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Abstract—In ubiquitous systems control of privacy settings will
be increasingly difficult due to the pervasive nature of sensing and
communication capabilities. We identify challenges for privacy
decisions in ubiquitous systems and propose a system for in
situ privacy decision support. When context changes occur, the
system adapts a user’s privacy preferences to the new situation.
As a consequence, recommendations can be offered to the user
or sharing behavior can be automatically adjusted to help the
user maintain a desired level of privacy. The system learns from
user interaction and behavior to improve decision accuracy. In
this paper, we outline the main components of our system and
illustrate its operation with an ambient assisted living use case.

I. INTRODUCTION

Future ubiquitous or pervasive computing environments will
be characterized by the integration of sensing, processing,
and communication capabilities in the physical environment.
Everyday objects will become smart [1], [2] in the sense
that they can perceive their environment and communicate
and interact with each other. The main goal is to facilitate
more natural and less obtrusive interaction between users and
computing systems in order to better support users in their
activities. Context awareness and implicit interaction are seen
as basic ingredients towards realizing this vision.

But with the promises of ubiquitous computing also arise
novel privacy issues as pointed out early on by Weiser [3].
Almost invisible sensing capabilities ubiquitously embedded
in the environment, paired with increasing storage and pro-
cessing capabilities, also enable large scale surveillance of
users [4]. Research on privacy in ubiquitous computing has
been mainly focused on how sensitive information can be
protected and shared in a privacy preserving manner [5], [6].
As location awareness is one of the key characteristics in
ubiquitous computing, location privacy became a dominant
topic [7], [8]. One common approach is the obfuscation of
information to reduce its quality. Other approaches aim to
hide the information owner via anonymization or the use of
pseudonyms. Iachello and Hong [9] give a good overview
on privacy controls for information sharing, e.g., based on
privacy policies. Approaches based on spheres [6] or territorial
privacy [10] employ physical metaphors to reduce complexity
of privacy controls in ubiquitous systems.

While these approaches offer means for controlling privacy,
their configuration is commonly left to the user. But users will
have a hard time defining privacy settings that match their

actual privacy preferences due to the complexity of systems,
the multitude of entities (technical and human), and changing
context. Especially manually pre-defining what information
should be available to which entity (human or technical)
in any given situation will be infeasible in such scenarios.
The abstract nature of privacy implications makes it difficult
to presuppose the desired level of privacy for a specific
situation [11]. Instead, privacy decision making should be
supported in situ, i.e., in the situation where a privacy decision
is required [12]. The current context needs to be considered
in order to help users effectively control their desired level of
privacy in any given situation.

Existing approaches for supporting in situ privacy decision
making either focus on enhancing awareness of information
flow or on controlling specific information items, such as
location. Most systems [13], [14] only become active when
triggered by external requests for the user’s information.
However, we argue that passive observations dominate in
ubiquitous computing scenarios, i.e. entities sense, process,
and communicate information about users without explicitly
requesting access or interacting with them [10]. Therefore, not
only interactors but also other physically or virtually present
entities must be taken into account for privacy decisions
as well as privacy controls. We propose to utilize context-
awareness to dynamically adapt privacy preferences in a
privacy decision model to help a user maintain a desired level
of privacy, either by providing recommendations to the user
or via automatic reconfiguration. By adapting to the user, the
system can learn the user’s preferred trade-off between user
involvement and automated enforcement.

In this paper, we first discuss privacy decision issues in
ubiquitous systems (Sec. II). Then, we outline our system and
privacy decision process (Sec. III) and exemplify it with a use
case (Sec. IV). We conclude the paper with an outlook on
challenges and future work (Sec. V).

II. PRIVACY DECISIONS IN UBIQUITOUS COMPUTING

Making adequate privacy decisions in information systems
is already difficult today. For example, when sharing infor-
mation on social networking sites [15]. The characteristics of
ubiquitous systems further increase the difficulty of specifying
privacy settings that match the user’s actual privacy prefer-
ences. The following challenges can be identified:
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Information explosion: The amount of information about
a user grows with the number of sensors. Information exists on
multiple levels of abstraction with varying semantic richness.
Privacy decisions for sharing this information must be made on
relevant abstraction levels to be comprehensible to users. For
example, privacy decisions for indoor location sharing should
rather be based on rooms than on specific sensors.

Context explosion: With an increasing number of smart
entities and environments, situations in which privacy de-
cisions are required explode due to exponential growth in
potential context configurations. Taking all context situations
into account a priori is infeasible and would prevent efficient
privacy decisions. Instead, privacy decisions must be adapted
to previously unknown situations.

Physical boundaries dissolve: The integration of sensors
and communication capabilities into the environment enables
virtual entities to participate in physical environments. Users
may not know that they are being observed or by whom. Thus,
sharing decisions must consider physically present entities as
well as virtual and remote entities, which may be unknown.
Users must be made aware of the extend of their physical-
virtual mixed environment.

Observations and disturbances: Physically and virtually
present entities may observe users without actively interacting
with them. Furthermore, not only exchanged information may
be privacy sensitive. A user’s activities, interaction partners,
external state, posture, and behavior may also need to be
protected. Therefore, privacy decisions must not only pertain
to sensitive information but also observations of the user.
Smart entities may also cause disturbances in a user’s phys-
ical environment, e.g., via audiovisual output, automation, or
robots. Such disturbances can impact a user’s privacy and must
be included in privacy decisions in ubiquitous systems.

Abstract privacy implications: Due to the complexity
introduced by the characteristics above, implications of privacy
decisions become too abstract to be estimated properly by the
user in advance. Therefore, a continuous re-evaluation process
is required to support the user [12].

III. IN SITU PRIVACY DECISION SUPPORT

We propose a system for supporting a user’s privacy deci-
sions in situ, i.e., in the context they are required in, following
the notion of contextual integrity [11]. Instead of requiring
static definition of privacy settings beforehand, our system
approximates the user’s privacy preferences and adapts them
to the current context. The system can then either recommend
sharing decisions and actions or autonomously reconfigure
privacy settings. The goal is to support users in maintaining a
level of privacy that adequately fits their privacy needs for the
current activity in the current context. This means that privacy
settings should neither be too tight nor too open [12].

In order to provide adequate decision support and properly
adapt privacy preferences, we take into account the issues
named in the previous section. Especially territorial privacy
aspects, such as physical-virtual mixed environments, obser-
vations and disturbances, factor into privacy decisions, besides

information privacy aspects. Furthermore, the system adapts to
the specific user by learning from explicit sharing decisions,
implicit user behavior, and reactions to system actions. The
personalization to a specific user has the advantage of better
emulating that user’s privacy decision process. It also helps
to decide when to involve the user in the decision process by
providing recommendations only and when privacy decisions
can be realized autonomously.

We assume that the system is implemented as a personal
trusted agent and supports privacy decisions of a single user.
The system’s main components are the context model, the
privacy decision engine, and realization and enforcement of
adapted privacy preferences. In the following, we will discuss
them in more detail together with the privacy decision process.
Figure 1 provides an overview.

A. Context Model

To facilitate privacy decisions on an appropriate abstraction
level, we distinguish between decision level and system level
(see Fig. 1). The system level handles context acquisition
and provides semantically enriched information to the deci-
sion level. Thus, the system level enables context awareness
but also filters context information and maps it to semantic
concepts required for decisions. Semantic mappings can be
derived from a pre-defined or learnt world model. On the
decision level, the context model only contains components
relevant for privacy decision making. The main components
on the decision level are the user that performs an activity in
an environment.

The user has resources, which can be information items but
also devices or sensors, and an observable state, i.e., the user’s
posture or bodily expression. An activity is always user-centric
and has some abstract goal. An activity involves the user, user
resources, and interactors, i.e., entities the user engages with.

The environment spans the physical and virtual realm and
is user-centric in the sense that it is defined by the user’s
physical location. It is assigned a type, i.e., a semantic label,
such as home or work, based on system level input. The
environment consists of physical and virtual entities and
staging. Humans, software agents, services, and smart devices
are all represented as entities with the ability to perceive,
process and communicate information. The staging defines an
environment’s physical and virtual configuration. For example,
the position of walls, windows, and screens, and how virtual
entities are connected to the physical environment. While the
staging shares system level characteristics, it can influence
privacy decisions (e.g., an unfamiliar office) and is therefore
represented on the decision level.

Entities can have different roles. In our previously defined
territorial privacy model [16], an observer is an entity that
can perceive the user, either directly or via other observers
forwarding information. A disturber is an entity that has the
ability to disturb a user’s activity, e.g., a person walking into
a room disrupting a conversation or a cleaning robot becom-
ing active when the user watches television. When the user
engages with an entity in an activity, the entity becomes an
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Fig. 1. Overview of the privacy decision process.

interactor. An entity can be observer, disturber, and interactor
at the same time. Entities can be organized hierarchically to
simplify privacy decisions. For example, sharing decisions can
reference a person, while privacy settings will also apply to
the person’s devices, e.g., a mobile phone.

Privacy decisions are further facilitated by assigning trust
to entities in the context model and ambient trust to the
environment, i.e., determined by its type and staging. For this
purpose, we are currently developing entity trust evaluation
mechanisms based on social trust concepts [17].

B. Privacy Decision Engine

The context model allows to reason about which context
items are affected by a context transition. A change in context
C leads to a new context situation C ′. The transition TC→C′

is defined as the difference between C and C ′ and captures all
changes between them. When a transition occurs, the privacy
decision engine (PDE) evaluates TC→C′ to determine which
protection worthy context items are affected by TC→C′ (cf.
Fig. 1). Protection worthy items can be the user’s resources,
but also the user’s state, the activity, or its interactors. Protec-
tion worthiness (or privacy relevance) of context items for a
given context are determined by the user’s privacy preferences.

As a user’s true privacy preferences exist only inside the
user’s mind, our system can only approximate them. Thus,
the PDE matches privacy preferences stored in the knowledge
base to the context transition TC→C′ and the new situation
C ′ in oder to infer an adapted privacy preference for C ′

in the reasoning step (see Fig. 1). We employ case-based
reasoning [18] to avoid extensive a priori knowledge acqui-
sition. Privacy preferences are stored as cases, which are
retrieved by evaluating the similarity of previous situations
with the current one. Similar cases are then adapted to the
new context resulting in an adapted privacy preference that
is retained as a new case. We plan to use personality-based
privacy profiles to govern adaptation of privacy preferences.
The main idea is to determine the user’s personality type [19]
before initial system use to select a privacy profile in order
to speed up the bootstrapping process of learning the user’s
personal preferences. The privacy profile then serves as a
basis for adapting privacy preferences and is subsequently

further adjusted to the user by learning from the user’s explicit
decisions, behavior, and reaction to system actions.

Based on the adapted privacy preference the PDE infers
multiple privacy policy variants (see Fig. 1). While a privacy
preference describes the user’s privacy goal on the decision
level, a privacy policy describes one way of achieving the
privacy preference on the system level. Thus, C ′ may offer
different alternatives, represented by privacy policies, for real-
izing the privacy preference. It may also be possible that the
privacy preference cannot be realized in the current context.
In that case, the privacy policy would suggest terminating
the activity. For each privacy policy variant a confidence
score is calculated based on how well it fits the adapted
privacy preference. Based on the confidence scores, the PDE
selects the most appropriate policy candidate or triggers user
involvement if the confidence is below a certain threshold (see
Fig. 1). The specific threshold is determined by the user’s
personality and previous privacy decisions.

The system learns from explicit user decisions, as well as
reactions to the system’s realization of privacy policies. These
cues are used to adjust stored privacy preferences and tailor
interaction thresholds to the user’s expectations.

C. Realization and Enforcement

Next, the selected privacy policy must be realized on the
system level (see Fig. 1). Our privacy policies combine terri-
torial privacy and information privacy aspects. First, territorial
privacy mechanisms [10], [16] are employed to prune the
number of physical and virtual entities granted access to
the user’s private territory. The private territory is defined
by a territorial privacy boundary that separates desired and
undesired entities. The entities remaining inside the private
territory have defined observation or disturbance channels to
the user, or more specifically, to protectionworthy context
items.

Next, our privacy policies define granularity adjustments for
specific information items. For example, instead of the user’s
exact position only the street address or city can be provided.
Similarly, the granularity of the user’s identity can be adjusted,
e.g., anonymous, pseudonymous, or full identity. Granularity
adjustments can also be defined for other information types.



Depending on the environment, different strategies for pol-
icy realization and varying degrees of enforcement are possi-
ble [10]. In personal and shared personal environments, such
as the home, system components are under the user’s control
allowing trust assumptions in terms of policy realization. In
shared and public environments, the user has generally less
control. Yet, trusted computing or collaborative mechanisms
can support enforcement of privacy policies.

IV. USE CASE: AMBIENT ASSISTED LIVING

In the following we discuss a use case to illustrate the
proposed system. Alice is an elderly person living alone in
her home equipped with ambient assisted living technology.
One day, Alice falls on her way to the bathroom and remains
unconscious. The monitoring system (MS) detects Alice’s fall
and wants to inform Dan, her doctor, with a warning message
including her vital signs.

Our system detects multiple context transitions. Before the
fall (C0), Alice’s activity is walking to bathroom and the MS
is active but can only process information locally. In transition
TC0→C1 , Alice’s fall is detected on the system level. Her
state on the decision level changes to unresponsive. The PDE
analyzes TC0→C1

and determines that no privacy adaptation
is required. Next, MS initiates a new activity on behalf of
Alice in TC1→C2

. This activity involves entities Alice, MS,
and Dan and requires access to Alice’s vital sign sensors. The
PDE matches this activity to the emergency help activity which
allows sharing of vital signs with remote medical personnel.
In the current context, the PDE derives a privacy policy that
allows the MS to pass information on to Dan. The selected
privacy policy also includes Dan’s warning system, which the
message is sent to to reach Dan. Note that this system is not
part of the adapted privacy preference, but is required on the
system level to realize the adapted privacy preference.

Dan’s warning system receives the emergency message and
informs Dan. Dan immediately drives to Alice and arrives
at her front door shortly after. Dan’s arrival triggers another
context transition TC2→C3 . A new entity is added in C3 as
a disturber. The system authenticates the entity as Dan. The
PDE matches Alice’s state unresponsive and Dan’s attribute
doctor with Alice’s privacy preference to receive medical help
in emergencies. The derived privacy policy states that Dan
can enter the house. The policy is realized by the house
automation system that automatically opens the door for Dan.
Dan enters the house and can help Alice. Note, that if Alice
would have been conscious, the PDE could have involved her
in the privacy decision by asking her if she wants to let Dan in.
The adapted privacy preferences would be stored and validated
later on when Alice is well again.

V. OUTLOOK

In this paper, we proposed a system for context adaptive
privacy decision support in ubiquitous computing. Our system
takes both physical and virtual entities into account and
extends privacy decisions not only to information sharing but
also to observations and disturbances. The system’s privacy

decisions can be used to support the user in her privacy
decision making or to autonomously reconfigure the system.
The goal is to maintain a privacy level that aligns with the
user’s privacy preferences and activity in the current context,
and is neither too open nor too restrictive. While focusing on a
single user enables improved personalization, it also introduces
challenges, such as handling shared resources, e.g., devices
owned or operated by multiple users.

The development of the system is currently work in
progress. Next, we plan to further refine the context model
and validate its generality and expressiveness by applying it
to a set of versatile use cases. At the same time, we are
working on the integration of trust aspects in the context
model. For the privacy decision engine, we are currently
working on suitable context and knowledge representations
to enable efficient reasoning and inference of preferences and
policies on different abstraction levels. We plan to implement
the privacy decision engine in a prototype system to evaluate
the accuracy of privacy decisions in user studies.
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