBS surfaces. Journal of Graphics Tools, 5(1):27–52,
2000.

[17] T. Möller and B. Trumbore. Fast, minimum storage ray-triangle inter-
section. Journal of Graphics Tools, 2, 1997.

[18] K. Müller, T. Techmann, and D. Fellner. Adaptive ray tracing of sub-
division surfaces. Computer Graphics Forum, 22(3):553–562, 2003.

[19] T. Nishita, T. Sederberg, and M. Kakimoto. Ray tracing trimmed ratio-
nal surface patches. Computer Graphics, ACM, 4(24):337–345, 1990.

[20] L. Piegl and W. Tiller. The NURBS Book. Springer, 1997.
[21] H. Prautzsch, W. Boehm, and M. Paluszny. Bézier and B-Spline Tech-

niques. Springer, 2002.
[22] S. Rubin and T. Whitted. A 3-dimensional representation for fast ren-

dering of complex scenes. ACM SIGGRAPH Computer Graphics,
14(3):110–116, July 1980.

[23] D. Toth. On ray tracing parametric surfaces. ACM SIGGRAPH Com-
puter Graphics, 19(3):171–179, 1985.

[24] D. Voorhies and D. Kirk. Ray - triangle intersection using binary
recursive subdivision. In James Arvo, editor, Graphics Gems II, pages
257–263. Academic Press, 1991.

[25] I. Wald. Realtime Ray Tracing and Interactive Global Illumination.
PhD thesis, Computer Graphics Group, Saarland University, 2004.

[26] T. Whitted. An improved illumination model for shaded display. Com-
munications of the ACM, 23(6):343–349, June 1980.

[27] A. Williams, S. Barrus, R. Morley, and P. Shirley. An efficient and
robust ray-box intersection algorithm. Journal of Graphics Tools,
10(1):49–54, 2005.

[28] A. Woo, A. Pearce, and M. Ouellette. It’s really not a rendering bug,
you see... IEEE Computer Graphics & Applications, 16(5):21–25,
September 1996.

[29] C. Woodward. Ray tracing parametric surfaces by subdivision in view-
ing plane. Theory and Practice of Geometric Modeling, Springer-
Verlag New York, Inc., pages 273–287, 1989.

