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Abstract— Public intersections are due to their complexity
challenging locations for drivers. Therefore the german joint
project Ko-PER - which is part of the project initiative Ko-FAS
has equipped a public intersection with several laserscanners
and video cameras to generate a comprehensive dynamic model
of the ongoing traffic. Results of the intersection perception can
be communicated to equipped vehicles by wireless communica-
tion. This contribution wants to share a dataset of the Ko-PER
intersection to the research community for further research in
the field of multi-object detection and tracking. Therefor the
dataset consists of sensordata from the laserscanners network
and cameras as well as reference data and object labels. With
that dataset, we aim to stimulate further research in this area.

I. INTRODUCTION

Intersections are accident black spots. Therefore driver
assistance is needed in this areas. The aim of this publication
is to introduce a laserscanner and video camera dataset
gathered at a public urban intersection to the ITS community
to promote further research in the field of road user detection,
classification, and tracking. Additionally the dataset provides
reference data facilitating the evaluation and benchmarking
of algorithms. Since the intersection perception system (ISP)
has been designed and installed within the joint project Ko-
PER [1], the development of algorithms to perceive the
road users at the intersection was one major aim of the
project. In [2] and [3] the video and laserscanner based object
recognition and tracking algorithms including evaluation
with reference data are presented. A 3D model of the public
intersection can be seen in Fig. 1.

In the published dataset, each object causes multiple
laserscanner measurements and is represented by multiple
pixels in the camera images. Therefore, as in [3], the data set
is highly suitable to develop and evaluate tracking algorithms
which do not require a point target assumption. Recently,
these extended object tracking algorithms, like such proposed
by [4], [5], [6], [7] attracted a lot of attention in the multi-
object tracking community. The sufficiency of the presented
intersection perception system to estimate the number and
states of extended objects has already been shown in [8].
Here a gamma-Gaussian-inverse Wishart (GGIW) PHD filter
is used to track pedestrians, bikes, and vehicles on their way
through the intersection.

Further, to the knowledge of the authors the Ko-PER
intersection dataset is the first dataset containing temporal
and spatial calibrated laserscanner and camera data of a
permanently installed intersection perception system.
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Fig. 1. Public intersection in Aschaffenburg (Germany) used for the test
system (Picture is kindly provided by the Wuerzburg Institut for Traffic
Sciences GmbH, http://www.wivw.de).

II. RELATED WORK

Several intersection perception systems (IPS) were devel-
oped in research projects addressing intersection collision
avoidance applications in the recent years. In the United
States of America, the Cooperative Intersection Collision
Avoidance Systems-Stop Sign Assist (CICAS-SSA) pro-
gram, made use of radar sensors and laserscanners to ac-
quire road user data at rural intersections, [9], [10]. The
used sensors were mounted at street level. In Europe the
SafeSpot subproject INFRASENS involved laserscanners,
cameras and RFID-systems to detect road users in urban
areas, [11]. The laserscanners were mounted at street level,
too, which made the IPS prone to occlusions caused by
nearby passing pedestrians. This drawback was solved in
Intersafe2 by mounting laserscanners on higher top-view-
positions, [12]. This concept was adopted within the Ko-
PER project. Due to the changed mounting position the
appearance of the data changed, as well. This made the
development of new object extraction algorithms necessary,
[13]. In comparison to Intersafe2, Ko-PER extended the
IPS by low- and high resolution cameras, to gather further
classification information and information about vulnerable
road users, e.g a pedestrian intending to cross the street, [14],
[3].

Within the recent research programes IPSs are used to
provide a solid information base for intersection collision
avoidance systems, see e.g. [9], [12], [15]. In addition IPSs
are very useful to gather sufficient naturalistic driving data
for parameter determination in the development process of



intersection sited driver assistance applications. Using an
IPS for Cooperative Awareness in combination with car-to-X
(C2X) communication and localization techniques, solves the
availability problem of sufficient communicated information
at equipped intersections.

III. TEST SITE AND SENSOR SETUP

This section briefly summarizes the sensor setup installed
at a public intersection in Aschaffenburg, Germany to per-
ceive the intersection scene. A detailed description of the
intersection perception system is given in [16]. The intersec-
tion is a four-way crossing and illustrated in Fig. 2. Its main
road features two straight ahead lanes and a separate left-turn
lane for each direction. The branch roads have one lane per
direction and a left-turn lane on one side. Additionally, the
main road has a separate bicycle lane and the intersection is
surrounded by sidewalks on all except one side.

The intersection is observed by 14 SICK LD-MRS 8-
layer research laserscanners and eight monochrome CCD
cameras (Baumer TXG-04) with different viewpoints. The
sensors are installed at infrastructure components like lamp
posts and traffic lights and are mounted at least 5m above
the ground. A sketch of the mounting positions as well
as the simulated field of view (FOV) of the sensors [17]
is given by Fig. 2 and Fig. 6. All sensors are triggered
in hardware thus, each measurement is associated with a
timestamp which corresponds to the acquisition time of the
measurement (UTC).

A. Laserscanners

Four laserscanners cover the central intersection
widespreaded (see Fig. 2(a)), two scanners observe
the sidewalks along the main road (see Fig. 2(c)), and
eight sensors observe three egresses of the intersection (see
Fig. 2(b), 2(d), and 2(e)). The laserscanners synchronously
operate with a frequency of 12.5 Hz. Since they scan
their environment within 80 ms, not all measurements
are acquired to the same time. This has to be considered
by using the provided timestamps. An example of a
measurement gathered by the laserscanner network is
given by Fig. 3. Being able to refer to the measurement
geometrically, a highly accurate map is illustrated in the
background of Fig. 3. The map is provided in the form of
a Matlab Figure in the east, north, up (ENU) coordinate
system and comprises the [x, y] position of lane markings
and street boundaries.

B. Cameras

The cameras are monochrome cameras with a resolution
of 656×494 pixels and a Pentax H416 lens with focal length
of 4.2 mm. To fulfill data protection restrictions, only two of
the eight cameras are included in the dataset. For these two
cameras it is guaranteed that no personal data is gathered.
Example images provided by the two cameras are shown in
Fig. 4 and 5.

Fig. 6 shows the cameras’ mounting position and a simu-
lation of their FOV. The optical axis form an angle of approx.
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(e)

Fig. 2. Mounting positions of laserscanners and their simulated FOV.
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Fig. 3. Aligned lasercanner data, reference data of a vehicle, and highly
accurate map of intersection.



Fig. 4. Image of SK 1 and projected laserscanner measurements.

Fig. 5. Image of SK 4 and projected laserscanner measurements.

180 degrees to reduce the risk of occlusions. Throughout the
paper and the dataset the cameras are named as in Fig. 6.
The operation frequency of the cameras is 25 Hz in phase
with the laserscanners.

IV. DATASET

The dataset can be downloaded from
www.uni-ulm.de/in/mrm/forschung/datensaetze.html

and features the content below. All the raw data as well
as the calibration parameters are stored in .mat files for
processing with Matlab.

A. Content

The dataset comprises:
• raw laserscanner data
• undistorted camera images
• reference data of selected vehicles
• object labels

While the object labels are provided for Sequence1 with
a duration of 6:28 minutes, reference data for two cars

(a) (b)

Fig. 6. Mounting positions of cameras and their simulated FOV.

performing a right turn and a straight ahead maneuver is
included in Sequence2 and Sequence3. Laserscanner
measurements and camera images are provided for all se-
quences.

The Sequence1 has been recorded in the afternoon and
contains several hundred road users. The majority of objects
are cars but also trucks, buses, two-wheelers, and pedestrians
pass the intersection. Using the provided object labels, this
sequence is sufficient to test, evaluate, and benchmark multi-
object detection, classification, and tracking methods. Due to
the huge number of objects which differ in their type, extend,
shape, and texture the sequence poses a challenge for state
of the art perception methods. To reduce the size of the files
the sequence has been splitted into four parts (1a, ...,
1d) with equal duration.

For Sequence2 and Sequence3 highly accurate refer-
ence data of one car in each case is available. It includes
ground truth data for the car’s state and can be used to
evaluate the absolute estimation error.

The data to each sequence is stored in a folder which
contains a .mat file for each sensor type. The data in
the .mat files is structured as shown in Tab. I. Each

TABLE I
SENSOR DATA STREAMS

1: result =
2: stream1: [1x1 struct]
3: stream2: [1x1 struct]
4: ...

available stream contains a time (timestamps), data, and
converterMethodName field which specifies the data
structure (see Tab. II). To each timestamp a source dependent

TABLE II
CONTENT OF SENSOR DATA STREAM

1: result.stream1 =
2: time: [1x9674 double]
3: data: {1x9674 cell}
4: convertMethodName: ’<CONVERTER>’

data element is provided. The content of data is described
in the subsequent sections.



B. Laserscanner Data

In case of the point measurements of the laserscanners
each element of the data structure (Tab. II) contains the
high level measurement information for one timestep. Tab.
III introduces the relevant data fields.

TABLE III
HIGH LEVEL INFORMATION OF LASERSCANNER DATA

1: result.LS 1.data{1} =
2: numPoints: 1060

number of measurement points in current scan
3: availableFeatures: {10x1 cell}

available features for each measurement point
4: features: [1060x10 double]

matrix of feature values with
dimension (numPoints x numFeatures)

The availableFeatures for laserscanner measure-
ments are summarized in Tab. IV. The described data is

TABLE IV
CONTENT OF LASERSCANNER MEASUREMENT POINTS

1: result.LS 1.data{1}.availableFeatures =
2: FEAT X POS x position [m]
3: FEAT Y POS y position [m]
4: FEAT Z POS z position [m]
5: FEAT RADIAL DIST radial distance [m]
6: FEAT AZIMUTH ANGLE azimuth angle [rad]
7: FEAT ELEVATION ANGLE elevation angle [rad]
8: FEAT LAYER layer ID = 0, . . . , 7
9: FEAT ECHO NUM echo ID = 0, . . . , 2 per laser pulse

given in sensor coordinates. To transform the laserscanner
coordinate system Cls,i to a common coordinate system Cw

for all sensors at the intersection, a homogeneous transfor-
mation matrix Tw

ls,i is provided for each laserscanner i. The
system Cw is a ENU-system, where the x-axis points to east,
the y-axis to north, and the z-axis upwards.

Using Tw
ls,i the posls,i = [x, y, z]T measurements of

each scanner i = 1, . . . , 14 can be transformed to Cw

which facilitates the determination and visualisation of the
measurement point cloud of the laserscanner system plotted
in Fig. 3.

posw,i = Tw
ls,i · posls,i (1)

Since additionally the extrinsic and intrinsic calibration of
the cameras to Cc is known, the laserscanner measurements
can be projected into the camera images (see eg. Fig. 4). Ex-
ample code to load, transform and visualize the scanner data
can be found in the code of the provided DataSetViewer.

C. Camera Data

For each camera the undistorted images are stored in a
folder named after the corresponding camera data stream
(Tab. I). By opening an element of the data cell (see Tab.
V), the name of the image can be accessed.

TABLE V
HIGH LEVEL INFORMATION OF CAMERA DATA

1: result.KAB SK 1.data{1} =
2: image: ’KAB SK 1 1384779301359985.bmp’
3: labels: []
4: source: []

Similar to the laserscanners, the transformation of the
world coordinate system Cw to the ith camera coordinate
system Cca,i is given by the equation:

posca,i = T ca
w,i · posw,i (2)

with the homogeneous transformation matrix Tw
ca,i which

is stored in the Cam Calib.mat in the calib folder of
the DataSetViewer. This file also contains the intrinsic
calibration parameters for the cameras. The principal axis of
the camera coordinate system is pointing down the z-axis.
After transforming the laserscanner measurements into the
camera coordinate system they can be normalized to their
z-compontens. With this intrinsic calibration parameters, the
projection of the normalized measurements is given by:

xi

yi
1

 =

fx 0 cx
0 fy cy
0 0 1

xn

yn
1

 (3)

The focal lenght and the principal point is denoted by fx,
fy , cx and cy . Example code to load, transform, and visualize
the images is also provided within the DataSetViewer.

D. Object Labels

For Sequence1 a set of object labels is provided. This
is generated by manually inspecting the sensor data of each
sensor for each time step, including map information. During
the labeling process, a box was placed around each object in
different frames. The position and dimensions were adjusted
by considering all available information: each camera view,
the laser information and the map. Between two labeled
frames, the poses of the objects were interpolated. Each
labeled object includes a unique track id and an object
class. Thus, the labeled data is sufficient to evaluate envi-
ronment perception methods including multi-object tracking
and classification algorithms. In Fig. 7, 8 and 9 one frame
of labeled data is shown. The different label classes are
shown in different colors: Blue boxes represent cars, green
boxes represent pedestrians, yellow boxes represent trucks,
and black boxes represent bikes.

Similar to the laserscanner measurements, one position
measurement is provided to each timestamp in time ( Tab.
III). The availableFeatures are shown in Tab. VII.

The content of the labeled Sequence1 is summarized in
Tab. VI.
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Fig. 7. Laserscanner data and object labels. Blue boxes represent cars,
green boxes represent pedestrians, yellow boxes represent trucks, and black
boxes represent bikes.

Fig. 8. Image of SK 1, projected laserscanner measurements, and object
labels.

Fig. 9. Image of SK 4, projected laserscanner measurements, and object
labels.

TABLE VI
CONTENT OF LABELED SEQUENCE 1

Sequence Cars Trucks Pedestrians Bikes Duration (s)

1a 63 1 10 0 96
1b 63 3 13 3 96
1c 81 5 7 3 96
1d 83 3 8 4 97

TABLE VII
CONTENT OF LABEL DATA MEASUREMENT POINTS

1: result.BoxfittingLabels REF.data{1}
.availableFeatures =

2: FEAT X POS x position [m]
3: FEAT Y POS y position [m]
4: FEAT Z POS z position [m] (set to zero)
5: FEAT WIDTH width of object [m]
6: FEAT LENGTH length of object [m]
7: FEAT HEIGHT height of object [m]
8: FEAT ORIENTATION ANGLE orientation angle [rad]
9: FEAT ID unique object id

10: FEAT CLASSIFICATION object class id

E. Reference Data

The reference data of the vehicles has been acquired by
a real-time kinematic global positioning system (RTKGPS)
with inertial measurement unit. Providing only reference
data which features a highly accurate status and has been
validated using the digital map of the intersection, guarantees
a position accuracy better 0.15 m. Thus, the reference data is
sufficient to evaluate environment perception methods. The
reference data is referred to the center point of the cars’ front
bumper on street level.

The availableFeatures are shown in Tab. VIII.

TABLE VIII
CONTENT OF REFERENCE DATA MEASUREMENT POINTS

1: result.LS 1.data{1}.availableFeatures =
2: FEAT X POS x position [m]
3: FEAT Y POS y position [m]
4: FEAT Z POS z position [m] (set to zero)
5: FEAT X VEL velocity in x direction [m/s]
6: FEAT Y VEL velocity in y direction [m/s]
7: FEAT Z VEL velocity in z direction [m/s]
8: FEAT X ACC acceleration in x direction [m/sˆ2]
9: FEAT Y ACC acceleration in y direction [m/sˆ2]

10: FEAT Z ACC acceleration in z direction [m/sˆ2]
11: FEAT WIDTH width of car without mirrors [m]
12: FEAT LENGTH length of car [m]
13: FEAT HEIGHT height of car [m]
14: FEAT YAW yaw angle [rad]
15: FEAT YAWRATE yaw rate [rad/s]

V. CONCLUSION

Within the german joint porject Ko-PER, a complex in-
tersection perception system with 14 laserscanners and eight
monochrome CCD cameras has been designed and installed.
In order to provide access to sensor data of the unique
this intersection, we prepared a dataset of three sequences



of laserscanner and camera data. For two of the sequences
highly accurate reference data of one car in each case is
available. This two sequences include cars performing a right
turn and a straight ahead maneuver. One sequence comes
with object labels of several hundred road users including
differenct object classes. The sequences are highly suitable to
develop and evaluate tracking algorithms. With this dataset,
we aim to stimulate further research in this area.
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