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ABSTRACT
Virtual keyboards of different smartphone platforms seem
quite similar at first glance, but the transformation from
a physical to a virtual keyboard on a small-scale display
results in user experience variations that cause significant
differences in usability as well as shoulder surfing suscepti-
bility, i.e., the risk of a bystander observing what is being
typed. In our work, we investigate the impact of both as-
pects on the security of text-based password entry on mobile
devices. In a between subjects study with 80 participants,
we analyzed usability and shoulder surfing susceptibility of
password entry on different mobile platforms (iOS, Android,
Windows Phone, Symbian, MeeGo). Our results show sig-
nificant differences in the usability of password entry (re-
quired password entry time, typing accuracy) and suscep-
tibility to shoulder surfing. Our results provide insights
for security-aware design of on-screen keyboards and for
password composition strategies tailored to entry on smart-
phones.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human factors; H.5.2
[User Interfaces]: Graphical user interfaces (GUI); K.6.5
[Security and Protection]: Authentication

General Terms
Human Factors, Security, Experimentation

Keywords
password, shoulder surfing, smartphone, touchscreen, us-
ability, user experience, virtual keyboard

1. MOTIVATION
Smartphones with mobile Internet access are becoming in-
creasingly common. Most smartphones have replaced phys-
ical keyboards with virtual keyboards displayed on the de-
vice’s touchscreen. Yet, most websites and online services re-
quire text-based passwords for authentication. Correspond-
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ing password composition rules and recommendations are
often optimized for desktop keyboards. They emphasize
password length and a mixture of different character types
(lowercase, uppercase, numbers, and special characters) to
increase password entropy [13]. The shift from physical to
virtual keyboards has been shown to influence typing abil-
ity, due to the lack of tactile feedback and the size of soft
keys [21, 16]. Furthermore, the typing effort of certain char-
acters varies between physical and virtual keyboards. On
smartphone keyboards, typing numbers or special charac-
ters requires navigation to a second or third keyboard page.
Therefore, we formulate the hypothesis that the design and
layout of virtual smartphone keyboards affects password en-
try performance. Smartphone-based password entry also in-
creases the risk of shoulder surfing, i.e., someone observing
what is being typed. Reasons are that smartphones are of-
ten used in public places and that virtual keyboards employ
accessibility features to improve typing accuracy, such as
magnification of the typed character or displaying the last
typed character as cleartext in the password entry field. Al-
though virtual keyboards of different mobile platforms seem
quite similar at first glance, differences exist in their user
experience (see Sec. 3) that affect the usability and shoulder
surfing susceptibility of password entry.

In order to investigate the specific impact of different vir-
tual keyboards on smartphone-based password entry, we
performed a between subjects study with 80 participants,
in which we investigated password entry performance and
shoulder surfing susceptibility on common mobile platforms
(iOS, Android, Windows Phone, Symbian, MeeGo). Our re-
sults show that significant differences in terms of password
entry exist between these platforms. The results further
provide insights on how specific virtual keyboard design ele-
ments can improve password entry security by improving
password entry usability, while reducing shoulder surfing
susceptibility. To our knowledge, this is the first study that
explicitly evaluates usability and shoulder surfing aspects
of text password entry on virtual keyboards. In addition,
our results also provide indicators for improving password
composition rules with respect to mobile devices.

We first discuss related work in Section 2. Section 3 assesses
characteristics of the virtual keyboards investigated in the
study. Our study design and hypotheses are described in
Section 4. Our results are presented in Section 5 and dis-
cussed in Section 6. Section 7 concludes the paper.



2. RELATED WORK
Password-based authentication and potential alternatives,
such as graphical passwords, have been studied extensively.
For sake of brevity, we limit our discussion to work directly
pertaining to text passwords.

2.1 Usability of Text Passwords
Bonneau & Preibusch [4] find in an analysis of 150 websites
that the majority did not enforce password composition re-
strictions besides requiring a minimum password length, i.e.,
≥6 characters for 52% of analyzed sites. Florencio & Her-
ley [6] study password habits of website users. They find
that most users use lowercase-only passwords. However,
security policies of companies typically pose more restric-
tions on password composition. Inglesant & Sasse [8] find
that inflexible password policies, which focus on password
strength rather than context of use, decrease password us-
ability. Users also develop coping strategies, such as writ-
ing down passwords, that undermine a password’s effective-
ness. In an analysis of user-created passwords, Komanduri
et al. [13] find that requiring 16 character passwords without
composition rules resulted in passwords with higher entropy
than asking for 8 character passwords with comprehensive
composition rules. However, Keith et al. [11] find that users
with longer passwords needed more login attempts due to
recall errors. These results indicate that password composi-
tion plays a major role in password usability.

Mnemonic passwords, for which the password characters are
taken from a mnemonic sentence, can be as strong as ran-
domly generated passwords but are easier to remember [26].
Jeyaraman & Topkara [10] propose a mechanism to auto-
matically generate mnemonics from a text-corpus. However,
Kuo et al. [15] show that mnemonic passwords can be at-
tacked by assembling a dictionary from phrases available
online. Forget et al. [7] propose persuasive text passwords
(PTP) to enhance the security of user-generated passwords
without explicit composition rules, while retaining memo-
rability [1]. When creating a new password, a user freely
chooses a password, which is then enhanced with randomly
generated characters by PTP. The user can request differ-
ent random characters until comfortable with the result.
Biddle et al. [2] propose a text password scheme in which
digital objects function as mnemonics. The user selects a
set of personal files, e.g., images or videos, which are then
hashed. The resulting hash is converted into a password
string. Thus, only the used files not the specific password
need to be remembered, but they must be available on the
login device. While different usability and security enhance-
ments for text passwords have been proposed [3], their im-
pact on password entry on virtual keyboards has typically
not been considered.

2.2 Shoulder Surfing Susceptibility
Tari et al. [25] study shoulder surfing of text passwords and
the graphical password scheme PassFaces. Twenty partic-
ipants were asked to reproduce passwords entered by the
experimenter on a computer. Surprisingly, non-dictionary
passwords were easier to shoulder surf than dictionary-based
passwords in their study. Kim et al. [12] follow the same
study design to evaluate touch-enhanced PIN entry mecha-
nisms on tabletop displays. In Nicholson’s study [20] par-
ticipants also acted as shoulder surfers observing the ex-

perimenter entering PINs and different graphical passwords
from three fixed positions. Participants had to solve a mem-
ory rotation task before entering the observed password to
force recollection from long-term memory. Their results
show that PIN entry is more vulnerable to shoulder surfing
than graphical password schemes. Zakaria et al. [27] evalu-
ate enhancements to the recall-based draw a secret (DAS)
scheme. The experimenter entered three DAS passwords on
a PDA observed by participants standing to the left. Dun-
phy et al. [5] focused in their smartphone-based shoulder
surfing study on how many observations were required by
participants to reproduce graphical passwords with differ-
ent entropy. Participants were randomly assigned the roles
of victim and observer. The observer could request to see
the login attempt up to ten times and could stop when con-
fident to be able to reproduce the password. Dunphy et al.
find that high entropy passwords require 7.5 observations on
average compared to 4.5 for low entropy passwords.

A common approach for improving shoulder surfing resis-
tance is overwhelming the observer’s short-term memory [5].
Tan et al. [24] propose a spy resistant keyboard for public
touch displays that separates mapping and selection. The
keyboard produces a randomized mapping between charac-
ters and a property (e.g., color). The user has to remember
the color for the desired character. In the selection phase,
the mapping is removed and the user selects by property.
While the user only needs to remember the mapping for one
character, a shoulder surfer would need to remember the
mappings for all characters. In a study where pairs of par-
ticipants played victim and observer, Tan et al. find that
their keyboard is less vulnerable to shoulder surfing com-
pared to a normal virtual keyboard. However, typing takes
twice as long. Roth et al. [22] employ a similar approach
for PIN entry. PIN pad buttons are randomly separated by
color into two groups. For each PIN digit, the user indicates
the color group containing the digit in multiple rounds. The
user never explicitly enters the PIN, but PIN entry takes
substantially longer this way. In a small-scale study (n=8),
they find their scheme more resistant to shoulder surfing
than normal PIN entry. Zhao & Li [28] also avoid direct
entry of password characters by letting users click inside a
convex triangle shaped on the keyboard by the next three
password characters. Kumar et al. [14] suggest gaze-based
password entry with eye tracking. Their assumption is that
if the user does not touch the keyboard, the shoulder surf-
ing risk should be reduced. However, a shoulder surfing
study has not been performed yet. Sasamoto et al. [23] use
visible and hidden channels to convey password challenges
that must be combined by the user to give the correct an-
swer. For example, presenting a visual yes/no question and
instructing the user via headphones to lie or tell the truth.

All discussed studies compare different password entry mech-
anisms. However, the effect of different instantiations of the
same authentication mechanism on usability and shoulder
surfing susceptibility is rarely analyzed. Furthermore, to
our knowledge, no studies have directly evaluated password
entry on virtual smartphone keyboards so far.

3. VIRTUAL KEYBOARD VARIANTS
We employed multiple virtual keyboards in our study. In
order to reduce complexity, we only consider portrait orien-



tation of the virtual keyboard, which is the default orienta-
tion on most devices. Keyboard sounds and vibration were
deactivated. Because all test subjects were German, the
German keyboard layout (QWERTZ) was used on all sys-
tems. An additional keyboard layout (US) was enabled, trig-
gering all keyboards to display a layout toggle button. All
keyboards consist of four pages: the initial page shows low-
ercase characters, the shift button activates a second page
with uppercase characters. A third and fourth page contain
numbers and special characters. For Android and Symbian,
we included multiple common keyboards, resulting in eight
variants in total. Figure 1 shows the primary page of the
analyzed virtual keyboards, we describe their specific char-
acteristics in the following.

iOS. The iOS keyboard always displays uppercase charac-
ters on the first page, only a highlighted shift key indicates
uppercase input. A key press triggers a popup showing the
typed character, as is the case for all other keyboards unless
stated otherwise. Holding down the key of some characters
allows to select similar characters in a pop-out menu. The
“123” button toggles the first special characters page. We
used an iPhone 4S with iOS 5.0.1 in our study.

Android-Vanilla. The plain Android keyboard offers num-
bers as alternate functions for the first row of letters, which
can be typed by pressing the key slightly longer. The first
page shows additional buttons for period, comma, and key-
board preferences. The button “?123” toggles the first spe-
cial character page, which also contains dedicated number
keys. We used a Google Nexus One with Android 2.3.6.

Android-Sense. The keyboard of the HTC Sense UI has
almost white keys. All letter keys have special characters as
alternate functions. Dedicated keys for period and comma
exist. A small button captioned “12#” toggles the special
characters page. The grave accent is not available on the
keyboard. We used an HTC Desire with Android 2.2.

Android-Swype. The Swype keyboard supports typing by
drawing a path over keys. While this feature is not activated
for password entry, the keyboard has been included because
of its popularity. All keys on the first page have special
characters as alternate functions. The alternate characters
change when shift is activated. The first page features addi-
tional keys for German umlauts. The first row of letter keys
is aligned in columns to the other rows and not offset. We
used a Google Nexus One with Android 2.3.6 for Swype.

Windows Phone. The virtual keyboard of Windows Phone
displays keys as grey boxes without any decoration, resulting
in a clean look. The keyboard has additional keys for pe-
riod and comma. We used an HTC 7 Trophy with Windows
Phone 7.5.

Symbian-QWERTZ. The Symbian keyboard has dedicated
keys for German umlauts, period, comma, question mark,
and ß on the first page. This results in very narrow and
vertically aligned keys. Shift changes the displayed special
characters. Numbers on the special characters page are ar-
ranged in a numpad layout with three columns. An extra
menu button activates a larger map with special characters.
We used a Nokia N8 with Symbianˆ3.

(a) iOS (b) Android-Vanilla

(c) Android-Sense (d) Android-Swype

(e) Windows Phone (f) Symbian-QWERTZ

(g) Symbian-T9 (h) MeeGo

Figure 1: Primary pages of the analyzed virtual key-
board variants.

Symbian-T9. Symbianˆ3 also offers a virtual numpad with
T9 completion as known from feature phones. This key-
board only has twelve buttons: numbers, *, and shift. T9 is
deactivated for password entry, keys have to be tapped re-
peatedly to input characters. The keyboard does not display
a popup of the typed key. Instead of special character key-
board pages, a character map (same as Symbian-QWERTZ)
is used, which consists of two pages filling the entire screen.
The grave accent is missing on the keyboard. We used a
Nokia C7 with Symbianˆ3.

MeeGo. MeeGo is a Linux-based mobile platform orig-
inally developed by Nokia and Intel. The keyboard has
black keys with plain white captions, aligned horizontally
and vertically. It has additional keys for German umlauts,
comma and period. Keys are larger compared to Symbian-
QWERTZ. Curly brackets are missing on this keyboard. We
used a Nokia N9 with MeeGo 1.2.



3.1 Character Typing Effort
The required effort for typing characters varies on virtual
keyboards, because of required navigation between keyboard
pages. To ensure comparability of password entry across de-
vices, the effort of typing the passwords in our study must
be the same on all devices. Therefore, we partitioned avail-
able characters1 into categories of same effort: lowercase (z ),
uppercase (Z ), numbers (0 ), and four categories for special
characters (1 -4 ). While the first three categories already
exhibit consistent effort across devices, typing effort of spe-
cial characters had to be analyzed on each keyboard variant.
Table 1 shows the required number of taps for each special
character on different platforms (a tap-and-swipe gesture
corresponds to 1.5 taps). If multiple options exist for typing
a character, the minimum effort was chosen. The clustering
of special characters into the different categories (tier 1-4)
is based on the mean effort across all keyboards. Thus, the
special characters in one category require approximately the
same input effort. Later on, we define password patterns for
our study based on these categories. We analyzed 62,000
passwords leaked by LulzSec in June 2011 to determine the
occurrence probability of each character in its category to
guide construction of the password patterns.

4. STUDY DESIGN
The virtual keyboard variants discussed in Section 3 exhibit
interesting differences. We hypothesize that these subtle dif-
ferences cause significant differences in usability and shoul-
der surfing susceptibility. Therefore, we designed a usability
experiment and a shoulder surfing experiment. We opted for
a between subjects design with the keyboard variant as in-
dependent variable, resulting in eight experimental groups.
Each participant used a single virtual keyboard to perform
one usability experiment and one shoulder surfing experi-
ment. In contrast to a repeated measures test, the between
subjects approach provided a number of advantages. First,
confronting each participant with eight keyboard variants
would have inadvertently caused exhaustion and training
effects that could have skewed results even for randomized
ordering of keyboard variants. Second, for the shoulder surf-
ing experiment, it was essential to use the same passwords
for all participants to achieve reliable results. This would
not have been possible in a repeated measures design where
participants would perform the shoulder surfing experiment
multiple times.

The study was conducted at Ulm University in a dedicated
room as a lab study. The room contained a desktop com-
puter to complete questionnaires and the shoulder surfing
setup, consisting of a chair and table. For all smartphones
cellular services were disabled. Wifi was used to connect to
a university server which hosted the study’s web application
and stored collected data. Participants were recruited from
the campus population with posters and flyers and via mail-
ing lists of the university. Participants were promised and
received chocolate. In total, 80 people participated in the
study, resulting in 8 groups with 10 participants. The 21
female and 59 male participants were roughly equally dis-
tributed between groups. The majority of participants were
students and academic personnel from the fields of computer

1We excluded curly brackets and the grave accent because
they are not available on all virtual keyboards.

science, media computer science, and mathematics. The
average age of participants was 24. The majority owned
a smartphone (68.75%), 23 participants owned a standard
feature phone (28.75%), and 2 participants owned no mobile
phone (2.5%).

Each session started with an entry questionnaire to be filled
out on a desktop computer. First, a short text explained
the goal of the study. It was further pointed out that par-
ticipants did not need to use any personal passwords and
that all required passwords would be provided. The ques-
tionnaire gathered demographic information (age, gender,
occupation) and asked participants to rate their experience
with common smartphone platforms, as well as specific tech-
nologies (multitouch screens, T9 keyboards, QWERTZ key-
boards), on 7-point Likert scales. Participants were further
asked to specify brand and model of their primary mobile
phone. The questionnaire closed by asking the participant
to use their prescription glasses, if required.

The experience information was directly evaluated to assign
the participant to a group. Participants were preferably as-
signed a mobile platform they were already familiar with.
This had two advantages over random group assignment:
participants already familiar with a specific keyboard would
require less training and typing behavior would reflect natu-
ral use, thus enhancing ecological validity of measurements.
Regardless of experience, all participants received sufficient
instruction and ample training time to properly familiarize
themselves with the assigned keyboard variants. Partici-
pants were encouraged to type a provided sample text on
the assigned smartphone, which contained characters of dif-
ferent categories (see Sec. 3.1). Participants were especially
encouraged to familiarize themselves with the entry of spe-
cial characters. Participants could start the first experiment
whenever they felt ready.

4.1 Usability Experiment
To assess the usability of virtual keyboards, we employed
two metrics reflecting typing performance: entry time and
mean error rate for entering a password. Entry time is an
indicator for the difficulty of locating required characters.
The error rate is an indicator for typing accuracy, i.e., how
often do users have to correct mistyped characters. In addi-
tion to quantitive usability results, we were also interested
in qualitative assessment of perceived usability. Thus, we
derive three hypotheses for usability. Note that we refrain
from forming hypotheses that address specific keyboards at
this point due to the explorative nature of our study. We
will provide specific post-hoc analysis in Section 5.

H1 Significant differences exist in entry time between vir-
tual keyboards.

H2 Significant differences exist in mean error rate between
virtual keyboards.

H3 Significant differences exist in the perceived usability
between virtual keyboards.

We developed a web application to measure entry time and
typing accuracy of password entry. Key strokes entered in a



Table 1: Typing effort and occurrence probability of special characters
Character Character Probab. in Android- Android- Android- iOS MeeGo Symbian- Symbian- Windows ø
Category category Vanilla Sense Swype QWERTZ T9 Phone 7

Tier 1 SPACE 0.27 1 1 1 1 1 1 1 1 1
Tier 1 . 0.61 1 1 1 2 1 1 1 1 1.125
Tier 1 , 0.12 1 1 1 2 1 1 2 1 1.25

Tier 2 ? 0.06 2 1.5 1.5 2 2 1 2 2 1.75
Tier 2 @ 0.19 2 1.5 1.5 2 2 2 2 2 1.875
Tier 2 ! 0.14 2 1.5 1.5 2 2 2 2 2 1.875
Tier 2 - 0.11 2 1.5 1.5 2 2 2 2 2 1.875
Tier 2 / 0.06 2 1.5 1.5 2 2 2 2 2 1.875
Tier 2 ) 0.02 2 1.5 1.5 2 2 2 2 2 1.875
Tier 2 ( 0.01 2 1.5 1.5 2 2 2 2 2 1.875
Tier 2 ; 0.01 2 1.5 1.5 2 2 2 2 2 1.875
Tier 2 & 0.04 2 1.5 1.5 2 2 3 2 2 2
Tier 2 # 0.02 2 1.5 1.5 3 2 2 3 2 2.125
Tier 2 * 0.21 2 1.5 1.5 3 2 2 2 3 2.125
Tier 2 + 0.04 2 1.5 1.5 3 2 2 2 3 2.125
Tier 2 0.09 3 1.5 1.5 3 2 2 2 3 2.25

Tier 3 % 0.13 2 1.5 2.5 3 3 3 2 2 2.375
Tier 3 $ 0.13 2 1.5 1.5 3 3 3 2 3 2.375
Tier 3 = 0.13 3 3 1.5 3 2 2 2 3 2.438
Tier 3 € 0.13 3 3 2.5 2 3 3 2 2 2.563
Tier 3 \ 0.13 3 3 2.5 3 2 2 3 2 2.563

Tier 4 ˜ 0.13 3 3 2.5 3 2 3 3 3 2.813
Tier 4 [ 0.15 3 3 2.5 3 3 3 2 3 2.813
Tier 4 ] 0.15 3 3 2.5 3 3 3 2 3 2.813
Tier 4 < 0.12 3 3 2.5 3 3 3 2 3 2.813
Tier 4 > 0.09 3 3 2.5 3 3 3 2 3 2.813
Tier 4 ˆ 0.24 3 3 2.5 3 3 3 3 3 2.938
Tier 4 | 0.12 3 3 2.5 3 3 4 3 3 3.063

text field on the smartphone were logged with timestamps
and evaluated to determine the actual entry time between
the first and last characters (in ms). Each participant had to
enter five passwords. Passwords were individually generated
according to fixed patterns with increasing complexity based
on the character categories defined in Section 3.1:

z00Z2z3 A relatively easy password that requires switching
to special characters pages and back to type numbers
and tier 2 and 3 special characters.

Z3z00z4Z This password requires switching to the second
special characters page and back and includes two up-
percase characters.

z4z302Z0z Nine characters from nearly all categories with
adjacent characters from different categories.

0z4Z20zZ2 Variation of the previous pattern starting with
a number.

22z1z34Zz Easy special character between two lowercase
letters.

Before the first password, it was explained that passwords
are case-sensitive and may contain special characters, that
both typing speed and accuracy will be measured, and that
participants should correct typing errors. The generated
password was displayed on screen in the system’s default
monospace font with a password entry field below. After
password entry the participant had to click send to continue
with the next password. No feedback about typing accuracy
was provided to prevent participants form going back and
trying to re-enter a password.

After completion of the password entry task, participants
were asked to complete the post-study system usability ques-
tionnaire (PSSUQ) [18] on a desktop computer to assess
perceived usability. The PSSUQ consists of 19 items to be
rated on 7-point Likert scales with an additional no answer
option and the ability to provide a comment for each item.
The items can be combined to four scales that exhibit high

reliability [18, 19]: system usefulness, information quality,
interface quality, and overall satisfaction. For our study, we
translated the PSSUQ to German and slightly adapted items
to disambiguate terms without changing their meaning. We
changed “system” to “keyboard”, for example.

4.2 Shoulder Surfing Experiment
The usability experiment was followed by the shoulder surf-
ing experiment. We assessed a keyboard’s susceptibility to
shoulder surfing with the success rate of the shoulder surfer,
i.e., how well the typed password could be reproduced. The
success rate of an observer may further depend on the cho-
sen shoulder surfing strategy, i.e., where the observer focused
her attention when trying to read the typed password. We
further assumed that the perception of shoulder surfing sus-
ceptibility varies between virtual keyboards, regardless of
their actual susceptibility. Therefore, we derive three hy-
potheses:

H4 Significant differences exist in mean shoulder surfing
success between virtual keyboards.

H5 Significant correlations exist between shoulder surfing
success and chosen shoulder surfing strategy.

H6 Significant differences exist in the perception of shoulder
surfing susceptibility between virtual keyboards.

We followed the common approach of having participants
act as shoulder surfers [5, 12, 20, 25, 27]. The experimenter
played the victim and entered previously trained passwords
of varying difficulty, while taking care to maintain a con-
stant typing speed for all participants that reflected typing
the user’s own passwords. A reverse setup with the partici-
pant as victim would suffer from varying typing speed, un-
controllable attempts for obstructing shoulder surfing, and
training effects for the shoulder surfer. In our setup, the vic-
tim was sitting at a table typing passwords with the thumb
of his right hand, which rested on the table to reduce vi-
brations and arm movements. Participants could choose to
stand in the middle behind the victim or behind the left or



right shoulder. Those positions were marked on the floor
directly behind the victim’s chair. The following passwords
were used in the study:

sunshine A frequent dictionary password from the LulzSec
leak.

uMo.37 x Both special characters are easy to input on all
systems.

g<G,9o-l A hard password, designed to confuse the shoul-
der surfer. Comma, g, 9, and o are easily confused.

Before the experiment commenced, the danger of shoulder
surfing in public places was explained. Participants were
asked to estimate shoulder surfing susceptibility of the as-
signed virtual keyboard by rating four items on 7-point Lik-
ert scales. Participants were given a paper sheet to take
notes. After entering a password the experimenter waited
until the participant was finished taking notes before typ-
ing the next password. Afterwards, the participant tried to
enter the passwords on the device, with maximum three at-
tempts per password. We rejected Nicholson’s approach [20]
of having participants complete memory rotation tasks be-
fore entering passwords to avoid noise due to differences in
memory capabilities between participants. We automati-
cally logged key strokes of each password entry attempt by
the participant to measure the shoulder surfing success rate.

We quantify the error rate with the Levenshtein distance
dL [17], which is defined as the number of delete, insert,
and substitute operations required to transform the recorded
password into the correct password. Thus, the Levenshtein
distance better accounts for shifted characters (1 substitu-
tion instead of 2 wrong characters) [9].

The experiment closed with a short questionnaire asking for
a re-assessment of the perceived shoulder surfing suscepti-
bility. In addition, participants were asked to rate which
shoulder surfing strategy they followed by rating their focus
on the virtual keyboard, the finger movement, and the entry
field. Additional comments could be provided in a text field.

5. RESULTS
5.1 Usability Results
In order to filter out incomplete samples, we only used those
samples that were sent off correctly, i.e., where the whole
password was typed before pressing “send”.

5.1.1 Password entry time (H1)
Figure 2 shows the median entry time of each group for the
five different password categories. Using the non-parametric
Kruskal-Wallis test, we find a significant difference in entry
time between groups (H(7)=74.40, p<.01). Thus, we can
reject the null hypothesis and accept hypothesis H1: Signif-
icant differences exist in entry time between different virtual
keyboards. Variances in the different groups are equal ac-
cording to Levene’s test (p=.09). A Bonferroni post-hoc test
shows that entry time is significantly higher for Symbian-
QWERTZ compared to Android-Sense (p=.02), Android-
Vanilla, iOS, MeeGo, and Windows Phone (p<.01). Thus,

virtual keyboard variant
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password pattern

Error bars: +/- 1 standard error

Figure 2: Median password entry time per group.

of all tested virtual keyboards with full layout, Symbian-
QWERTZ is the least efficient in terms of password entry
time. Also for Symbian-T9, entry time is significantly higher
compared to iOS (p<.01) and Windows Phone (p=.01). Sim-
ilarly, entry time is significantly higher for Android-Swype
compared to iOS (p=.01) and Windows Phone (p=.03). Thus,
the virtual QWERTZ keyboards of iOS and Windows Phone
facilitate faster password entry than the non-QWERTZ vari-
ants T9 and Swype.

5.1.2 Error rate (H2)
We counted mistyped characters and characters corrected
before sending as errors. The data sets for Android-Sense
and Symbian-T9 required rectification because our measure-
ment system counted errors on those systems when accessing
alternate keys or switching through characters. The data
sets were manually corrected and are used in the following.
Figure 3 shows the mean error rate per password and group.
According to the Kruskal-Wallis test, significant differences
exist between groups (H(7)=26.85, p<.01). Thus, we can
accept hypothesis H2: Significant differences exist in mean
error rate between different virtual keyboards. Levene’s test
shows no variance homogeneity (p<.01). Therefore, we use
the Games-Howell post-hoc test. The Games-Howell test
shows that the mean error rate on Windows Phone is sig-
nificantly lower than on Android-Vanilla (p=.03), Android-
Swype (p=.05), and Symbian-QWERTZ (p<.01). The strong
difference between Windows Phone and those other variants
is also apparent in Figure 3. Table 2 shows the combined
mean error rate over all passwords for each keyboard vari-
ant. On Symbian-QWERTZ at least one error occurred on
average per entered password. Windows Phone, iOS, and
Symbian-T9 provided the best typing accuracy, but only the
Windows Phone results are statistically significant.

5.1.3 Qualitative Assessment (H3)
Figure 4 shows the results of the four PSSUQ scales. The
variables SYSUSE, INFOQUAL, and INTERQUAL are not
normally distributed (Shapiro-Wilk test). The Kruskal-Wallis
test shows significant differences for SYSUSE (H(7)=18.83,
p<.01), but they are not strong enough to show in post-
hoc analysis. Significant results also exist for INTERQUAL
(Kruskal-Wallis: H(7)=19.63, p=.01). Specifically, the in-
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Figure 3: Mean error rate per group.

Table 2: Mean error rate over all passwords
Keyboard variant mean error std. dev.
Symbian/QWERTZ 1.07 1.42
Android/Sense .90 2.09
Android/Swype .78 1.27
MeeGo .65 1.06
Android/Vanilla .61 .89
iOS .34 .75
Symbian/T9 .30 .80
Windows Phone .09 .29

terface quality of Android-Sense was rated significantly bet-
ter than that of Symbian-QWERTZ (Bonferroni: p=.01).
INFOQUAL exhibits no significant differences, likely, be-
cause displayed information is similar across keyboards.

The OVERALL variable is normally distributed (Shapiro-
Wilk test) and a one-way ANOVA shows significant differ-
ences (F (7, 72)=3.50, p<.01). Android-Sense (p=.02) and
Windows Phone (p=.04) are both rated significantly higher
than Symbian-QWERTZ. Therefore, we accept hypothesis
H3: Significant differences exist in the perceived usability of
different virtual keyboards. This confirms the quantitative
results of H1 and H2. Symbian-QWERTZ provides inferior
usability compared to other full keyboard variants. In con-
trast, Windows Phone provides high usability. iOS exhibits
good quantitative usability results, but no significant differ-
ences exist in perceived usability.

5.2 Shoulder Surfing Results
5.2.1 Success rate (H4)

A low Levenshtein distance dL indicates a guess closer to
the original password and higher success in recognizing the
password. For each participant, we selected the best of their
three attempts to enter the observed password (minimal dL).
Figure 5 shows the mean minimal Levenshtein distance for
the three passwords per group. The Levenshtein distance
was not normally distributed for all groups (Shapiro-Wilk).
The non-parametric Kruskal-Wallis test shows significant
differences between groups (H(7)=14.98, p=.04). There-
fore, we accept hypothesis H4: Significant differences ex-

Likert Value

Figure 4: PSSUQ results after usability experiment.

Table 3: Number of correct guesses
Keyboard variant total % pw1 pw2 pw3
Android/Sense 23.3% 5 2 0
Android/Swype 20.0% 4 1 1
Android/Vanilla 20.0% 3 1 2
iOS 20.0% 3 1 2
Windows Phone 16.7% 3 1 1
MeeGo 13.3% 4 0 0
Symbian/QWERTZ 13.3% 2 1 1
Symbian/T9 6.6% 2 0 0

ist in mean shoulder surfing success between virtual key-
boards. Due to lack of variance homogeneity (Levene’s test,
p=.03), we employ the Games-Howell post-hoc test. For
Symbian-T9, dL was significantly higher than for Android-
Sense (p=.03) and Android-Swype (p=.03). Thus, Symbian-
T9 is less susceptible to shoulder surfing than the two An-
droid variants.

While the mean Levenshtein distance indicates the closeness
between guesses and correct passwords, the number of com-
pletely correct guesses is also of interest. Table 3 ranks sys-
tems according to the total percentage of correctly guessed
passwords. Not surprisingly, the dictionary password (pw1)
was recognized most frequently across systems. The two
more complex passwords show similar numbers of correct
guesses. The most passwords were correctly guessed on An-
droid and iOS variants (>20%), while Symbian-T9 was the
hardest to shoulder surf with only 6.6% correct password
guesses.
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Figure 5: Levenshtein distance of guessed pass-
words.

5.2.2 Recognition rate per character
The success rate analysis led us to also analyze the recogni-
tion rate of individual characters in the different passwords
across groups to determine which characters and character
categories are easier to observe. Figure 6 shows the total
recognition rate for the individual characters of the three
passwords. In general, characters at the beginning of a pass-
word are recognized well, followed by a slight decrease in
recognition rate over the password length. The last char-
acter is again frequently recognized, likely because it is dis-
played longer, while other characters are hidden when the
next character is typed.

Password 1. Fig. 6(a) shows a decreased recognition rate
for the second and fifth characters. A potential explanation
could be that the victim has to move the right thumb to the
far left of the keyboard to type “s”. Thereby, a large part of
the keyboard is obscured for the observer, while the victim
can easily type following characters when moving the thumb
back to the right.

Password 2. Fig. 6(b) shows a continuous decrease in
recognition rate for the first four characters. The two spe-
cial characters (tier 1 ) exhibit the lowest recognition rate,
Especially space was rarely recognized, probably because it
can be typed quickly and would be hard to observe in the
entry field. In contrast, numbers exhibit a high recognition
rate. Most likely due to the switch to a different keyboard
page or holding down a character key until the number is
selected.

Password 3. Figure 6(c) shows that the delay required to
type “<” (2.8 taps) results in a relatively high recognition
rate. Interestingly, the recognition rate increases even fur-
ther for “G”. The comma has a similar recognition rate as

the dot, in the second password. This suggests that spe-
cial characters from the same category (tier 1) have simi-
lar recognition rates. An explanation for the relatively low
recognition rate could be the small dimension of either char-
acter when displayed in the entry field and the resulting
ambiguity, especially between these two characters. The “o”
can be confused with a “0”, especially on keyboards where
they are close together, e.g., the Android variants. The “l”
at the end has a very low detection rate, because it was often
confused with “I ” or the pipe character—although typing a
pipe requires at least 2 additional taps on all devices.

5.2.3 Shoulder surfing strategies (H5)
To analyze if focusing on particular parts of the phone cor-
relate with higher success rate, we calculated a participant’s
mean minimal Levenshtein distance over all three passwords
as the success metric, which resulted in a reliable scale (Cron-
bach’s α=.70). Because values are not normally distributed
(Shapiro-Wilk), we employ the non-parametric Spearman
rank correlation. We found a significant negative corre-
lation (ρ=.303, p=.01) with medium effect between mean
Levenshtein distance and focus on the entry field. Thus,
participants that focused on the entry field had a higher
probability of achieving a high success rate (low dL). Hy-
pothesis H5 can be accepted, but with caution because of
the small effect size. The Spearman rank test also showed
significant negative correlations between entry field and key-
board (ρ=.561, p<.01) and entry field and finger movement
(ρ=.335, p=.01), as well as a positive correlation between
keyboard and finger movement (ρ=.309, p=.01). Thus, par-
ticipants focused either on keyboard and finger movement
or on the entry field. This seems sensible considering the
spatial distance between keyboard in the lower screen half
and entry field in the upper half.

5.2.4 Perceived shoulder surfing susceptibility (H6)
Participants were asked to rate the perceived shoulder surf-
ing susceptibility of their assigned keyboard variant before
and after the shoulder surfing experiment. However, no sig-
nificant differences between groups could be found in either
case. Therefore, the null hypothesis for H6 cannot be re-
jected.

5.3 Limitations
The study was performed with a German keyboard layout.
Specific results might look different for keyboard layouts of
other languages. However, assuming a similar layout with
minimal changes, most results should be transferable and
reproducible.

In the usability experiment, participants had to type dis-
played passwords. This does not reflect the natural situation
of entering a memorized password. However, we wanted to
eliminate differences in memory capability, because memo-
rability of passwords was not the focus of this study.

In the shoulder surfing experiment, some participants pointed
out that they might achieve higher recognition rates if they
would explicitly train shoulder surfing. However, our focus
were differences in shoulder surfing susceptibility between
different keyboard variants and all participants had the same
level of shoulder surfing experience. Training participants in
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Figure 6: Successful recognition rate per character.

specific shoulder surfing strategies could provide an interest-
ing follow-up study, especially to better understand correla-
tions between shoulder surfing success and strategy.

6. DISCUSSION
The Windows Phone and iOS virtual keyboards faired best
in the usability experiment with short password entry times
and high typing accuracy. Those two variants, as well as
MeeGo, provide a clean keyboard interface without alternate
functions. Symbian-QWERTZ faired considerably worse.
An issue pointed out by multiple participants was the small
button size and the cramped keyboard layout, which likely
explains the high rate of typing errors. The Symbian-T9
variant, on the other hand, had a relatively low error rate.
Yet, typing passwords with T9 takes considerably longer be-
cause multiple taps are required for many characters, which
are directly accessible on the other keyboards. The word
completion typically available for T9 typing is also deac-
tivated in password entry fields. The Android variants and
MeeGo rank in the mid-field of the usability results, without
significant differences between them.

Interestingly, the keyboard variants with low usability turned
out to be more resistant against shoulder surfing. Espe-
cially Symbian-T9 fairs very well. A likely explanation is
that switching through characters makes it difficult for an
observe to determine at which character the user stopped.
A reason for the relatively high shoulder surfing resistance
of Symbian-QWERTZ could be the small button size, which
is also a likely cause for the above mentioned usability is-
sues. The three Android variants were most susceptible to
shoulder surfing. In the post-shoulder surfing questionnaire,
participants named the magnification of pressed buttons as
a main issue for Android. This is surprising considering
that the other keyboards also magnify or highlight pressed
keys. Windows Phone and iOS show that there is no general
apparent trade-off between shoulder surfing risk and usabil-
ity. Both keyboard variants were leading in the usability
experiment and also performed on an acceptable level in the
shoulder surfing experiment. In our shoulder surfing exper-
iment, we could not reproduce Tari et al.’s result that non-
dictionary passwords are easier to observe than dictionary
ones [25]; our results suggest the opposite.

Based on our results, we can derive certain insights that
can serve as pointers for further investigation, support im-

provement of virtual keyboard design, and help users with
password composition for mobile use.

6.1 Keyboard Interface Insights
• Alternate functions on keys of the keyboard’s primary

screen may not improve usability and likely increase
shoulder surfing susceptibility.

• Magnification of typed characters increases shoulder
surfing susceptibility. Magnification should be disabled
for password fields accordingly.

• Reduced keyboards (e.g., T9) can be accurate and im-
prove security, but reduce typing efficiency.

6.2 Mobile Password Composition Insights
• Special characters that can be easily typed (e.g., dot,

comma, and space) increase shoulder surfing resistance.

• Ambiguous characters increase shoulder surfing resis-
tance, e.g., characters that can be entered with the
same button (e.g., space and dot on iOS) or look sim-
ilar (e.g., “0” and “o”).

• Character recognition rates decrease over the password
length. Taken together with the results by Komanduri
et al. [13] that longer passwords are more usable than
complex ones, longer passwords with simpler charac-
ters are preferable for smartphone entry.

7. CONCLUSIONS
Virtual keyboards on smartphones seem quite similar at first
glance. Therefore, one would intuitively assume that they
offer similar usability and resistance against shoulder surf-
ing. But by transferring the layout of a physical keyboard
onto a small-scale touchscreen the effects of small user inter-
face and experience differences can be elevated to significant
differences in terms of usability and shoulder surfing suscep-
tibility. A primary observation is that special characters—
still commonly required by password composition rules—
differ in typing effort on virtual keyboards with full QW-
ERTZ/QWERTY layout. We categorized special characters
according to their typing effort (measured in finger taps) to
generate passwords with different complexity.

Our between subjects study with 80 participants evaluated
the usability and shoulder surfing susceptibility of eight vir-
tual keyboard variants covering the mobile platforms iOS,



Android, Windows Phone, Symbian, and MeeGo. Our re-
sults show significant differences in the usability between
different keyboard variants for password entry, as evidenced
by significant differences in quantitative (entry time, error
rate) and qualitative (perceived usability) evaluation.

Our study also showed significant differences in shoulder
surfing success for different virtual keyboards. Interestingly,
keyboard variants with low usability proved more resistant
against shoulder surfing. We further studied the recogni-
tion rates of individual characters for different passwords,
leading to initial insights on the influence of password com-
position on shoulder surfing resistance. We also identified
focusing on the password entry field as the most success-
ful shoulder surfing strategy. Thus, attention for improving
shoulder surfing resistance on smartphones should also be
focused on the entry field rather than the virtual keyboard
alone. Virtual keyboards provide a large design space with
novel features compared to physical keyboards, such as en-
abling context-based changes of key labels (e.g., pressing
shift can change characters to uppercase), pop-out menus
to provide quicker access to special characters, and magni-
fication of typed characters. While this design space offers
opportunities for usability enhancement, the employed fea-
tures must be balanced with security considerations and the
common usage context of the device. While further stud-
ies are required to better understand the effects of specific
user interface features on shoulder surfing susceptibility, our
work shows that seemingly small design variations can result
in significant differences in terms of security.
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