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Abstract—Lattice-reduction-aided (LRA) equalization is a very
interesting multi-user equalization technique as it enables a low-
complexity full-diversity detection. To this end, the multiple-
input/multiple-output channel is factorized into a reduced variant
and a unimodular integer matrix. Inspired by the closely related
finite-field processing strategy of integer-forcing (IF) equaliza-
tion, this factorization task has recently been relaxed to non-
unimodular integer matrices. In this paper, the claim of a
significant performance gain induced by the IF philosophy is
revisited. For that purpose, lattice-basis-reduction approaches are
reviewed; the optimal one with respect to channel equalization is
identified. A fair comparison between unimodular LRA and IF
strategy is given, complemented by detailed numerical results.

I. INTRODUCTION

Multiple-input/multiple-output (MIMO) transmission has be-
come one of the most important principles in modern commu-
nication systems. In the past decade, research has especially
been focused on multi-user communication, where several
users simultaneously transmit to or receive from one central
multi-antenna instance. Restricting to uplink transmission, this
is known as MIMO multiple-access channel.

Efficient strategies had to be found to handle the multi-user
interference. Possible solutions were either a simple linear
channel equalization or the technique of decision-feedback
equalization using the principle of successive interference can-
cellation. However, both approaches were not really convinc-
ing as they could not exploit the MIMO channel’s diversity.

In order to achieve full diversity [13], lattice-reduction-
aided (LRA) equalization has been proposed [16], [14], where
the MIMO channel is interpreted as the generator matrix of
a lattice. The channel matrix is factorized into a reduced
version thereof (reduced basis of the lattice) and a unimodular
integer part which describes the change of basis. To this end,
well-known lattice-basis-reduction strategies could be applied,
especially the Lenstra-Lenstra-Lovász (LLL) algorithm. In the
sequel, advanced approaches like Hermite-Korkine-Zolotareff
(HKZ) and Minkowski (MK) reduction were studied, e.g.,
in [18]. Evaluations have most often been performed from
a mathematical point of view, e.g., the orthogonality defect of
the reduced channel has been assessed. This, however, may not
necessarily be the optimal way in terms of communications.

Some time ago, the mathematically-driven lattice basis re-
duction has been queried by the integer-forcing (IF) equaliza-
tion strategy [17]. The IF receiver employs the basic structure
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of the LRA receiver, but performs the interference cancellation
over a finite field. Thereby, the integer part does not have to
describe a change of basis any more. It only has to consist
of linearly independent lattice points, optimally determined
by algorithms solving the successive-minima problem [4], [5].
Recently, this relaxation to non-unimodular (full-rank) integer
matrices has been generalized [5]: even the (conventional)
LRA receiver is able to handle any full-rank integer matrix; a
finite-field processing (including its restrictions on the signal
constellation) is not required. Certainly, the question arises if
this novel factorization approach can improve the performance.

Even though some comparisons between conventional (uni-
modular) lattice basis reduction and (non-unimodular) IF fac-
torization philosophy have been given in literature, e.g., in
[10], [4], [5], a fair comparison on equal terms is still an open
point—especially for the high-dimensional case. Hence, in this
paper, we first derive the optimal factorization strategy for
conventional lattice reduction and compare it to state-of-the-art
reduction schemes. Via this, a fair comparison of the lattice-
reduction and IF philosophy is given, supported by extensive
numerical results. This particularly includes a clarification of
the gain directly induced by dropping the unimodularity.

The paper is structured as follows: In Sec. II, basic prop-
erties of lattices and lattice-basis-reduction schemes are ex-
plained. Sec. III starts with the channel model and the structure
of the LRA and IF receiver. Following this, an optimal
factorization is derived and/or reviewed for both approaches.
Numerical simulations and a detailed comparison are provided
in Sec. IV. A summary and conclusions are given in Sec. V.

II. LATTICES AND RELATED PROBLEMS

In this section, important properties of lattices as well as the
principle of lattice basis reduction and related algorithms are
reviewed. Since a complex-valued transmission is considered
in the following, we restrict to complex-valued lattices and
related definitions. More precisely, the signal points (constel-
lation) are assumed to be drawn from the Gaussian integers
G = Z+ jZ, i.e., the integer lattice in the complex plane.

A complex-valued lattice Λ(G) is defined by

Λ(G) =

{
G [u1, . . . , uK ]T =

K∑
k=1

uk gk | uk ∈ G

}
, (1)

where G = [g1, . . . , gK ] ∈ CN×K is its generator matrix
which consists of K ∈ N linearly independent basis vectors
gk ∈ CN , N ≥ K, N ∈ N (N -dimensional lattice of rank K).



A. Gram-Schmidt Orthogonalization

Any matrixG can be decomposed into the formG = G◦R,
where G◦ = [g◦1, . . . , g

◦
K ] is the Gram-Schmidt orthogonal-

ization of G with orthogonal columns g◦1, . . . , g
◦
K . Thereby,

R ∈ CK×K is upper triangular with unit main diagonal.
The vectors of G◦ can be obtained successively for index

k = 1, . . . ,K via the equation g◦k = gk−
∑k−1
l=1 rl,k g

◦
l , where

the coefficients of R are given by

rl,k =
(g◦l )

Hg◦k
‖g◦l ‖22

, l = 1, . . . , k . (2)

B. Minkowski’s Successive Minima and Related Problems

The kth successive minimum of Λ(G), k = 1, . . . ,K, is
denoted as ρk(Λ(G)). It is defined as

ρk(Λ(G)) = inf
{
rk | dim (span (Λ(G) ∩BN (rk))) = k

}
,

(3)
whereBN (r) is the N -dimensional ball (over C) with radius r
centered at the origin [3], [8], [4]. Concisely said, rk has to
be chosen as the smallest radius for which BN (rk) contains k
linearly independent lattice vectors.

1) Shortest Independent Vector Problem (SIVP): For a
given complex-valued lattice Λ(G) of rank K, a set of K
linearly independent lattice vectors G = {λ1, . . . ,λK} has to
be obtained, such that ‖λk‖2 ≤ ρK(Λ(G)), k = 1, . . . ,K.
Briefly speaking, the lattice vector(s) in the set G with largest
Euclidean norm has (have) to be as short as possible, i.e.,

max
k=1,...,K

‖λk‖2 = ρK(Λ(G)) . (4)

The norms of all shorter vectors do not matter in this case.
2) Successive Minima Problem (SMP): Given a lattice

Λ(G) of rank K, a set of K linearly independent lattice
vectors G = {λ1, . . . ,λK} has to be found, such that

‖λk‖2 = ρk(Λ(G)) , k = 1, . . . ,K . (5)

Hence, all lattice vectors in the set G have to be as short as
possible. Naturally, in that case, the SIVP is solved, too.

C. Lattice Basis Reduction

Regarding the problem of lattice basis reduction, a set of
K linearly independent lattice vectors G = {λ1, . . . ,λK} of
a (complex-valued) lattice Λ(G) of rank K has to be found
as well. However, here these vectors additionally have to form
a (reduced) basis of the lattice. As a consequence, the lattice
can equivalently be defined by the reduced generator matrix
Gr = [gr,1, . . . , gr,K ] = [λ1, . . . ,λK ], i.e., Λ(G) = Λ(Gr).

The change of basis is then described by

G = GrU , (6)

where U ∈ GK×K is unimodular (|det(U)| = 1), ensuring
the existence of an integer inverse U−1 ∈ GK×K . In depen-
dency of the reduction criterion/algorithm, the orthogonality
defect of Gr and/or the Euclidean norm of its basis vectors
may be reduced in comparison to the original basis G. In the
following, the most important reduction criteria are listed.

1) Lenstra-Lenstra-Lovász (LLL) Reduction: A generator
matrix G = [g1, . . . , gK ] ∈ CN×K with Gram-Schmidt
orthogonal basis G◦ = [g◦1, . . . , g

◦
K ] and upper triangular

matrix R according to (2) is called (C)LLL-reduced [6], if
i) for 1 ≤ l < k ≤ K, it is size-reduced according to

|Re{rl,k}| ≤ 0.5 and |Im{rl,k}| ≤ 0.5 , (7)

ii) for k = 2, . . . ,K and a parameter 0.5 < δ ≤ 1,

‖g◦k‖22 ≥ (δ − |rk−1,k|2)‖g◦k−1‖22 . (8)

The parameter δ controls the trade-off between “strength”
of the LLL reduction and computational complexity. The case
δ = 1 is denoted as optimal LLL reduction [2]; in all other
cases the reduction is suboptimal. Usually, δ = 0.75 is chosen.

2) Hermite-Korkine-Zolotareff (HKZ) Reduction: A gen-
erator matrix G = [g1, . . . , gK ] ∈ CN×K with Gram-Schmidt
orthogonal basis G◦ = [g◦1, . . . , g

◦
K ] and upper triangular R

according to (2) is called (C)HKZ-reduced [8], [7], if
i) R is size-reduced according to (7),

ii) for k = 1, . . . ,K, the columns of G◦ fulfill

‖g◦k‖2 = ρ1(Λ(G(k))) . (9)

Thereby, Λ(G(k)) is the sublattice of rank K − k + 1
and dimension N , which is defined by the generator matrix1

G(k) = [0, . . . , 0, g◦k, . . . , g
◦
K ]R. Hence, the kth column of the

Gram-Schmidt orthogonal basis has to be a shortest (non-zero)
vector in Λ(G(k)) with norm ρ1(Λ(G(k))).

3) Minkowski (MK) Reduction: We call a generator matrix
G = [g1, . . . , gK ] ∈ CN×K (C)MK-reduced [9], [18], if
∀G′ = [g1, . . . , gk−1, g

′
k, . . . , g

′
K ] with Λ(G′) = Λ(G),

‖gk‖2 ≤ ‖g′k‖2 , k = 1, . . . ,K . (10)

In words, G is Minkowski-reduced if for k = 1, . . . ,K the
basis vector gk has the minimum norm among all possible
lattice points g′k for which the set {g1, g2, . . . , gk−1, g′k} can
be extended to a basis of the lattice Λ(G). Hence, in contrast
to the SMP (5) where only the K shortest independent lattice
vectors have to be found, now the K shortest vectors have to
be obtained that additionally form a basis of the lattice.

D. Algorithms for Lattice Basis Reduction and the SMP/SIVP
Algorithms for lattice basis reduction are known for quite

some time and have partially been extended to the complex-
valued case: The complex LLL reduction can, e.g., be per-
formed with the CLLL algorithm in [6] and the complex HKZ
reduction with the one in [7]. In [18], efficient algorithms
for HKZ and MK reduction are given.2 Recently, efficient
strategies for solving the (C)SMP were proposed in [4], [5].

Only the suboptimal (C)LLL reduction (δ < 1) has polyno-
mial complexity.3 To calculate an HKZ- or MK-reduced basis
or to solve the SMP/SIVP, a solution to the NP-hard shortest
vector problem has to be found once or several times.

1Λ(G(k)) is the orthogonal projection of Λ(G) onto the orthogonal
complement of {g1, . . . , gk−1}.

2The reduction algorithms in [18] are described for the real-valued case,
but they can easily be adapted to complex-valued lattices.

3For δ = 1, at least the convergence of the LLL algorithm is ensured [2].



III. OPTIMAL FACTORIZATION IN LRA AND IF
RECEIVER-SIDE LINEAR EQUALIZATION

In the following, we introduce the channel model and review
factorization approaches for conventional LRA, IF and an
advanced LRA equalization strategy. The optimal lattice basis
reduction is derived and the differences to IF are discussed.

A. MIMO Multiple-Access Channel

We consider a discrete-time MIMO multiple-access channel
with K single-antenna non-cooperating transmitters (users)
and a joint receiver with N ≥ K antennas (complex-baseband
domain). The channel is described by the system equation

y =Hx+ n (11)

and the respective system model is depicted in Fig. 1.
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Fig. 1. System model for multi-user uplink transmission over the MIMO
multiple-access channel: non-cooperating transmitters and joint receiver (RX).

In each time step, the transmitters radiate their data symbols
xk, k = 1, . . . ,K, in vector notation x = [x1, . . . , xK ]T. The
symbols are drawn from a zero-mean signal constellation A
with variance σ2

a, i.e., E{|xk|2} = σ2
x = σ2

a. The constellation
has to form a subset of G (i.e., QAM constellations are suited).

The coefficients of the N × K channel matrix H are as-
sumed to be i.i.d. zero-mean unit-variance complex Gaussian.
Additive zero-mean white Gaussian noise with variance σ2

n

is present at each receiving antenna. The (independent) noise
components are combined into the vector n = [n1, . . . , nN ]T.

Finally, on the basis of the incoming disturbed receive
symbols y = [y1, . . . , yN ]T, a joint receiver-side processing
is used to obtain estimated data symbols x̂ = [x̂1, . . . , x̂K ]T.

B. Lattice-Reduction-Aided Linear Receiver

The LRA receiver structure allows a full-diversity MIMO
equalization. To this end, a channel factorization of the form

H =HrZ (12)

is performed, where Hr denotes the reduced channel matrix
and Z an integer matrix with elements drawn from G. The
LRA channel equalization is realized as illustrated in Fig. 2.

C

y ˆ̄x
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x̂

IF: Fq

F DEC Z−1

Fig. 2. Block diagram of the LRA linear receiver. The dashed framed part
indicates the finite-field processing performed in the IF receiver instead.

First, the reduced channel Hr is equalized via the K ×N
equalization matrix F (non-integer equalization). Second,
channel decoding (DEC) is performed on the linearly equal-
ized symbols r ∈ CK , resulting in decoded symbols ˆ̄x ∈ GK .
In case of uncoded transmission, channel decoding is a simple
quantization to G. An integer equalization via the inverse
integer matrix Z−1 finally results in the vector of estimated
data symbols x̂ ∈ AK .

C. Optimal Factorization for Conventional LRA Equalization

Classically, e.g., in [16], [14], [18], the channel factorization
is directly realized according to (12). In this case, Λ(H) is
considered, i.e., the lattice spanned by the channel matrix. The
lattice basis reduction (6) is calculated for the generator matrix
G =H , and hence Gr =Hr and U = Z. The zero-forcing
(ZF) non-integer linear equalization matrix reads F = H−1r ,
or generally F =H+

r if H is non-square.4 In principle, any
lattice-reduction approach can be employed. Most often, the
suboptimal (C)LLL reduction is used to obtain a reduced basis.
To assess/predict the transmission performance for different
reduction algorithms, performance criteria have been given
in the literature, e.g., in [18]: since MK- and HKZ-reduced
bases Gr =Hr have a lower average orthogonality defect or
proximity factor when compared with LLL-reduced ones, the
related transmissions achieve a lower bit-error rate (BER).

In [15], an extension of (12) to minimum mean-square
error (MMSE) linear non-integer equalization has been pro-
posed. Thereby, the (N +K)×K augmented channel matrix
H =

[
H√
ζI

]
spans the lattice to be reduced, where I is the

identity matrix and ζ = σ2
n/σ

2
x. Then, the performance may

be assessed by evaluating properties of the augmented reduced
channel matrix Hr as the reduced basis, whose pseudoinverse
F = H+

r yields5 the MMSE linear equalization matrix F .
However, in terms of error-rate performance, the above

approaches are suboptimal since substitutional performance
criteria are used. Actually, the aim has to be to minimize the
noise enhancement (ZF criterion) or the mean-square error
(MMSE criterion), which are determined by the squared row
norms of F or F , respectively. Restricting to the MMSE case,
this aim can be achieved by the factorization [5]

(H+)H = (H+
r )

HZ−H = FHZ−H , (13)

i.e., a lattice basis reduction with respect to the (N +K)×K
generator matrix6 G = (H+)H, where U = Z−H. Then, the
columns of Gr = FH, i.e., the rows of F = [fH

1 , . . . ,f
H
K ]H,

are directly affected. Substitutional performance criteria are
not needed any more; the (squared) norms ‖fH

k‖22 can directly
be minimized. Noteworthy, the respective ZF-based approach
(H+)H = F HZ−H has first been proposed in [13] and is
obtained from (13) for ζ = 0. We hence restrict to augmented
matrices to cover both equalization criteria below.

4A+ = (AHA)−1AH denotes the left pseudoinverse of a matrix A. For
the inverse of the Hermitian AH, we write (AH)−1 = (A−1)H = A−H.

5More precisely, F is the K ×N left part of F = H+
r .

6The lattice Λ((H+)H) is the dual lattice [1] of Λ(H). Thus, (13) is the
dual factorization task of H = HrZ, cf. Table I in [5].



In LRA (receiver-side) equalization, the (error) perfor-
mance is dominated by the maximum row norm of F , i.e.,
maxk ‖fH

k‖22 → min has to be achieved. Utilizing the factor-
ization approach (13), in terms of lattice basis reduction we
hence have to solve the shortest basis problem (SBP)

ZH = argmin
ZH∈GK×K ,

| det(ZH)|=1

max
k=1,...,K

∥∥(H+)Hzk
∥∥2
2
, (14)

where ZH = [z1, . . . ,zK ]. The question remains which reduc-
tion criterion should be used to solve the SBP for Λ((H+)H).

Obviously, since LLL- or HKZ-reduced bases are defined
by their Gram-Schmidt orthogonalization (cf. (7), (8), and
(9)), the maximum norm of their basis vectors is generally
not as short as possible. In contrast, an MK-reduced basis is
directly defined by the length of its basis vectors. According
to (10), the reduced basis consists of the K shortest lattice
vectors that form a basis of the lattice. Consequently, not
only the maximum row norm of F , but all of them are as
short as possible. Restricting to lattice basis reduction, an MK
reduction according to (13) thus results in an optimal integer
matrix Z. To the best knowledge of the authors this statement
has not yet been given in the literature so far, even though
respective numerical simulations have been performed in [10],
[4] for comparisons of the LRA and IF receive strategy.

D. Integer-Forcing and Advanced LRA Linear Receiver

The unimodularity of Z has been queried by the concept
of integer-forcing linear equalization [17]. The IF receiver
employs the structure of the conventional LRA receiver—with
the difference that channel (de)coding and integer equalization
(via Z−1) are performed in a joint finite-field modulo arith-
metic (dashed framed part in Fig. 2). To this end, algebraic
signal constellations have to be applied that are isomorphic to
finite fields Fq , q a prime or a squared prime, cf. [11]. Since in
a (finite) field an inverse of a matrix always exists as long as it
has full rank, the unimodularity constraint on Z is weakened
to rank(Z) = K. A detailed comparison of the LRA and IF
receiver philosophy can be found in [5].

Actually, the strategy of dropping the unimodularity is not
limited to a finite-field processing but can be generalized to
the conventional LRA receiver [5]: If Z can be any full-rank
integer matrix, then |det(Z)| ≥ 1. As a consequence, Z may
not describe a change of basis any more, but at least a sub-
lattice of Λ((H+)H) is always described since det(Z) ∈ G.
An ordinary decoding/quantization to G can still be applied.
After the equalization via Z−1 (which may have non-integer
coefficients now), again the original lattice G is present as
det(Z−1) = (det(Z))−1. A restriction to algebraic signal
constellations is not necessary; the conventional LRA receiver
can handle any full-rank matrix indeed. In the following, the
relaxation to full-rank matrices for the LRA receiver structure
is called advanced LRA equalization.

E. Optimal Factorization for IF and Advanced LRA Receiver

In principle, conventional LRA and IF or advanced LRA
equalization share the same optimal factorization task (13).

TABLE I
OVERVIEW ON FACTORIZATION APPROACHES (LRA MMSE LIN. EQU.).

Property classical LRA optimal LRA IF / adv. LRA

Lattice Λ(H) Λ((H+)H) Λ((H+)H)

Constraint on Z | det(Z)|=1 | det(Z)|=1 rank(Z)=K

Lattice Problem SBP SBP SIVP

Algorithm Usually (C)LLL (C)MK (C)SMP

The only difference is the relaxation to a non-unimodular Z
in the IF or advanced LRA case,7 weakening (14) to

ZH = argmin
ZH∈GK×K ,

rank(ZH)=K

max
k=1,...,K

∥∥(H+)Hzk
∥∥2
2
. (15)

Thus, the shortest independent vector problem as defined
in (4) has to be solved for Λ((H+)H). More specifically,
maxk ‖fH

k‖2 = ρK((H+)H) should be obtained.
It is quite evident that (15) is optimally solved if—as

a stricter demand—the integer vectors of ZH yield the K
successive minima of Λ((H+)H). Then, similar to the MK
reduction, all related lattice vectors are as short as possible.
Since they, in contrast, do not necessarily form a basis of the
lattice any more, a potential gain in performance is enabled.

In summary, a fair comparison is only achieved if IF or ad-
vanced LRA and optimal instead of classical LRA equalization
are contrasted, i.e., the MK-reduced basis vs. the solution to
the SMP for Λ((H+)H), cf. Table I. In the literature [10],
[4], some respective simulation results can be found which
indicate a similar performance. Nevertheless, the exact role of
the unimodularity has so far rather remained unclear.

IV. NUMERICAL RESULTS AND COMPARISON

In the following, we present numerical results to asses all
mentioned lattice-reduction approaches and the solution to the
SMP. The results are averaged over all users and more than
one million channel realizations, each with a large number of
transmit symbols and noise samples. We restrict to the optimal
factorization task (13) unless otherwise specified.

A. Transmission Performance

We first asses the transmission performance. In order to
focus on the channel equalization, we consider the (uncoded)
LRA receiver structure as any constellation in G can be used
and both the unimodular and non-unimodular case are covered.

In Fig. 3, the BER of 16QAM transmission is illustrated
over the signal-to-noise ratio (SNR) in dB for the high-
diversity case K = N = 8 applying both the ZF and MMSE
equalization criterion. The SNR is expressed as energy per bit
over the noise power density Eb,TX/N0 = σ2

x/(σ
2
n log2(16)).

First, we see that the MMSE criterion generally results in
a gain of more than 1 dB when compared with the ZF
approach. In case of lattice basis reduction, the suboptimal
LLL reduction (δ = 0.75) shows the poorest performance.

7In the literature on IF receivers, LH = (HHH + ζI)−1/2 is most often
factorized instead, e.g., in [17]. This approach is equivalent to (13), cf. [5].
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Fig. 3. BER of 16QAM transmission in dependency of Eb,TX/N0 in dB for
both ZF and MMSE LRA linear equalization. Variation of the factorization
algorithm; Λ((H+)H); K = N = 8. The results of classical LRA
equalization according to Table I (LLL, δ = 0.75) and MLD are given.
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ZF and MMSE criterion and σ2

x/σ
2
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Variation of the factorization algorithm for the LRA receiver; Λ((H+)H).

Choosing δ = 1 instead results in a considerable gain of
about 0.5 dB (high-SNR regime); the performance is nearly
the same as for HKZ reduction. Calculating the optimal basis
via MK reduction results in about 0.5 dB additional gain. In
contrast, dropping the unimodularity by solving the SMP does
not show any further noticeable advantage. Both strategies
(MMSE criterion) perform about 4 dB worse than a maximum-
likelihood detection (MLD) via the sphere decoder [1]. The
classical LRA equalization approach according to Table I
(LLL, δ = 0.75) significantly decreases the performance: the
factorization of the (augmented) channel matrix instead of the
inverse one induces a loss of more than 2 dB.

In Fig. 4, the BER is depicted in dependency of the
dimensions K = N for an SNR of σ2

x/σ
2
n =̂ 20 dB, i.e.,

Eb,TX/N0 ≈̂ 14 dB (16QAM transmission). As above, the
superiority of the MMSE criterion is visible. For the case
K = N ≤ 4, all approaches almost perform the same, cf. [5].
When increasing the dimensions, the optimal LLL as well
as the HKZ reduction show a gain when compared with the
standard LLL one; the difference goes up to nearly one decade
in BER (K = N = 10). Applying the MK reduction, an

TABLE II
PERCENTAGE OF CHANNELS WHERE MINKOWSKI BASIS SOLVES SMP.

SNR\K=N 2 4 6 8 10

σ2
x/σ

2
n =̂15 dB 100% 99.0% 95.7% 90.3% 83.8%

σ2
x/σ

2
n =̂20 dB 100% 99.0% 95.6% 89.8% 82.3%

σ2
x/σ

2
n →∞ 100% 99.0% 95.5% 89.4% 81.5%

TABLE III
PERCENTAGE OF CHANNELS WHERE MINKOWSKI BASIS SOLVES SIVP.

SNR\K=N 2 4 6 8 10

σ2
x/σ

2
n =̂15 dB 100% 99.2% 97.0% 94.0% 90.6%

σ2
x/σ

2
n =̂20 dB 100% 99.2% 97.0% 93.5% 89.3%

σ2
x/σ

2
n →∞ 100% 99.2% 96.9% 93.2% 88.5%

additional gain of about one decade is visible. In contrast,
calculating the solution to the SMP again does not result in
any significant further gain even for the high-dimensional case
when K = N = 10.

B. Optimality of Minkowski Lattice Basis Reduction

Obviously, the gain in performance induced by dropping the
unimodularity is—at least in realistic scenarios—negligible.
One reason for the minor impact is shown in Table II: There,
the percentages of the channel realizations are listed for which
the (complex) MK reduction also solves the SMP (5), i.e.,
where the K shortest independent lattice vectors form a basis
of the lattice. We consider the mid- and high-SNR regime as
well as the ZF approach (σ2

x/σ
2
n →∞). For the complex case

and K = N = 2, an MK-reduced basis is always a solution
to the SMP.8 For K = N = 4, this is still the case for 99% of
the channels. Going up to K = N = 10, we still have more
than 80% in dependency of the actual SNR.9

However, still more relevant with respect to the performance
is Table III, where the percentages of the channels are listed
for which the (complex) MK reduction solves the SIVP (4).
Now, maxk ‖fH

k‖22 = ρ2K is sufficient since only the maximum
norm actually determines the performance (cf. Sec. III).10 For
the case K = N = 2, the SIVP is consistently solved by the
MK reduction, too. Considering K = N = 4, for additional
0.2% of the channels we have the same maximum norm, but
one or several others are increased when compared with the
optimal non-unimodular solution. For K = N = 10, about
7% of the channel realizations even fall into this category.

C. Distribution of Maximum Squared Row Norm

Though the unimodularity constraint still allows an optimal
performance for the vast majority of channel realizations, the

8For real-valued lattices the K (squared) norms of MK-reduced basis
vectors are bounded by ρ2k ≤ ‖gk‖22 ≤ max{1, (5/4)K−4} ρ2k [9]. For
K ≤ 4, they hence always yield the successive minima. Since an N × K
complex lattice has an equivalent real-valued 2N×2K representation [4], for
the complex case K = N = 2, the optimal matrix Z is always unimodular.

9For higher SNRs (including the ZF solution), the percentage is a little bit
lower since a larger number of channels is badly conditioned, cf. [5].

10The channels in Table II are a subset of the ones in Table III, since not
only a difference in the maximum norm but in any of the K norms is counted.
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question of a potential gain for all the other channels remains.
To clarify this, we first have a look at Fig. 5, where the
probability density functions (pdfs) of maxk ‖fH

k‖22 are shown.
The relations between these pdfs are also reflected in the re-
lations of the BER curves in Fig. 4 (MMSE, σ2

x/σ
2
n =̂ 20 dB,

K = N = 8). Applying suboptimal LLL reduction, high mag-
nitudes (maxk ‖fH

k‖22 > 1) are more likely than for optimal
LLL or HKZ reduction. For MK reduction and the solution to
the SMP/SIVP (maxk ‖fH

k‖22 = ρ2K) high magnitudes barely
appear; the squared norm is lowered on average. However,
again hardly any difference between both is present—even
though at least for some channels ρ2K should be lower.

The reason for that finally becomes clear in Fig. 6, where
the cumulative distribution function (cdf) of the difference be-
tween maxk ‖fH

k‖22 of each reduced basis and ρ2K (SMP/SIVP)
is illustrated (cf. [4, Fig. 6]; parameters as in Fig. 5). Consider-
ing LLL and HKZ reduction, for roughly 10% of the channels
both quantities are the same; for all others the difference
is mostly located in the range up to 0.3. In contrast, an
MK basis is optimal for nearly 94% of the channels (cf.
Table III). However—most important—in almost all other
cases the difference is smaller than 0.05, i.e., negligible. For
that reason, the pdfs in Fig. 5 are nearly the same, leading to
an almost identical transmission performance.

V. SUMMARY AND CONCLUSIONS

We have reviewed and compared factorization approaches for
LRA and IF linear receivers. Restricting to lattice basis reduc-
tion, we have derived the optimal factorization criterion which
is solved by Minkowski reduction. The possibility of dropping
the unimodularity constraint by solving the successive minima
problem has been discussed. In theory, for special channel
matrices, this may result in an infinite gain if K → ∞,
cf. the example in [17]. Nevertheless, numerical results have
revealed that—even for the high-dimensional case—the gain is
negligible in practice: the Minkowski reduction is most often
already optimal; if differences occur they are barely relevant.

Further gains in performance may be achieved by utilizing
the complex hexagonal lattice, also known as Eisenstein inte-
gers, cf. [11], [12]. In addition, an adaption to LRA decision-
feedback equalization still has to be investigated, as well as to
the dual scenario of the MIMO broadcast channel, cf. [12].
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[15] D. Wübben, R. Böhnke, V. Kühn, K.D. Kammeyer. Near-Maximum-
Likelihood Detection of MIMO Systems using MMSE-Based Lattice
Reduction. Proc. IEEE Int. Conference on Communications, pp. 798–
802, Paris, France, June 2004.

[16] H. Yao, G.W. Wornell. Lattice-Reduction-Aided Detectors for MIMO
Communication Systems. Proc. IEEE Global Telecommunications
Conference, Taipei, Taiwan, Nov. 2002.

[17] J. Zhan, B. Nazer, U. Erez, M. Gastpar. Integer-Forcing Linear
Receivers. IEEE Trans. Inf. Theory 60 (12), pp. 7661–7685, Dec. 2014.

[18] W. Zhang, S. Qiao, Y. Wei. HKZ and Minkowski Reduction Algorithms
for Lattice-Reduction-Aided MIMO Detection. IEEE Trans. Signal
Process. 60 (11), pp. 5963–5976, Nov. 2012.


