Asymptotic Predictions of the Pearce-Model for Negative Patterning and for a Biconditional Discrimination

Klaus G. Melchers *

Universität Zürich

According to Pearce's (1987; 1994) configural theory, presentation of a stimulus i activates both its specific configural unit as well as the configural units of similar stimuli. The overall activation V_i of the US representation in a trial is then determined by the aggregate associative strength of all the configural units that are activated:

$$V_i = E_i + e_i. \tag{1}$$

In Equation 1, E_i is the associative strength of the configural unit that corresponds to stimulus *i* and e_i is the summed associative strength that generalizes to *i* from similar stimuli. e_i is given by

$$e_i = \sum_{j=1}^n iS_j \times E_j, \qquad (2)$$

where E_j is the associative strength of a configural unit of another stimulus *j* that is activated because of the similarity $_iS_j$ between stimuli *i* and *j*. This similarity in turn depends on the number of identical components shared between *i* and *j* (at least as long as these

^{*} Klaus G. Melchers, Psychologisches Institut, Universität Zürich, Rämistrasse 62, CH-8001 Zürich, Switzerland, k.melchers@psychologie.unizh.ch

components have the same salience). In his applications of the model, Pearce (1987, 1994) assumes that this similarity is given by

$$_{i}S_{j} = \frac{N_{c}}{N_{i}} + \frac{N_{c}}{N_{j}},\tag{3}$$

where N_c is the number of common elements between stimuli *i* and *j*, N_i is the number of elements in stimulus *i*, and N_j the number of elements in stimulus *j*. The similarity between A and AB would, for example, be $(1/1) \times (1/2) = 0.5$ according to Equation 3 and the similarity between the compounds AB and BC would be $(1/2) \times (1/2) = 0.25$.

Asymptotic Predictions for a Negative Patterning Task

In a negative patterning task, an A+, B+, AB- discrimination has to be learned. At asymptote, A and B should both activate the US representation with values of 100 for V_A and V_B and the compound AB should not activate the US representation at all, so that V_{AB} should be 0. Together with ${}_{A}S_{AB} = {}_{B}S_{AB} = 0.5$ this yields:

$$V_{\rm A} = V_{\rm B} = E_{\rm A} + 0.5E_{\rm AB} = E_{\rm B} + 0.5E_{\rm AB} = 100$$
(4)
$$\therefore E_{\rm A} = E_{\rm B} = 100 - 0.5E_{\rm AB}.$$

Inserting this term for E_A and for E_B in the equation for AB leads to:

$$V_{AB} = E_{AB} + 0.5(100 - 0.5E_{AB}) + 0.5(100 - 0.5E_{AB}) = 0$$

$$\therefore E_{AB} + 100 - 0.5E_{AB} = 0$$

$$\therefore E_{AB} = -200$$

$$\therefore E_{A} = E_{B} = 100 - [0.5 \times (-200)] = 200.$$
(5)

When one compares the asymptotic associative strengths E_{AB} for the reinforced compound and E_A and E_B for the nonreinforced elements, then their difference is 400.

Asymptotic Predictions for a Biconditional Discrimination

In a biconditional discrimination, an AB+, BC-, CD+, DA- discrimination has to be learned. At asymptote, the compounds AB and CD should both activate the US representation with values of 100 for V_{AB} and V_{CD} and the compounds BC and DA should not activate the US representation at all, so that V_{BC} and V_{DA} should both be 0. As the similarity $_iS_j$ is 0.25 for each pair of compounds that share one component it follows that

$$V_{\rm AB} = V_{\rm CD} = E_{\rm AB} + 0.25E_{\rm BC} + 0.25E_{\rm DA} = 100$$
(6)

and

$$V_{\rm BC} = V_{\rm DA} = E_{\rm BC} + 0.25E_{\rm AB} + 0.25E_{\rm CD} = 0.$$
(7)

Since $E_{\rm BC} = E_{\rm DA}$, Equation 6 becomes

$$E_{\rm AB} + 0.5 E_{\rm BC} = 100. \tag{8}$$

Similarly, as $E_{AB} = E_{CD}$ rearrangement of Equation 7 leads to

$$E_{\rm BC} = -0.5 E_{\rm AB}.\tag{9}$$

Insertion of E_{BC} in Equation 8 then yields the asymptotic associative strengths of E_{AB} and E_{CD} :

$$E_{AB} + 0.5(-0.5E_{AB}) = 100$$
 (10)
 $\therefore E_{AB} - 0.25E_{AB} = 100$
 $\therefore E_{AB} = 133.3$
 $\therefore E_{CD} = 133.3.$

Insertion of E_{AB} and E_{CD} in Equation 9 then leads to the asymptotic associative strengths of E_{BC} and E_{DA} :

$$E_{\rm BC} = E_{\rm DA} = -0.5E_{\rm AB} = -66.7.$$
 (11)

When one compares the asymptotic associative strengths E_{AB} and E_{CD} of the reinforced compounds with those of the nonreinforced compounds, E_{BC} and E_{DA} , then their difference is 200, only half of the difference that resulted for negative patterning.

References

Pearce, J. M. (1987). A model for stimulus generalization in Pavlovian conditioning. *Psychological Review*, *94*, 61-73.

Pearce, J. M. (1994). Similarity and discrimination: A selective review and a connectionist model. *Psychological Review*, *101*, 587-607.